一元二次方程的解法因式分解法

一元二次方程的解法因式分解法
一元二次方程的解法因式分解法

分解因式法解一元二次方程教案

赵县第二中学李进锐

教学目标:

1、知识与技能:会使用因式分解的方法解某些一元二次方程

2、过程与方法:经历分解因式法把一元二次方程化为两个一元一次方程的过程,体会“降次”思想、“转化”思想。

3、情感态度与价值观:体验方法的优劣,激发探索的欲望,感受数学学习的乐趣,增加学习数学的兴趣。

教学重点与难点:

教学重点:用因式分解法解某些一元二次方程

教学难点:根据方程特点选择合适的因式分解的方法

教学过程设计:

一:复习回顾

1、我们已经学过几种解一元二次方程的方法?哪几种?

三种,分别是:(1)直接开平方法(2)配方法(3)公式法

2、用配方法解一元二次方程的关键是将方程转化为(x+m)2=n(n≥0)的形式。

3、用公式法解一元二次方程应先将方程化为一般形式。

4、选择合适的方法解下列方程:

①x2-6x=7 ②3x2+8x-3=0

让学生回答用什么方法,然后师生共同写出解答过程。

解:(1)x2-6x = 7

x2-6x+9 = 7+9

(x-3)2 = 16

x-3 = ±4

x-3 =4或x-3 =-4

∴x1=7,x2=-1

(2) 3x2+8x-3=0

a=3,b=8,c=-3

b2 -4ac=82 -4×3×(-3)=100>0

∴原方程有两个不相等的实数根

x1= 1/3 , x2 =-3

二、新课讲解

引例:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

板演三个学生的的三种解法引出分解因式的方法求一元二次方程,当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们就可以用第三个同学的方法求解,这种方法解一元二次方程的方法称为分解因式法。

1.复习提问:如果AB=0,那么这两个因式至少有一个等于零.反之,如果两个因式有一个等于零,它们的积也就等于零.“至少”有下列三层含义①A=0且B≠0②A≠0且B=0③A=0且B=0 2、复习提问:

(1)什么叫因式分解?(2)因式分解有几种方法?哪几种?

叫两个同学分别回答这两个问题,然后老师补充纠正。

(1)因式分解:把一个多项式分解成几个整式的乘积的形式,叫因式分解,又叫分解因式。

(2)三种方法:a..提公因式法b.公式法c.十字相乘法

然后让同学回答公式法包括的两个公式,平方差公式和完全平方公式。

三、例题讲解:

例2 用分解因式法解方程,

解方程: x-2=x(x-2)

解:原方程可变形为x-2-x(x-2)=0.

(x-2)(1-x)=0 得,

∴x-2=0或1-x=0.

∴x1=2,x2=1.

教师板演,学生回答,总结分解因式的步骤:(一)方程化为一般形式;(二)方程左边因式分解;(三)至少一个一次因式等于零得到两个一元一次方程;(四)两个一元一次方程的解就是原方程的解.例3 用分解因式法解方程,

(X+1)2-25=0 (师生共同解决)

四:当堂检测

内容:1、解下列方程:

(1) (X+2)(X-4)=0

(2 ) X2-4=0

(3 ) 4X(2X+1)=3(2X+1)

2、一个数平方的两倍等于这个数的7倍,求这个数?

让学生自己解答,小组讨论。

目的:该练习对本节知识进行巩固,使学生更好地理解所学知识并灵活运用。此处留给学生充分的时间与空间进行独立练习,通过练习,让学生更加熟悉用因式分解法解一元二次方程的步骤,进一步巩固本节课所讲内容。

五、拓展与延伸

1、一个小球以15m/s的初速度竖直向上弹出,它在空中的速度h(m),与时间t(s)满足关系:h=15t-5t2 小球何时能落回地面?

