水质参数

水质参数
水质参数

水质分析基本指标

1、浊度:为水样光学性质的一种表达语,用以表示水的清澈和浑浊的程度,是衡量水质良好程度的最重要指标之一,也是考核水处理设备净化效率和评价水处理技术状态的重要依据。浑浊度的降低就意味着水体中的有机物、细菌、病毒等微生物含量减少,这不仅可提高消毒杀菌效果,又利于降低卤化有机物的生成量。

2、臭和味:水臭的产生主要是有机物的存在,可能是生物活性增加的表现或工业污染所致。公共供水正常臭味的改变可能是原水水质改变或水处理不充分的信号。

3、余氯:余氯是指水经加氯消毒,接触一定时间后,余留在水中的氯量。在水中具有持续的杀菌能力可防止供水管道的自身污染,保证供水水质。

4、化学需氧量:是指化学氧化剂氧化水中有机污染物时所需氧量。化学耗氧量越高,表示水中有机污染物越多。水中有机污染物主要来源于生活污水或工业废水的排放、动植物腐烂分解后流入水体产生的。

5、细菌总数:水中含有的细菌,来源于空气、土壤、污水、垃圾和动植物的尸体,水中细菌的种类是多种多样的,其包括病原菌。我国规定饮用水的标准为1ml水中的细菌总数不超过100个。

6、总大肠菌群:是一个粪便污染的指标菌,从中检出的情况可以表示水中有否粪便污染及其污染程度。在水的净化过程中,通过消毒处理后,总大肠菌群指数如能达到饮用水标准的要求,说明其他病原体原菌也基本被杀灭。标准是在检测中不超过3个/L。

7、耐热大肠菌群:它比大肠菌群更贴切地反应食品受人和动物粪便污染的程度,也是水体粪便污染的指示菌。

8、大肠埃希氏菌:大肠细菌(E. coli)为埃希氏菌属(Escherichia)代表菌。一般多不致病,为人和动物肠道中的常居菌,在一定条件下可引起肠道外感染。某些血清型菌株的致病性强,引起腹泻,统称病致病大肠杆菌。肠道杆菌是一群生物学性状相似的G-杆菌,多寄居于人和动物的肠道中。埃希菌属(Escherichia)是其中一类,包括多种细菌,临床上以大肠埃希菌最为常见。大肠埃希菌(E.coli)通称大肠杆菌,是所有哺乳动物大肠中的正常寄生菌,一方面能合成维生素B及K供机体吸收利用。另一方面能抑制腐败菌及病原菌和真菌的过度增殖。但当它们离开肠道的寄生部位,进入到机体其他部位时,能引起感染发病。有些菌型有致病性,引起肠道或尿路感染性疾患。

水质分析基本方法

水质分析应包括水的物理、化学和微生物学性质的分析。就基本分析而言,可分为(1)物理和化学分析(2)生物和微生物学分析两大类。

分析化学是一门研究各种化合物或混合物的化学组成的分析方法和分析步骤的科学。它是水质物理和化学分析的理论基础。

分析化学可以分为定性分析和定量分析两个部门。定性分析又可以分为无机定性分析和有机定性分析。其目的是鉴定化合物或混合物是由哪些组分(元素、离子、基团或化合物)所组成。定量分析也可以分为无机定量分析和有机定量分析两部分,它们的任务是测定物质各组分的含量。

在一般化学分析的工作程序上总是定性分析先于定量分析,因为只有首先了解物质的定性组成,然后才能选择适当的定量分析方法。测出所含元素或离子等的含量。然而,在水质分析工作中,由于天然水、工业用水和生活污水所含成分一般都已知道;工业废水性质虽然复杂,但其成分也可以从该工厂所使用的原料和生产工艺过程等概略地推测,故除特殊情况外,水的定性分析很少应用。不过,由于环境保护工作的深入发展,有时为了了解某些工业

废水和天然水的全面组成或某些水质处理过程的中间产物等,也需要进行定性分析。

定性分析是应用化学反应,将待测的元素或离子转变为具有某些特殊性质的新化合物。如(1)发生特殊的颜色,(2)析出具有一定形状的沉淀物,(3)发生可以识别的气体,(4)原有颜色的变化(5)原有沉淀物的溶解等,根据这些化学反应结果和新化合物的特殊性质,即可判断试样中是否含有某种成分。

定量分析主要是应用化学反应中物质不灭定律和当量定律来测定试样中各组分的含量。定量分析按其分析时采用的方法。主要可分为:(1)重量分析,(2)容量分析,(3)光学分析(如比色分析、比浊分析、光谱分析等),(4)电化学分析(如极谱分析、电位分析等),以及(5)色谱分析(如气相色谱、液相色谱)。

光学分析、电化学分析、色谱分析等都是利用待测组分的某种物理性质或物理化学性质来进行分析测定的。在分析时往往需要应用比较精密和比较复杂的仪器。所以有时也称为仪器分析。在水质分析中最常用到的仪器有紫外-可见分光光度计、原子吸收分光光度计、气相色谱仪等。有时还根据水质分析的特点制成专用的仪器。如测汞仪、溶解氧仪、生化需氧量测定仪、总有机碳测定仪等。

仪器分析具有快速、准确、灵敏等优点,还便于自动连续测定。因而发展很快,有着广阔的应用前途。但目前有的仪器价格较高,平时维护(如需恒温、恒湿、防震等)和对操作人员的要求也较高。因此,在大多数水质分析工作中,仪器分析和普通的化学分析是相辅相成、互为补充的。其中,普通的化学分析法仍居于重要的、基础的地位。

水质分析结果的表示方法

水质分析结果的表示方法因不同的水质项目而异。

一些物理性水质指标常常有它们各自的单位。例如水温以摄氏度数表示,浑浊度以毫克(SiO2)/升或度表示,电导率用微姆欧/厘米表示,嗅味则可描述其性质等等。

对于化学性水质指标。由于天然水和各种废水、污水中所含的化合物或元素的量通常都是很低的,因此水质化学分析的结果一般都不象普通分析化学中那样用百分含量表示,而是采用以下几种常用的单位。

一、毫克/升(mg/1)