2、一元二次方程(m-1)x2 +3mx+(m+4)(m-1)=0有一个根为0,求m 的值

说明:a学生交流合作后教师适当引导提出两个问题,1、第一题中小球落回地面是什么意思?2、第二题中一个根为0有什么用?

b这组补充题目稍有难度,为了激发“优秀生”的学习热情。

六、感悟与收获

内容:师生互相交流总结,小组讨论总结。

因式分解法解一元二次方程的基本思路和关键。

目的:鼓励学生结合本节课的内容谈自己的收获与感想。七、课堂小结

引导学生从以下3个方面进行小结:

1、本节课我们学习了哪些知识?

2、因式分解法解一元二次方程的步骤是

3、学习过程中用了哪些数学方法?

整个过程让学生自己进行,以培养学生的归纳、概括的能力。1.解一元二次方程的又一个方法,“因式分解法”,因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握分解因式的知识,理论依据是:“如果两个因式的积等于零,那么至少有一个因式等于零.”

2.因式分解法解一元二次方程的步骤是:

(1)化方程为一般形式;

(2)将方程左边因式分解;

(3)至少有一个因式为零,得到两个一元二次方程;

(4)两个一元一次方程的解就是原方程的解.

但要具体情况具体分析.

3.因式分解的方法,突出了转化的思想方法,鲜明地显示了“二次”转化为“一次”的过程.

八、布置作业

1. 用分解因式法解方程

(1) x2-4=0 (2)(x+1)2 -25=0

2、解下列方程

1、(x-4)2=(5-2x)2

2、x2 -6x+9=0

3、(x+3)(x+1)=-1

(完整版)提公因式法因式分解练习题

因式分解---------提公因式法 下列从左到右的变形中,哪些是因式分解,哪些不是。 (1))2(3362 2 3 b a a b a a -=- (2))1(2 3 2 x x x x --=+- (3)))((2 2 b ab a b a ++-33b a -= (4))3)(2(--x x 652+-=x x (5)㎡=m ×m (6)㎡+m=m 3( ) 二、用提公因式法因式分解(一) (1)332168b a ab - (2)22mn n m +- (3)2 515x xy -- (4)3224 1ab b a - (5)ab b a b a -+2233 (6) 3 22316128ay y a y a -+- (7)am m a m a 126323+--(8)xy y x y x ++-2 2 3 2 用提公因式法因式分解(二) (1)2 )()(b a b a +-+ (2))()(x y y y x x -+- (3))(2)(62 n m n m +-+(4))(2)(32 y x x y -+- (5))()(3y x x y x ----(6)2 2 )()(m n n n m m --- (7))(4)(6p q q q p p +-+ (8))(4)(122 x y ab y x b a --- (9)))(())((y x b a y x b a -+-++ 用提公因式法因式分解(三) (1))(2)(72a b y b a x --- (2) )3()3(52 2x a x --- (3) 23)()(2b a b a +-+ (4)2 22)3()3(a b x b a x --- 5))(3)(2p q b q p a ---(6)2 2 3 )1(8)1(6x p x p --- (7)2 )1()1(---a a a (8)2 2 )()()(b a b a b a --+- (9))1()1(2)1(3x c x b x a -+---- (10))32()23()1(2x x x -+-- 用提公因式法因式分解(四) (1)2 )())((y x x y x y x x +--+

一元二次方程专题复习讲义(知识点-考点-题型总结)-----hao---use--ok

一元二次方程专题复习 一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+ -x m x m 是关于x 的一元二次方程,则m 的取值范 围是 。 ★★★4、若方程2x2=0是一元二次方程,则下列不可能的是( ) 2 21 C21 1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 311=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

一元二次方程的基本解法

第一讲:一元二次方程的基本解法 【知识要点】 ① 一元二次方程及其标准形式: 只含有一个未知数,且未知数的最高次数是二次的方程叫一元二次方程。 形如ax 2+bx+c=0(a 、b 、c 为常数,且a≠0)的方程叫一元二次方程的标准形式。 任何一元二次方程都可以通过去分母、去括号、移项、合并同类项等过程,转化为标准形式。 ② 一元二次方程的解法主要有: 直接开方法、配方法、求根公式法、因式分解法。 一元二次方程的求根公式为x 1,2=)04(2422≥--±-ac b a ac b b . ③一元二次方程解(根)的含义:使方程成立的未知数的值 【经典例题】 例1、直接开平方法 (1)x 2-196=0; (2)12y 2-25=0; (3)(x +1)2-4=0; (4)12(2-x )2-9=0. 例2 、配方法: (1)x 2-2x =0; (2)2 12150x x +-= (3)24x 2x 2=+ (4)17x 3x 2+= 例3 、求根公式法: (1) 1522-=x x (2) 052222 =--x x