每升水中所含被测物质的毫克数。这是最广泛采用的一种单位。它不仅适用于水中离子状态的物质,也可用于不离解的分子状态或胶体状态的物质乃至溶解于水中的气体。

二、百万分率(ppm)

水中所含被测物质的重量占水样重量的百万分之分数。这在一些英文资料文献中是常见的。当水样的比重为1.00000时,1毫克/升恰好等于百万分之一,即1毫克/升=1ppm。由于天然水和大多数废水、污水的比重都近似于1,因此实际上常将毫克/升数与百万分率相混用,但对于某些比重与1相差稍大的工业废水、污泥或海水等,两者就不能视为相等了。

三、微克/升(μg/1)

每升水中所含被测物质的微克数。对于一些极微量的物质需要用到这种更小的单位。与此相应,也有十亿分率(ppb)。对于比重近似于1的水样。1微克/升=1ppb。

四、毫克当量/升(me/1或meq/1)

每升水中所含被测物质的毫克当量数。这种表示方法可以清楚地说明水中离子间数量上的比例和便于检查分析结果的准确度,也便于根据化学相当的原则,将一种被测物质直接转换成用另一种物质来表示。

此外,有些水质项目的分析结果还有另外的一些单位,如硬度和碱度就常有用“度”等好几种表示方法的。水质的生物和微生物学指标也有它们自己的表示方法。

水质分析基本指标

1、浊度:为水样光学性质的一种表达语,用以表示水的清澈和浑浊的程度,是衡量水质良好程度的最重要指标之一,也是考核水处理设备净化效率和评价水处理技术状态的重要依据。浑浊度的降低就意味着水体中的有机物、细菌、病毒等微生物含量减少,这不仅可提高消毒杀菌效果,又利于降低卤化有机物的生成量。

2、臭和味:水臭的产生主要是有机物的存在,可能是生物活性增加的表现或工业污染所致。公共供水正常臭味的改变可能是原水水质改变或水处理不充分的信号。

3、余氯:余氯是指水经加氯消毒,接触一定时间后,余留在水中的氯量。在水中具有持续的杀菌能力可防止供水管道的自身污染,保证供水水质。

4、化学需氧量:是指化学氧化剂氧化水中有机污染物时所需氧量。化学耗氧量越高,表示水中有机污染物越多。水中有机污染物主要来源于生活污水或工业废水的排放、动植物腐烂分解后流入水体产生的。

5、细菌总数:水中含有的细菌,来源于空气、土壤、污水、垃圾和动植物的尸体,水中细菌的种类是多种多样的,其包括病原菌。我国规定饮用水的标准为1ml水中的细菌总数不超过100个。

6、总大肠菌群:是一个粪便污染的指标菌,从中检出的情况可以表示水中有否粪便污染及其污染程度。在水的净化过程中,通过消毒处理后,总大肠菌群指数如能达到饮用水标准的要求,说明其他病原体原菌也基本被杀灭。标准是在检测中不超过3个/L。

7、耐热大肠菌群:它比大肠菌群更贴切地反应食品受人和动物粪便污染的程度,也是水体粪便污染的指示菌。

8、大肠埃希氏菌:大肠细菌(E. coli)为埃希氏菌属(Escherichia)代表菌。一般多不致病,为人和动物肠道中的常居菌,在一定条件下可引起肠道外感染。某些血清型菌株的致病性强,引起腹泻,统称病致病大肠杆菌。肠道杆菌是一群生物学性状相似的G-杆菌,多寄居于人和动物的肠道中。埃希菌属(Escherichia)是其中一类,包括多种细菌,临床上以大肠埃希菌最为常见。大肠埃希菌(E.coli)通称大肠杆菌,是所有哺乳动物大肠中的正常寄生菌,一方面能合成维生素B及K供机体吸收利用。另一方面能抑制腐败菌及病原菌和真菌的过度增殖。但当它们离开肠道的寄生部位,进入到机体其他部位时,能引起感染发病。有些菌型有致病性,引起肠道或尿路感染性疾患。

水质分析基本方法

水质分析应包括水的物理、化学和微生物学性质的分析。就基本分析而言,可分为(1)物理和化学分析(2)生物和微生物学分析两大类。

分析化学是一门研究各种化合物或混合物的化学组成的分析方法和分析步骤的科学。它是水质物理和化学分析的理论基础。

分析化学可以分为定性分析和定量分析两个部门。定性分析又可以分为无机定性分析和有机定性分析。其目的是鉴定化合物或混合物是由哪些组分(元素、离子、基团或化合物)所组成。定量分析也可以分为无机定量分析和有机定量分析两部分,它们的任务是测定物质各组分的含量。

在一般化学分析的工作程序上总是定性分析先于定量分析,因为只有首先了解物质的定性组成,然后才能选择适当的定量分析方法。测出所含元素或离子等的含量。然而,在水质分析工作中,由于天然水、工业用水和生活污水所含成分一般都已知道;工业废水性质虽然复杂,但其成分也可以从该工厂所使用的原料和生产工艺过程等概略地推测,故除特殊情况外,水的定性分析很少应用。不过,由于环境保护工作的深入发展,有时为了了解某些

工业废水和天然水的全面组成或某些水质处理过程的中间产物等,也需要进行定性分析。

定性分析是应用化学反应,将待测的元素或离子转变为具有某些特殊性质的新化合物。如(1)发生特殊的颜色,(2)析出具有一定形状的沉淀物,(3)发生可以识别的气体,(4)原有颜色的变化(5)原有沉淀物的溶解等,根据这些化学反应结果和新化合物的特殊性质,即可判断试样中是否含有某种成分。

定量分析主要是应用化学反应中物质不灭定律和当量定律来测定试样中各组分的含量。定量分析按其分析时采用的方法。主要可分为:(1)重量分析,(2)容量分析,(3)光学分析(如比色分析、比浊分析、光谱分析等),(4)电化学分析(如极谱分析、电位分析等),以及(5)色谱分析(如气相色谱、液相色谱)。

光学分析、电化学分析、色谱分析等都是利用待测组分的某种物理性质或物理化学性质来进行分析测定的。在分析时往往需要应用比较精密和比较复杂的仪器。所以有时也称为仪器分析。在水质分析中最常用到的仪器有紫外-可见分光光度计、原子吸收分光光度计、气相色谱仪等。有时还根据水质分析的特点制成专用的仪器。如测汞仪、溶解氧仪、生化需氧量测定仪、总有机碳测定仪等。

仪器分析具有快速、准确、灵敏等优点,还便于自动连续测定。因而发展很快,有着广阔的应用前途。但目前有的仪器价格较高,平时维护(如需恒温、恒湿、防震等)和对操作人员的要求也较高。因此,在大多数水质分析工作中,仪器分析和普通的化学分析是相辅相成、互为补充的。其中,普通的化学分析法仍居于重要的、基础的地位。

水质分析结果的表示方法

水质分析结果的表示方法因不同的水质项目而异。

一些物理性水质指标常常有它们各自的单位。例如水温以摄氏度数表示,浑浊度以毫克(SiO2)/升或度表示,电导率用微姆欧/厘米表示,嗅味则可描述其性质等等。

对于化学性水质指标。由于天然水和各种废水、污水中所含的化合物或元素的量通常都是很低的,因此水质化学分析的结果一般都不象普通分析化学中那样用百分含量表示,而是采用以下几种常用的单位。

一、毫克/升(mg/1)

每升水中所含被测物质的毫克数。这是最广泛采用的一种单位。它不仅适用于水中离子状态的物质,也可用于不离解的分子状态或胶体状态的物质乃至溶解于水中的气体。

二、百万分率(ppm)

水中所含被测物质的重量占水样重量的百万分之分数。这在一些英文资料文献中是常见的。当水样的比重为1.00000时,1毫克/升恰好等于百万分之一,即1毫克/升=1ppm。由于天然水和大多数废水、污水的比重都近似于1,因此实际上常将毫克/升数与百万分率相混用,但对于某些比重与1相差稍大的工业废水、污泥或海水等,两者就不能视为相等了。

三、微克/升(μg/1)

每升水中所含被测物质的微克数。对于一些极微量的物质需要用到这种更小的单位。与此相应,也有十亿分率(ppb)。对于比重近似于1的水样。1微克/升=1ppb。

四、毫克当量/升(me/1或meq/1)

每升水中所含被测物质的毫克当量数。这种表示方法可以清楚地说明水中离子间数量上的比例和便于检查分析结果的准确度,也便于根据化学相当的原则,将一种被测物质直接转换成用另一种物质来表示。

此外,有些水质项目的分析结果还有另外的一些单位,如硬度和碱度就常有用“度”等好几种表示方法的。水质的生物和微生物学指标也有它们自己的表示方法。

水质分析相关方法

1【pH值】水质pH值的测定玻璃电极法GB/T6920-1986 2【溶解氧】水质溶解氧的测定电化学探头法GB/T11913-1989碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年3【臭和味】文字描述法《水和废水监测分析方法》(第四版)国家环保总局2002年

4【侵蚀性二氧化碳】甲基橙指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年

5【酸度】酸度指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年

6【碱度(总碱度、重碳酸盐和碳酸盐)】酸碱指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年

7【色度】水质色度的测定GB/T11903-1989

8【浊度】水质浊度的测定GB/T13200-1991

9【悬浮物(SS)】水质悬浮物的测定重量法GB/T11901-1989 10【总可滤残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年

11【总残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年

12【全盐量(溶解性固体)】水质全盐量的测定重量法HJ/T51-1999

13【总硬度(钙和镁总量)】水质钙和镁总量的测定EDTA滴定

法GB/T7477-1987

14【高锰酸盐指数】水质高锰酸盐指数的测定GB/T11892-1989 15【化学需氧量(COD)】水质化学需氧量的测定重铬酸盐法GB/T11914—1989

16【生物需氧量】水质生物需氧量的测定稀释与接种法GB/T7488—1987

17【氨氮】水质铵的测定纳氏试剂比色法GB/T7479-1987 水杨酸-次氯酸盐光度法《水和废水监测分析方法》(第四版)国家环保总局2002年

18【硝酸盐氮】水质硝酸盐氮的测定酚二磺酸分光光度法GB/T7480-1987 水质硝酸盐氮的测定紫外分光光度法HJ/T346-2007

19【亚硝酸盐氮】水质亚硝酸盐氮的测定分光光度法GB/T7493-1987

20【六价铬】水质六价铬的测定二苯碳酸二肼分光光度法GB/T7467-1987

21【总氮】水质总氮的测定碱性过硫酸钾消解紫外分光光度法》GB/T11894-1989

22【总磷】水质总磷的测定钼酸铵分光光度法GB/T11893-1989 23【磷酸盐】钼酸铵分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)

24【硝基苯类】还原-偶氮光度法《水和废水监测分析方法》(第

四版)国家环保总局(2002年)

25【苯胺类】水质苯胺类化合物的测定N-(1-萘基)乙二胺偶氮分光光度法GB/T11889-1989

26【游离氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-1989

27【总氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-1989

28【氟化物】水质氟化物的测定离子选择电极法GB/T7484-1987

29【氯化物】水质氯化物的测定硝酸银滴定法GB/T11896-19879

30【硫酸盐】水质硫酸盐的测定重量法GB/T11899-89 铬酸钡分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)

31【硫化物】水质硫化物的测定亚甲基兰分光光度法GB/T16489-1996

32【阴离子表面活性剂】水质阴离子表面活性剂的测定亚甲蓝分光光度法GB/T7494-1987

33【石油类】水质石油类和动植物油的测定红外光度法GB/T 16488-1996

34【动植物油】水质石油类和动植物油的测定红外光度法GB/T 16488-1996

35【总铬】水质总铬的测定高锰酸钾氧化-二苯碳酰二肼分光光度法GB/T7466-1987 火焰原子吸收分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)