(3)(x +1)(x -1)=x 22 (4)3x (x -3) =2(x -1) (x +1). 例4 、因式分解法: (1) x (3x +2)-6(3x +2)=0. (2)4x 2 +19x -5=0; (3) ()()2232 -=-x x x (4)x (x +1)-5x =0. 例5、换元法解下列方程: (1)06)12(5)12(2=+---x x (2) 06)1 (5)1(2=+---x x x x 例6、配方法的应用:求证:代数式122+--x x 的值不大于 4 5.

因式分解提公因式法含答案

【知能点分类训练】 知能点1 因式分解的意义 1.下列从左到右的变形,属于因式分解的是(). A.(x+3)(x-3)=x2-9 B.x2-9+x=(x+3)(x-3)-x C.xy2-x2y=xy(y-x) D.x2+5x+4=x(x+5+) 2.下列变形不属于分解因式的是(). A.x2-1=(x+1)(x-1) B.x2+x+1 4 =(x+ 1 2 )2 C.2a5-6a2=2a2(a3-3) D.3x2-6x+4=3x(x-2)+4 3.下列各式从左到右的变形中,哪些是整式乘法哪些是因式分解哪些两者都不是 (1)ad+bd+cd+n=d(a+b+c)+n (2)ay2-2ay+a=a(y-1)2 (3)(x-4)(x+4)=x2-16 (4)x2-y2+1=(x+y)(x-y)+1知能点2 提公因式法分解因式

4.多项式-7ab+14abx-49aby的公因式是________. 5.3x2y3,2x2y,-5x3y2z的公因式是________. 6.下列各式用提公因式法分解因式,其中正确的是(). A.5a3+4a2-a=a(5a2+4a) B.p(a-b)2+pq(b-a)2=p(a-b)2(1+q) C.-6x2(y-z)3+x(z-y)3=-3x(z-y)2(2x-z+y) D.-x n-x n+1-x n+2=-x n(1-x+x2) 7.把多项式a2(x-2)+a(2-x)分解因式等于(). A.(x-2)(a2+a) B.(x-2)(a2-a) C.a(x-2)(a-1) D.a(x-2)(a+1) 8.下列变形错误的是(). A.(y-x)2=(x-y)2 B.-a-b=-(a+b) C.(a-b)3=-(b-a)3 D.-m+n=-(m+n)

一元二次方程因式分解法

解一元二次方程(因式分解法) 教学内容 用因式分解法解一元二次方程. 教学目标 掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题. 重难点关键 1.重点:用因式分解法解一元二次方程. 2.?难点与关键:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便. 教学过程 一、复习引入 (学生活动)解下列方程. (1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法) 老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为1 2 , 1 2 的一半应为 1 4,因此,应加上( 1 4 )2,同时减去( 1 4 )2.(2)直接用公式求解. 二、探索新知 (学生活动)请同学们口答下面各题. (老师提问)(1)上面两个方程中有没有常数项 (2)等式左边的各项有没有共同因式 (学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解: 2x2+x=x(2x+1),3x2+6x=3x(x+2) 因此,上面两个方程都可以写成: (1)x(2x+1)=0 (2)3x(x+2)=0 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0, 所以x1=0,x2=-1 2 . (2)3x=0或x+2=0,所以x1=0,x2=-2. 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1.解方程 (1)4x2=11x (2)(x-2)2=2x-4 分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,?另一边为

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法—知识讲解(基础) 【学习目标】 1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能 力. 【要点梳理】 知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式: . (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 知识点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【典型例题】