36【铜】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987

37【锌】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987

38【铅】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987

39【镉】水质铜、锌、铅、镉的测定原子吸收分光光度法GB/T 7475-1987

40【镍】水质镍的测定火焰原子吸收分光光度法GB/T 11912-1989

41【钾】水质钾、钠的测定火焰原子吸收分光光度法GB/T 11904-1989

42【钠】水质钾、钠的测定火焰原子吸收分光光度法GB/T 11904-1989

43【钙】水质钙、镁的测定原子吸收分光光度法GB/T 11905-1989

44【镁】水质钙、镁的测定原子吸收分光光度法GB/T 11905-1989

45【铁】水质铁、锰的测定火焰原子吸收分光光度法GB/T

11911-1989

46【锰】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-1989

47【溶解性铁】水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-1989

48【银】水质银的测定火焰原子吸收分光光度法GB/T 11907-1989

49【甲醛】水质甲醛的测定乙酰丙酮分光光度法GB/T13197-1991

水质检测仪器:水质安全快速检测箱,电解器等

各海域海水淡化方案及水质参数

为应对全球淡水资源短缺的问题,许多沿海国家及地区积极开展海水淡化和综合利用的技术研发工作。以色列70%的饮用水来自海水淡化水;澳大利亚的海水利用主要用于市政,占总装机规模的96%;美国的海水利用主要用于市政,占89.5%;沙特阿拉伯是目前全球最大的海水淡化生产国,2010年其产量达到11亿m3。 中国淡水资源缺乏,人均淡水资源量仅为世界人均占有量的1/4,沿海地区人口稠密,淡水供需矛盾尤为突出。海水淡化技术可以增加水资源总量,有效缓解我国沿海地区淡水短缺的矛盾。在海水资源方面,我国拥有渤海、黄海、东海、南海四大海域,海岸线超过1.8万km,水资源相当丰富。但海水淡化发展速度相对其他国家缓慢,直至“十一五”期间海水淡化产业才开始较为迅速地增长。据统计,至2011年底我国海水淡化能力为66万m3/d。目前,影响海水淡化的因素有政策、技术和价格等。其中海水水质是影响淡化技术正常应用及成本的重要因素。有研究发现,海水中的有机物污染、SDI(淤泥密度指数)、温度、浊度和盐度是影响反渗透膜运行的重要指标,进而影响淡化水品质。因此对中国海域的海水理化性质、海水利用现状、研究进展进行探讨,对于优化沿海水资源结构、保障国家用水安全和促进沿海经济社会可持续发展具有战略意义。基于此,笔者首次将海水水质和海水利用状况相结合,介绍中国渤海、黄海、东海、南海4个海域海

水淡化的相关水质情况,归纳各地区海水利用的工艺技术条件和发展现状,分析形成原因和经验教训,旨对海水利用发展落后的沿岸地带提供帮助,对海水淡化利用较好地区的发展和转型方向提供参考,并为中国海水利用的发展提供新的思考途径。 1 渤海海域 1.1 渤海的水质特征 渤海是一个近封闭的内海,水温受北方大陆性气候影响显著,2月份平均水温在0 ℃左右,8月份达21 ℃。受大陆淡水注入的影响,盐度仅为30‰,是中国近海中最低的。1978—2010年历年8月的观测资料结果表明渤海夏季海水pH年际变化范围为7.86~8.30,渤海水温年际变化、降水量(酸雨)和月均黄河口径流量年际变化是影响海水pH变化的主要因素。 吴琳琳等研究发现2012年4—7月渤海湾海水温度为12.7~30.8 ℃、pH为7.30~8.55、海水CODMn为0.98~3.36 mg/L、溶解性总固体(TDS)为30.7~32.1 g/L、浊度为 2.96~136 NTU、Cl-为16.9~17.8 g/L、电导率为44 800~49 800 μS/cm。整体而言渤海水质的浊度变化范围较宽,主要受渤海湾海水泥沙含量的影响,特别在有潮汐和风浪时会大幅升高。此外还发现海水温度升

循环水控制指标及解释

循环水水质控制指标及注释 1、PH:7、0-9、2 在25℃时pH=7、0的水为中性,故pH=7、0-9、2的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2、悬浮物:≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3、含盐量:≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关系,其比值1μS/cm的电导率相当于0、55-0、90mg/L的含盐量;在含盐量高的水中,Cl-与SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、Mg2+与HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大于2500mg/L。 4、Ca2+离子:30≤X≤200 mg/L 从腐蚀的角度瞧,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度瞧,钙离子就是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的情况下,钙离子浓度的高限不宜大于200mg/L。 5、Mg2+离子: 镁离子也就是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2、5mmol/L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下

发电厂水质指标

发电厂水质指标 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

一、给水控制指标: 1、PH值:~ 2、硬度≤5umol/L 3、NH≤2mg/L 4、电导率≤μS/cm 5、SiO≤20μg/L 6、铁≤30μg/L 7、铜≤15μg/L 8、溶解氧≤15μg/L 二、炉水控制指标: 1、外状:澄清 2、PH值:9~ 3、碱度≤2mmol/L 4、磷酸根:5~15 mg/L 5、电导率≤200μS/cm 6、Cl-≤4 mg/L 7、SiO≤20μg/L 三、除氧器控制指标: 1、溶解氧≤15μg/L 2、硬度≤5umol/L 四、主蒸汽控制指标:

1、SiO≤20μg/L 2、Na+≤15μg/L 3、铁≤50μg/L 4、铜≤15μg/L 五、凝结水控制指标: 1、外观透明澄清 2、硬度≤15umol/L 六、疏水控制指标: 1、硬度≤5umol/L 2、铁≤50μg/L 七、循环水控制指标 1、PH值:8~ 2、Cl-≤1000 mg/L 3、SDI≤4μg/L 4、残余氯≤ mg/L 八、多介质过滤器产水控制指标 1、外状:澄清透明 2、压差≤ Mpa 3、SDI≤4μg/L 4、残余氯≤ mg/L 九、RO进水指标控制 1、水温:20~25℃

2、PH值:4~11 3、浊度≤1度 4、SOD≤μg/L 5、残余氯≤ mg/L 6、回收率:72~75% 7、脱盐率:98% 十、活性炭产水指标 1、外状:澄清透明 2、SDI≤4μg/L 3、残余氯≤ mg/L 十一、混床出水控制指标 1、电导率≤μS/cm 2、Na+≤10μg/L 3、SiO≤20μg/L 十二、除盐水控制指标 1、Na+≤10μg/L 2、SiO≤20μg/L 3、电导率≤μS/cm 4、PH值>6