提取公因式法、分组分解法

二、因式分解 提取公因式法、分组分解法 练习要求 了解因式分解的概念;掌握提取公因式法与分组分解法。 A卷 一、填空题 1.把一个多项式化成的形式,叫做因式分解。 2.把下列各式分解因式 (1)3x-27y2= ;(2)6x2-7xy2= ; (3)2x2y-4xy3= ;(4)-5x2+10xy3= 。 3.(1)多项式2x2y-4x3y2+6x4y2各项的公因式是; (2)多项式-5ax5y6+15a2x4y7-35a3x2y4各项的公因式是。 4.把下列各式分解因式 (1)3(a+b)-4a(a+b)= ; (2)5(a-b)3-15(a-b)2= ; (3)4(a+2b)2(a-3b)-4(a+2b)3= ; (4)6(x-3y)4-12(3y-x)3= 。 5.把下列各式用分组分解法分解因式 (1)3x+3y-ax-ay= ; (2)ab-a-5b+5= 。 二、选择题 6.下列各式形是因式分解的是( ) (A)(x-7)(x+7)=x2-49;(B)x2+5x-6=x(x+5)-6; (C)5(x-2)(x-3)=5(x-3)(x-2);(D)3x2-9xy+6x=3x(x-3y+2)。 7.多项式18a2b3-9ab2+27a2b2的公因式是( ) (A)ab2;(B)9ab2;(C)9ab;(D)3ab。 8.下列各多项式中有公因式an的是( ) (A)a n+2-5a2n;(B)a3n+a3; (C)a n+2-6a2;(D)an-1-a3n。 9.下列各多项式中不能用提取公因式法因式分解的是( ) (A)5x2y3-20xy3;(B)-3ab+16b3c; (C)x2-3x-1;(D)(a-b)(a+b)2-(b-a)2。 10.5x-7y-5ax+7ay因式分解时,下列分组方法错误的是( ) (A)(5x-7y)-(5ax-7ay);(B)(5x-5ax)-(7y-7ay); (C)(5x+7ay)-(5ax+7y);(D)(5x-5ax)+(7ay-7y)。 三、简答题 11.将下列各式分解因式 (1)9x2y+15xy2-6xy; (2)-18x4y5+27x3y6-36x5y4; (3)x(a-x)(y+a)-2y(x-a)(a+y); (4)(x-5)(3x-2)+10(5-x); (5)x4-x2yz+x3y-x3z; (6)ax n-yx n+4x n+1y-4x n+1a。 12.简便计算

用因式分解法解一元二次方程练习题

用因式分解法解一元二次方程 一.公因式: (一)1.解方程 x2-5x=0 x(x-1)=0 3x2=6x x2-5x=7x t(t+3)=28 x2=7x x2+12x=0(1+2)x2-(1-2)x=0 (3-y)2+y2=9 (二)1.解方程 4x(x+3)+3(x+3)=0 3x(x+1)+4(x+1)=0 (2x+1)2+3(2x+1)=0 x(x-5)=5-x (2t+3)2=3(2t+3) 二、平方差,解方程: (x+5)(x-5)=0 x2-25=0 4x2-1=0 (x-2)2=256 0 1 92x 三、十字交叉,解方程: 4x2-4x+1=0 (x+3)(x+2)=0 x2-5x+6=0 x2-2x-3=0 x2-4x-21=0 (x-1)(x+3)=12 3x2+2x-1=0 (x-1)2-4(x-1)-21=0 5x2-(52+1)x+10=0 四、完全平方,解方程: x2-6x+9=04X2-4X+1=0 (Y-1)2+2(Y-1)+1=0 五、三角形的一边长为10,另两边长为方程x2-14x+48=0的两个根,求三角形的周长? 六、解关于x的方程(1)x2-2mx-8m2=0;(2)x2+(2m+1)x+m2+m=0 七、6.已知x2+3xy-4y2=0(y≠0),试求 y x y x 的值 八、已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值. 九、已知x2+3x+5的值为9,试求3x2+9x-2的值 十、一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.