各海域海水淡化方案及水质参数

各海域海水淡化方案及水质参数

为应对全球淡水资源短缺的问题,许多沿海国家及地区积极开展海水淡化和综合利用的技术研发工作。以色列70%的饮用水来自海水淡化水;澳大利亚的海水利用主要用于市政,占总装机规模的96%;美国的海水利用主要用于市政,占89.5%;沙特阿拉伯是当前全球最大的海水淡化生产国,其产量达到11亿m3。 中国淡水资源缺乏,人均淡水资源量仅为世界人均占有量的1/4,沿海地区人口稠密,淡水供需矛盾尤为突出。海水淡化技术能够增加水资源总量,有效缓解中国沿海地区淡水短缺的矛盾。在海水资源方面,中国拥有渤海、黄海、东海、南海四大海域,海岸线超过1.8万km,水资源相当丰富。但海水淡化发展速度相对其它国家缓慢,直至“十一五”期间海水淡化产业才开始较为迅速地增长。据统计,至底中国海水淡化能力为66万m3/d。当前,影响海水淡化的因素有政策、技术和价格等。其中海水水质是影响淡化技术正常应用及成本的重要因素。有研究发现,海水中的有机物污染、SDI(淤泥密度指数)、温度、浊度和盐度是影响反渗透膜运行的重要指标,进而影响淡化水品质。因此对中国海域的海水理化性质、海水利用现状、研究进展进行探讨,对于优化沿海水资源结构、保障国家用水安全和促进沿海经济社会可持续发展具有战略意义。基于此,笔者首次将海水水质和海水利用状况相结合,介绍中国渤海、黄海、东海、南海4个海域海水淡化的相关水质情况,归纳各地区海水利用的工艺技术条件和发

展现状,分析形成原因和经验教训,旨对海水利用发展落后的沿岸地带提供帮助,对海水淡化利用较好地区的发展和转型方向提供参考,并为中国海水利用的发展提供新的思考途径。 1 渤海海域 1.1 渤海的水质特征 渤海是一个近封闭的内海,水温受北方大陆性气候影响显著,2月份平均水温在0 ℃左右,8月份达21 ℃。受大陆淡水注入的影响,盐度仅为30‰,是中国近海中最低的。1978—历年8月的观测资料结果表明渤海夏季海水pH年际变化范围为7.86~8.30,渤海水温年际变化、降水量(酸雨)和月均黄河口径流量年际变化是影响海水pH变化的主要因素。 吴琳琳等研究发现 4—7月渤海湾海水温度为12.7~30.8 ℃、pH 为 7.30~8.55、海水CODMn为0.98~3.36 mg/L、溶解性总固体(TDS)为30.7~32.1 g/L、浊度为 2.96~136 NTU、Cl-为16.9~17.8 g/L、电导率为44 800~49 800 μS/cm。整体而言渤海水质的浊度变化范围较宽,主要受渤海湾海水泥沙含量的影响,特别在有潮汐和风浪时会大幅升高。另外还发现海水温度升高会使操作压力和脱盐率下降,主要是因为水温上升导致水的黏

地下水水质标准

地下水水质标准 1 引言 c为保护和合理开发地下水资源,防止和控制地下水污染,保障人民身体健康,促进经济建设,特制订本标准。本标准是地下水勘查评价、开发利用和监督管理的依据。 2 主题内容与适用范围 2.1 本标准规定了地下水的质量分类,地下水质量监测、评价方法和地下水质量保护。 2.2 本标准适用于一般地下水,不适用于地下热水、矿水、盐卤水。 3 引用标准 GB 5750 生活饮用水标准检验方法 4 地下水质量分类及质量分类指标 4.1 地下水质量分类依据我国地下水水质现状、人体健康基准值及地下水质量保护目标,并参照了生活饮用水、工业、农业用水水质最高要求,将地下水质量划分为五类。 Ⅰ类主要反映地下水化学组分的天然低背景含量。适用于各种用途。 Ⅱ类主要反映地下水化学组分的天然背景含量。适用于各种用途。 Ⅲ类以人体健康基准值为依据。主要适用于集中式生活饮用水水源及工、农业用水。 Ⅳ类以农业和工业用水要求为依据。除适用于农业和部分工业用水外,适当处理后可作生活饮用水。 Ⅴ类不宜饮用,其他用水可根据使用目的选用。 4.2 地下水质量分类指标(见表1)

根据地下水各指标含量特征,分为五类,它是地下水质量评价的基础。以地下水为水源的各类专门用水,在地下水质量分类管理基础上,可按有关专门用水标准进行管理。 5 地下水水质监测 5.1 各地区应对地下水水质进行定期检测。检验方法,按国家标准GB 5750《生活饮用水标准检验方法》执行。5.2 各地地下水监测部门,应在不同质量类别的地下水域设立监测点进行水质监测,监测频率不得少于每年二次(丰、枯水期)。 5.3 监测项目为:pH、氨氮、硝酸盐、亚硝酸盐、挥发性酚类、氰化物、砷、汞、铬(六价)、总硬度、铅、氟、镉、铁、锰、溶解性总固体、高锰酸盐指数、硫酸盐、氯化物、大肠菌群,以及反映本地区主要水质问题的其它项目。 6 地下水质量评价 6.1 地下水质量评价以地下水水质调查分析资料或水质监测资料为基础,可分为单项组分评价和综合评价两种。 6.2 地下水质量单项组分评价,按本标准所列分类指标,划分为五类,代号与类别代号相同,不同类别标准值相同时,从优不从劣。例:挥发性酚类Ⅰ、Ⅱ类标准值均为0.001mg/L,若水质分析结果为0.001mg/L时,应定为Ⅰ类,不定为Ⅱ类。 6.3 地下水质量综合评价,采用加附注的评分法。具体要求与步骤如下: 6.3.1 参加评分的项目,应不少于本标准规定的监测项目,但不包括细菌学指标。 6.3.2 首先进行各单项组分评价,划分组分所属质量类别。 6.3.3 对各类别按下列规定(表2)分别确定单项组分评价分值Fi。 表2 6.3.4 按式(1)和式(2)计算综合评价分值F。 式中:-各单项组分评分值Fi的平均值; Fmax-单项组分评价分值Fi中的最大值; n-项数

青海湖2015年水质参数特征及其变化

Journal of Water Resources Research 水资源研究, 2018, 7(1), 74-83 Published Online February 2018 in Hans. https://www.360docs.net/doc/8a8018957.html,/journal/jwrr https://https://www.360docs.net/doc/8a8018957.html,/10.12677/jwrr.2018.71009 Characteristics and Changes of Water Quality Parameters of Qinghai Lake in 2015 Rongxin Bi1, Hucai Zhang1*, Huayong Li1, Fengqin Chang1, Lizeng Duan1, Yubang He2, Hu Zhang1, Xinyu Wen1, Yu Zhou1 1Yunnan Provincial Key Laboratory of Geographical Process and Environmental Change on the Plateau, Key Laboratory of Plateau Lake Ecology & Global Change, College of Tourism and Geography Science, Yunnan Normal University, Kunming Yunnan 2Qinghai Lake National Nature Reserve Bureau, Xining Qinghai Received: Nov. 21st, 2017; accepted: Dec. 1st, 2017; published: Dec. 8th, 2017 Abstract The water temperature, dissolved oxygen, pH, chlorophyll-a concentration and turbidity vertical profile monitoring were carried out at Qinghai Lake during September 22-24, 2015. At the same time, physical and chemical status of Qinghai Lake and lake nutrition status were analyzed by the experimental deter-mination of total phosphorus and total nitrogen content,and nutrient salt determination through collect-ing water samples, compared with the data from Qinghai Lake Management Bureau. The results showed that there were some differences in physical and chemical parameters and nutritional degree of each point, and due to wind and lake disturbance, there is a weak stratification phenomenon at the center of the lake; the dissolved oxygen concentration at the center of lake is lower, and the dissolved oxygen stra-tification is affected by the temperature stratification; Qinghai Lake’s high salinity and high hydronium concentration control its pH and have a greater impact on the dissolved oxygen concentration and turbid-ity. The release of sediment caused by temperature and lake water circulation makes phytoplankton con-centrate in the middle and low water, so that submerged plants have better growth conditions. The nu-trient level of Qinghai Lake is not high, but the concentration of total phosphorus has a tendency to in-crease. Exogenous input is the main reason that affects the degree of lake nutrition. The intensification of human activities makes the Qinghai Lake have the danger of deterioration of water quality. Keywords Qinghai Lake, Water Temperature, Dissolved Oxygen, pH, Chlorophyll a, Nutritional Degree, Human Activities 青海湖2015年水质参数特征及其变化 毕荣鑫1,张虎才1*,李华勇1,常凤琴1,段立曾1,何玉邦2,张虎1,文新宇1,周瑜1 作者简介:毕荣鑫(1992-),男,在读硕士研究生,主要从事湖泊沉积与环境变化研究。 *通讯作者。

各海域海水淡化方案及水质参数

各海域海水淡化方案及水质参 数(总15页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

为应对全球淡水资源短缺的问题,许多沿海国家及地区积极开展海水淡化和综合利用的技术研发工作。以色列70%的饮用水来自海水淡化水;澳大利亚的海水利用主要用于市政,占总装机规模的96%;美国的海水利用主要用于市政,占89.5%;沙特阿拉伯是目前全球最大的海水淡化生产国,2010年其产量达到11亿m3。 中国淡水资源缺乏,人均淡水资源量仅为世界人均占有量的 1/4,沿海地区人口稠密,淡水供需矛盾尤为突出。海水淡化技术可以增加水资源总量,有效缓解我国沿海地区淡水短缺的矛盾。在海水资源方面,我国拥有渤海、黄海、东海、南海四大海域,海岸线超过1.8万km,水资源相当丰富。但海水淡化发展速度相对其他国家缓慢,直至“十一五”期间海水淡化产业才开始较为迅速地增长。据统计,至2011年底我国海水淡化能力为66万m3/d。目前,影响海水淡化的因素有政策、技术和价格等。其中海水水质是影响淡化技术正常应用及成本的重要因素。有研究发现,海水中的有机物污染、SDI(淤泥密度指数)、温度、浊度和盐度是影响反渗透膜运行的重要指标,进而影响淡化水品质。因此对中国海域的海水理化性质、海水利用现状、研究进展进行探讨,对于优化沿海水资源结构、保障国家用水安全和促进沿海经济社会可持续发展具有战略意义。基于此,笔者首次将海水水质和海水利用状况相结合,介绍中

国渤海、黄海、东海、南海4个海域海水淡化的相关水质情况,归纳各地区海水利用的工艺技术条件和发展现状,分析形成原因和经验教训,旨对海水利用发展落后的沿岸地带提供帮助,对海水淡化利用较好地区的发展和转型方向提供参考,并为中国海水利用的发展提供新的思考途径。 1 渤海海域 1.1 渤海的水质特征 渤海是一个近封闭的内海,水温受北方大陆性气候影响显著,2月份平均水温在0 ℃左右,8月份达21 ℃。受大陆淡水注入的影响,盐度仅为30‰,是中国近海中最低的。1978—2010年历年8月的观测资料结果表明渤海夏季海水pH年际变化范围为7.86~8.30,渤海水温年际变化、降水量(酸雨)和月均黄河口径流量年际变化是影响海水pH变化的主要因素。 吴琳琳等研究发现2012年4—7月渤海湾海水温度为 12.7~30.8 ℃、pH为 7.30~8.55、海水CODMn为0.98~3.36 mg/L、溶解性总固体(TDS)为 30.7~32.1 g/L、浊度为 2.96~136 NTU、Cl-为16.9~17.8 g/L、电导率为44 800~49 800 μS/cm。整体而言渤海水质的浊度变化范围较宽,主要受

循环水水质控制指标及注释

序号项目控制指标注释 1 PH 7.0-9.2 在25℃时pH=7.0的水为中性,故pH=7.0-9.2的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH 值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高 于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2 悬浮物≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大 于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3 含盐量≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关 系,其比值1μS/cm的电导率相当于0.55-0.90mg/L的 含盐量;在含盐量高的水中,Cl-和SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、 Mg2+和HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大