2.2《一元二次方程的解法》专题训练题及答案

湘教版九年级数学上册 第2章 反比例函数 一元二次方程 2.2 一元二次方程的解法 根据平方根的意义解一元二次方程 专题训练题 1.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( ) A .2 B .0 C .0或2 D .0或-2 2.若关于x 的一元二次方程ax 2+bx +c =0有一个根为1,则下列结论正确的是( ) A .a +b +c =1 B .a +b +c =0 C .a -b +c =0 D .a -b +c =1 3.已知m 是一元二次方程x 2-x -1=0的一个根,那么代数式m 2-m 的值等于( ) A .1 B .0 C .-1 D .2 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .1 B .-1 C .0 D .-2 5.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( ) A .m ≥-34 B .m ≥0 C .m ≥1 D .m ≥2 6.方程x 2-3=0的根是( ) A .x =3 B .x 1=3,x 2=-3 C .x = 3 D .x 1=3,x 2=- 3 7.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( ) A .x -6=-4 B .x -6=4 C .x +6=4 D .x +6=-4 8.方程-4x 2+1=0的解是( ) A .x =12 B .x =-12 C .x =±12 D .x =±2 9.方程(x -4)2=11的根为( ) A .x 1=-4+11,x 2=-4-11 B .x 1=4+11,x 2=4-11 C .x 1=11+4,x 2=11-4 D .x 1=4+11,x 2=-4-11 10.对于形如(x +m )2=n 的方程,它的解的正确表述为( ) A .都能用直接开平方法求解得x =-m ±n B .当n ≥0时,x =m ±n C .当n ≥0时,x =-m ±n D .当n ≥0时,x =±n -m 11.下列方程中,适合用直接开平方法求解的是( ) A .x 2+5x +1=0 B .x 2-6x -4=0 C .(x +3)2=16 D .(x +2)(x -2)=4x 12.方程4x 2-81=0的解为________. 13.解下列方程: (1)16x 2=25; (2)(2x +1)2-1=0.

《因式分解-提公因式法》知识点归纳

《因式分解-提公因式法》知识点归纳★★ 知识体系梳理 ◆ 因式分解------把一个多项式变成几个整式的积的形式;(化和为积) 注意: 、因式分解对象是多项式; 2、因式分解必须进行到每一个多项式因式不能再分解为止; 3、可运用因式分解与整式乘法的互逆关系检验因式分解的正确性; ◆ 分解因式的作用 分解因式是一种重要的代数恒等变形,它有着广泛的应用,常见的用途有化简多项式和进行简便运算,恰当的运用分解因式,常可以使计算化繁为简。 ◆ 分解因式的一些原则 (1)提公因式优先的原则.即一个多项式的各项若有公因式,分解时应首先提取公因式。 (2)分解彻底的原则.即分解因式必须进行到每一个

多项式因式都再不能分解为止。 (3)首项为负的添括号原则.即如果多项式的首项系数为负,应先添上带“-”号的括号,并遵循添括号法则。 ◆ 因式分解的首要方法—提公因式法 、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 2、提公因式法:如果一个多项式的各项含有公因式,可以逆用乘法分配律,把各项共有的 因式提出以分解因式的方法,叫做提公因式法。 3、使用提取公因式法应注意几点: (1)提取的“公因式”可以是数、单项式,也可以是一个多项式,是一个整体。 (2)公因式必须是多项式的每一项都有的因式,在提取公因式时,要把这些公共的因式全部找出来,并提到括号外面去,才算完成了提取公因式。(找最高公因式)(3)对多项式中的每一项的数字系数,在提取时要提出这些数字系数的最大公约数,各项都含有相同的字母,要提取相同字母的指数的最低指数。 ◆ 提公因式法分解因式的关键: 、确定最高公因式;(各项系数的最大公约数与相同因

人教版九年级数学上册因式分解法解一元二次方程练习题

因式分解法解一元二次方程 1、方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8 C .x 1=16,x 2=8 D .x 1=-16,x 2=-8 2、下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x =21 B .x =2 C .x =1 D .x =-1 3、方程5x (x +3)=3(x +3)解为( ) A .x 1= 53,x 2=3 B .x =5 3 C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3 4、方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对 5、方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5 6、已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长 是( ) A .5 B .5或11 C .6 D .11 7、用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;