于2500mg/L。 4 Ca2+离 子30≤X≤200mg/L 从腐蚀的角度看,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度看,钙离子是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的 情况下,钙离子浓度的高限不宜大于200mg/L。 5 Mg2+离 子镁离子也是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2.5mmol/L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下关 系:[Mg2+](mg/L)*[SiO2](mg/L)<15000式中[Mg2+ ]以CaCO3计,[SiO2]以SiO2计 6 铜离子浓 度 0.1mg/L 循环水中的铜离子会引起钢和铝的局部腐蚀,因此循环水中的铜离子浓度不宜大于0.1mg/L。 7 铝离子浓≤0.5mg/L 天然水中铝离子的含量较低,循环水中的铝离子往往是由于补充水在澄清过程中添加铝盐作混凝剂而带入的;

异龙湖水质参数的季节性变化

Geographical Science Research 地理科学研究, 2017, 6(3), 168-178 Published Online August 2017 in Hans. https://www.360docs.net/doc/8a8018957.html,/journal/gser https://https://www.360docs.net/doc/8a8018957.html,/10.12677/gser.2017.63019 Seasonal Changes of Water Quality Parameters in Lake Yilong Pei Liu, Fengqin Chang*, Hucai Zhang, Huyong Li, Rongxin Bi, Lizeng Duan, Lei Fu, Yu Zhou Key Laboratory of Plateau Lake Ecology & Global Change, Yunnan Provincial Key Laboratory of Geographical Process and Environmental Change on the Plateau, College of Tourism and Geography Science, Yunnan Normal University, Kunming Yunnan Received: Jul. 15th, 2017; accepted: Aug. 7th, 2017; published: Aug. 10th, 2017 Abstract Based on the analysis of water quality parameters, including temperature, chlorophyll-a (Chl-a), dissolved oxygen (DO) and pH of the Lake Yilong during September 2016 to May 2017, the water quality and its spatial-temporal variations were discussed. The results showed that the best water quality of the lake appears in northwest of the lake, attributing to the purification of aquatic plants in the area. There is no notable difference between the water quality in the Dam and center of the lake. The appearances of a DO plunge in the northwest of the lake in September and October re-sulted in a hypoxia condition in the lake water, and it was found that the depth and amplitude of this DO reduction varies from one place to another, with the seasonal difference. The Chl-a con-centration in Lake Yilong showed seasonal and spatial changes too. In the center and the Dam area of the lake, the maximum value occurs in January. However, in the northwest of the lake, the maximum value appears in September and October. The variations of pH of the lake water indi-cated a strong linkage with algae concentrations. Based on the analysis of water quality parameter in different sites of the lake, it was concluded that the main reason for water quality deterioration of Lake Yilong is unreasonable anthropogenic activities in the area. Therefore, it has been sug-gested that more attentions should be addressed on effective water quality protection and ecolog-ical restoration in the future. Most importantly, all the measurements concerning on the lake wa-ter utilization and so-called lake environmental protection should be based on the detailed scien-tific monitoring, administration and application. This is the only way to keep a sustainable devel-opment, with improvement of the eco-environmental in the drainage area. Keywords Lake Yilong, Water Quality Parameters, Human Activity, Dry Season and Soil Damp Season 异龙湖水质参数的季节性变化 刘培,常凤琴*,张虎才,李华勇,毕荣鑫,段立曾,付磊,周瑜 *通讯作者。

循环水控制指标有哪些

循环水水质控制指标有哪些,有什么作用? (1)PH值 PH值的变化会对腐蚀和结垢产生直接的影响,其原因是:不同的水质不同的配方对PH值有不同的要求;饱和指数、稳定指数与PH有关。 (2)浓缩倍数 浓缩倍数是冷却水的一个重要指标,通常用冷却水和补充水中的氯根的比值作为循环水的浓缩倍数。由于氯根均呈溶解状态,一般不会在热交换设备上沉积,因此用氯根计算浓缩倍数比较合适。 (3)钙损失率 钙离子容易在热交换设备上沉积,不能用来计算浓缩倍数,但根据钙损失率可间接判断结垢情况。 钙损失率按下式计算: 钙损失率一般在20%以下 (4)总磷 循环冷却水中的总磷浓度,全有机磷配方代表着加药量,可检测加药浓度是否达到要求。 (5)浊度 浊度高是冷却水系统形成沉积的主要原因,因此要求浊度越低越好。浊度的变化反映了冷却水水质的变化,当发现浊度有较大变化时应及时查找原因采取措施。如菌藻的繁殖、补充水的水质变化都会影响浊度。 (6)总铁 三价铁离子能在金属表面形成沉积,同时也是铁细菌的营养源,铁细菌附着在热交换器或管道壁面上,能溶解铁元素形成暗褐色的铁瘤,造成设备的腐蚀穿孔。 冷却水系统中要求总铁含量Fe2++Fe3+≤0.5~1.0mg/l。 (7)铜 铜离子析出在碳钢表面形成腐蚀微电池,加速金属的腐蚀。要求监测及控制铜含量Cu2+≤0.2mg/l。 (8)悬浮物 试验证明:在含有较多悬浮物的冷水中,微生物所生成的粘液与悬浮物、二价铁离子能吸附和聚集在热交换器和管道壁面上,形成不均匀的污垢层,加剧金属的腐蚀。此外,悬浮物可作为微溶盐类的晶核,有促进微溶盐结晶沉淀的作用。要求悬浮物浓度控制在10~20mg/l。 (9)微生物 空调系统所发生的腐蚀穿孔事故中,微生物腐蚀是一个很重要的因素。微生物的繁殖、新陈代谢和悬浮物的影响,都会使冷却水系统产生不均匀污垢沉积、垢下腐蚀的严重后果,所以必须严格控制。 (10)总溶固 控制在2500mg/l(根据水质及工艺确定) (11)电导率 控制在4000μs/cm(根据水质及工艺确定)