(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0. (9)x 2-4x +3=0; (10)x 2-2x -3=0; (11)(2t +3)2=3(2t +3); 8、解关于x 的方程: (1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6; 9、已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值. 10、已知x 2+3x +5的值为9,试求3x 2+9x -2的值. 综合训练题 一、填空: 1.关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。 3.若a 是方程2x -x -2=0的一个根,则代数式2a -a = 4.已知方程x 2+k x +3=0 的一个根是 - 1,则k= , 另一根为 5.若代数式5242--x x 与122 +x 的值互为相 反数,则x 的值是 。

一元二次方程及一元二次方程的解法测试题(绝对经典)

. 第二章一元二次方程单元测验 一、选择题:(每小题3分,共36分) 1. 下列方程中是一元二次方程的是 ( ) (A )22)1(2-=-x x (B )01232=+-x x (C )042=-x x (D )02352 =-x x 2. 方程1)14(2 =-x 的根为( ) (A )4121==x x (B )2121==x x (C ),01=x 212=x (D ),2 1 1-=x 02=x 3. 解方程 7(8x + 3)=6(8x + 3)2 的最佳方法应选择( ) (A )因式分解法 (B )直接开平方法 (C )配方法 (D )公式法 4. 下列方程中, 有两个不相等的实数根的方程是( ) (A )x 2 –3x + 4=0 (B )x 2–x –3=0 (C )x 2–12x + 36=0 (D )x 2–2x + 3=0 5、已知m是方程012 =--x x 的一个根,则代数m2 -m的值等于 ( ) A 、1 B 、-1 C 、0 D 、2 6、若方程0152 =--x x 的两根为的值为则 、212111,x x x x +( ) A 、5 B 、51 C 、5- D 、5 1- 7. 以知三角形的两边长分别是2和9, 第三边的长是一元二次方程x 2 –14x + 48=0的解, 则这个三角形 的周长是( )(A )11 (B )17 (C )17或19 (D )19 8. 下列说法中正确的是 ( )(A )方程2 80x -=有两个相等的实数根; (B )方程252x x =-没有实数根;(C )如果一元二次方程20ax bx c ++=有两个实数根,那么0?=; (D )如果a c 、异号,那么方程2 0ax bx c ++=有两个不相等的实数根. 9. 若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为( ) (A )1 (B )2 (C )–1 (D )0 10.把方程2x 2 -3x+1=0化为(x+a)2 =b 的形式,正确的是( ) A. 23162x ??- = ???; B.2312416x ??-= ???; C. 2 31416x ? ?-= ? ?? ; D.以上都不对 11、 若方程02 =++q px x 的两个实根中只有一个根为0,那么 ( ) (A )0==q p ; (B )0,0≠=q p ; (C )0,0=≠q p ; (D )0,0≠≠q p . 12、下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1 C .若x 2 +2x +k =0有一根为2,则8=-k D .若分式1 2 32-+-x x x 值为零,则x =1,2 二、填空题:(每小题3分,共30分) 1、方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。 2. 当x =________时,分式1 4 32+--x x x 的值为零。 3. 若关于x 的方程02)1(2 =+--m mx x m 有实数根,则m 的取值范围是______ 4.若方程042 2 =++m x x ,则m= . 5.已知0822 =--x x , 那么=--7632 x x _______________. 6. 若关于x 的一元二次方程02 =++c bx ax (a ≠0)的两根分别为1,—2,则b a -的值为______. 7. 若2 2 2 (3)25a b +-=,则22 a b +=____ 8.若一元二次方程02 =++c bx ax 中,024=+-c b a ,则此方程必有一根为________. 9、若两个连续整数的积是20,则他们的和是________。 10.某企业前年的销售额为500万元,今年上升到720万元,如果这两年平均每年增长率相同,则去年销售额为 11. 如果x x 12、是方程x x 2 720-+=的两个根,那么x x 12+=____________。 13. 已知一元二次方程x x 2 350--=的两根分别为x x 12、,那么x x 12 22 +的值是____。 14. 若方程x x k 2 20-+=的两根的倒数和是 8 3 ,则k =____________。 15.已知关于x 的方程(2k+1)x 2 -kx+3=0,当k______时,?方程为一元二次方程,? 当k______时,方程为一元一次方程,其根为______.

因式分解一_提取公因式法和公式法_超经典

因式分解(一) ——提取公因式与运用公式法 【学习目标】(1)让学生了解什么是因式分解; (2)因式分解与整式的区别; (3)提公因式与公式法的技巧。 【知识要点】 1、提取公因式:型如()ma mb mc m a b c ++=++,把多项式中的公共部分提取出来。 ☆提公因式分解因式要特别注意: (1)如果多项式的首项系数是负的,提公因式时要将负号提出,使括号内第一项的系数是正的, 并且注意括号内其它各项要变号。 (2)如果公因式是多项式时,只要把这个多项式整体看成一个字母,按照提字母公因式的办法提出。 (3)有时要对多项式的项进行适当的恒等变形之后(如将a+b-c 变成-(c-a-b )才能提公因式, 这时要特别注意各项的符号)。 (4)提公因式后,剩下的另一因式须加以整理,不能在括号中还含有括号,并且有公因式的还应继续提。 (5)分解因式时,单项式因式应写在多项式因式的前面。 2、运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: ()()22a b a b a b -=+-; ()2 222a ab b a b ±+=±。 平方差公式的特点是:(1) 左侧为两项;(2) 两项都是平方项;(3) 两项的符号相反。 完全平方公式特点是: (1) 左侧为三项;(2) 首、末两项是平方项,并且首末两项的符号相同; (3) 中间项是首末两项的底数的积的2倍。 ☆运用公式法分解因式,需要掌握下列要领: (1)我们学过的三个乘法公式都可用于因式分解。具体使用时可先判断能否用公式分解,然后再选择适当公式。(2)各个乘法公式中的字母可以是数,单项式或多项式。 (3)具体操作时,应先考虑是否可提公因式,有公因式的要先提公因式再运用公式。 (4)因式分解一定要分解到不能继续分解为止,分解之后一定要将同类项合并。 【经典例题】 例1、找出下列中的公因式: (1) a 2b ,5ab ,9b 的公因式 。 (2) -5a 2,10ab ,15ac 的公因式 。 (3) x 2y(x -y),2xy(y -x) 的公因式 。

因式分解法解一元二次方程练习题及答案(汇编)

因式分解法解一元二次方程练习题 1.选择题 (1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8 C .x 1=16,x 2=8 D .x 1=-16,x 2=-8 (2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x = 2 1 B .x = 2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( ) A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=5 3,x 2=-3 (4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5 B .5或11 C .6 D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0 B .1 C .2 D .3 2.填空题 (1)方程t (t +3)=28的解为_______. (2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0. 4.用适当方法解下列方程: (1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0; (5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9; (7)(1+2)x 2-(1-2)x =0; (8)5x 2-(52+1)x +10=0;

小专题(一)-一元二次方程的解法

专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0;(2)3x2-27=0; (3)(x-2)2=9;(4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0; (3)3x2-6x+4=0; (4)2x2+7x+3=0.

3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1). 4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0;

(3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0; (2)5(x-3)2=x2-9;

(3)t 2-22t +18=0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12. 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=± 5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵ 实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516. 直接开平方,得x +74=±54.∴x 1=-12,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1 = 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =--4ac =32-4×4×(-2)=41>=-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418 . (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

多项式的因式分解-提公因式法练习题

多项式的因式分解-提公因式法练习题

多项式的因式分解 学一学:看谁算得快:请每题答得最快的同学谈思路,得出最佳解题方法。 (1)若a=101,b=99,则a 2-b 2=___________; (2)若a=99,b=-1,则a 2-2ab+b 2=____________; (3)若x=-3,则20x 2+60x=__________ 议一议:观察: a 2-b 2=(a+b)(a-b) , a 2-2ab+b 2 = (a-b)2 , 20x 2+60x=20x(x+3), 找出它们的特点。 (等式的左边是一个什么式子,右边又是什么形式?) 【归纳总结】把一个多项式表示成若干个多项式的乘积的形式称为吧这个多项式因式 分解,也叫分解因式。 选一选:下列代数式变形中,哪些是因式分解?哪些不是?为什么? (1)x 2-3x+1=x(x-3)+1 ; (2)2m(m-n)=2m 2-2mn (3)3a 2+6a = 3a (a+2) 填一填:) )( (4-2 x 继续观察:(a+b)(a-b)= a 2-b 2 , (a-b)2= a 2-2ab+b 2, 20x(x+3)= 20x 2+60x,它们是什么运算?与因式分解有何关系? 因式分解 结合:a 2-b 2 (a+b )(a-b ) 整式乘法 说明:从左到右是因式分解,从右到左是整式乘法,因式分解与整式乘法是相反变形。 知识点一、因式分解 的概念 知识点二、因式分解与整式乘法的

二、合作探究 1.检验下列因式分解是否正确: (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1); (3)x2+3x+2=(x+1)(x+2). 2.下列各式由左边到右边的变形,哪些是因式分解,哪些是多项式乘法? (1)(x+5)(x+1)= x2+6x+5 (2) (x+2)(x-2)= x2-4 (3) 12ax-12ay=12a(x-y) (4) x2-10xy+25y2=(x-5y)2 提公因式法 说一说:下列从左到右的变形是否是因式分解,为什么? (2t3-3t2+t); (1)2x2+4=2(x2+2);(2)2t2-3t+1=1 t (3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my; 知识点一、提公因式法的概念 学一学: 多项式xu 中各项含有相同因式吗?,它们共有的因式是什么?请将上述多项 xz xy- 式分别写成两个因式的乘积的形式。 议一议:1.多项式mn+mb中各项含有相同因式吗? 2.多项式4x2-x和xy2-yz -y呢? 【归纳总结】如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.(几个多项式公共的因式称为它们的公因式)

因式分解法解一元二次方程

因式分解法解一元二次方程 因式分解法解一元二次方程的一般步骤 因式分解法解一元二次方程的一般步骤是: (1)移项 把方程的右边化为0; (2)化积 将方程的左边分解为两个一次因式的乘积; (3)转化 令每个因式等于0,得到两个一元一次方程; (4)求解 解这两个一元一次方程,得到一元二次方程的两个解. 例1. 用因式分解法解方程:x x 32=. 解:032=-x x ()03=-x x ∴0=x 或03=-x ∴3,021==x x . 例2. 用因式分解法解方程:()()01212 =---x x x . 解:()()0211=---x x x ()()()()0 11011=+-=---x x x x ∴01=-x 或01=+x ∴1,121-==x x . 例3. 解方程:121232-=-x x . 解:0121232=+-x x ()()0230 44322=-=+-x x x ∴221==x x . 例4. 解方程:332+=+x x x . 解:()0332=+-+x x x ()()()()0310 131=-+=+-+x x x x x

∴01=+x 或03=-x ∴3,121=-=x x . 因式分解法解高次方程 例5. 解方程:()()013122 2=---x x . 解:()()031122=---x x ()()()()()()022*******=-+-+=--x x x x x x ∴01=+x 或01=-x 或02=+x 或02=-x ∴2,2,1,14321=-==-=x x x x . 例6. 解方程:()()034322 2=+-+x x . 解:()()043322=-++x x ()()()()()0113013222=-++=-+x x x x x ∵032>+x ∴()()011=-+x x ∴01=+x 或01=-x ∴1,121=-=x x . 用十字相乘法分解因式解方程 对于一元二次方程()002≠=++a c bx ax ,当ac b 42-=?≥0且?的值为完全平方数时,可以用十字相乘法分解因式解方程. 例7. 解方程:0652=+-x x . 分析:()124256452 =-=?--=?,其结果为完全平方数,可以使用十字相乘法分解因式. 解:()()032=--x x ∴02=-x 或03=-x ∴3,221==x x .

相关文档
最新文档