水质与水质标准

第2章水质与水质标准 2.1 天然水中杂质的种类与性质 2.1.1 天然水体中的杂质 天然水中存在的杂质主要来源于所接触的大气、土壤等自然环境,同时人类活动产生的各种污染物也会进入天然水体。 (1)按水中杂质的尺寸,可以分为溶解物、胶体颗粒和悬浮物3种,它们的尺寸和外观特征如表2-1所示。 表2-1水中杂质的尺寸与外观特征 悬浮物:主要是泥砂类无机物质和动植物生存过程中产生的物质或死亡后的腐败产物等有机物。 胶体:主要是细小的泥砂、矿物质等无机物和腐殖质等有机物。 溶解物:主要是呈真溶液状态的离子和分子,如Ca2+、Mg2+、Clˉ等离子,HCO3-、SO42-等酸根,O2、CO2、H2S、SO2、NH3等溶解气体分子。 (2)从化学结构上可以将水中杂质分为无机物、有机物、生物等几类。 无机杂质:天然水中所含有的无机杂质主要是溶解性的离子、气体及悬浮性的泥砂。溶解离子有Ca2+、Mg2+、Na+等阳离子和HCO3-、SO42-、Clˉ等阴离子。 有机杂质:天然水中的有机物与水体环境密切相关。一般常见的有机杂质为腐殖质类以及一些蛋白质等。生物(微生物)杂质:这类杂质包括原生动物、藻类、细菌、病毒等。这类杂质会使水产生异臭异味,增加水的色度、浊度,导致各种疾病等。 (3)按杂质的来源可以分为天然的和污染性的物质。 2.1.2 各种典型水体的水质特点 一般可以将天然水分为地表水和地下水两大类,地表水又可以分为江河水、湖泊水库水、海水等。(1)江河水 江河水的含盐量和硬度都比较低。含盐量一般在70~900mg/L之间,硬度通常在50~400mg/L(以CaCO3计)之间。 (2)湖泊、水库水 主要由江河水供给,水质特点与江河水类似。但浊度一般较低,含盐量和硬度较江河水高。 (3)海水 海水的主要特点是高含盐量,在7.5~43.0g/L之间。含量最多的约是氯化钠(NaCl),约占83.7%,其他盐类还有MgCl2、CaSO4等。 (4)地下水 含盐量一般在100~5000mg/L之间,硬度通常在100~500mg/L(以CaCO3计)之间。地下水的水质和水温一般终年稳定,较少受外界影响。 2.2 水体的污染与自净 2 .2.1 水中常见污染物及来源 按化学性质,可以分为无机污染物和有机污染物;按物理性质,可以分为悬浮性物质、胶体物质和溶解性物质。 1、可生物降解的有机污染物——耗氧有机污染物

泳池水质标准 文档

游泳池水质标准CJ244-2007 随着2008年北京奥运会的临近,作为夏季奥运会非常重要的竞赛内容之一的室内水上运动,都离不开对游泳池水质的控制、监测与处理,要求池水的感官性状良好,水中不含有病原微生物,水中所含化学物质不得危害人体健康,保证游泳池水水质的安全、可靠。 由中国建筑设计研究院作为主编单位,中国游泳协会、中国疾病预防控制中心环境与健康相关产品安全所等12家单位参编,负责编制的《游泳池水质标准》(CJ244-2007)已于2007年10月1日开始执行了,这个标准以世界卫生组织(WHO)制定的《游泳池、按摩池水环境指导准则》(2006年版)为主要依据,同时执行国际游泳联合会(FINA)水质卫生标准,对我国原执行的《游泳场所卫生标准》(GB9667-1996)中“人工游泳池池水水质卫生标准”进行修改、编制的。 《游泳池水质标准》(CJ 244-2007)的实施必将对我国游泳场所的卫生管理,防止传播疾病和保障游泳池者的健康和安全发挥重要的作用,同时为今后在我国举行的各项国际游泳比赛在水质标准上提供技术保证,使得我国的游泳池水质标准与发达国家接轨,对于北京奥运会的顺利举行有着非常积极的作用。 在这个标准中,遵循了以下的几个主要的原则,特别是针对水质水质指标项目的确定应有足够的基础资料,具有可行检测方法,水质限值应确保水质感官良好,防止水性传染病爆发及其他健康的危险,还应考虑其他处理技术和化验检测费用,是符合我国国情和具有可操作性的。见表1-2 表1 游泳池池水水质常规检验项目及限值 序号项目限值 1浑浊度/NTU≤1 2pH~ 3尿素/mg/L≤3.5L 4菌落总数【36±1℃,48h】CFU/ml≤200 5总大肠菌群【36±1℃,24h】每100ml不得检出 6游离性余氯/mg/L0. 2~ 7化合性余氯/mg/L≤ 8臭氧采用臭氧消毒时/mg/m3≤以下水面上空气中 9水温℃23~30 表2 游泳池池水水质非常规检验项目及限值 序号项目限值 1溶解性总固体TDS/mg/L≤原水TDS+1 500 2氧化还原电位ORPmV≥650 3氰尿酸/mg/L≤150 4三卤甲烷THMug/L≤200

杞麓湖水质参数及水体稳定同位素特征研究

杞麓湖水质参数及水体稳定同位素特征研究湖泊对区域气候调节及地区社会经济发展发挥着至关重要的作用。杞麓湖作为通海县的“母亲湖”,近年来在自然与人类活动的双重影响下,生态环境面临着诸多威胁。 基于此,本文首先利用2016年11月至2017年10月时段内对杞麓湖水质参数水温(Temp)、溶解氧(DO)、叶绿素a(Chl-a)、p H及总磷(TP)、总氮(TN)的逐月监测,对湖泊生态环境状况和水质月际变化作进一步探讨。同时,结合已有气象数据,利用杞麓湖流域各水体稳定氢氧同位素组成特征对湖泊水动力、水汽来源及季节变化进行研究,探讨各水质参数对湖水同位素的影响,通过对各水体稳定氢氧同位素的组成及季节变化特征分析,深入讨论分析流域水循环过程,进一步分析探讨杞麓湖水更换过程及周期。 本文主要的研究结论如下:(1)杞麓湖对流域气候环境有着显著的调节作用,维持流域气温较为恒定,同时减少极端天气对区域气候带来的影响。湖水在不同深度热量分布较为均衡。 水温受风力作用及湖泊动力影响较大。同时,温度是影响湖泊水循环、水生生物活动强度的控制因素。 (2)杞麓湖受流域人类活动的强烈影响,外源输入的影响成为引起湖泊水体理化性质(溶解氧、叶绿素a浓度、p H)的主要因素。营养盐的输入引起的藻类活动的增强,以及污染物的排放与分解,使不同湖区水体酸碱度出现较明显的差异。 有机污染物的分解同时消耗了水体中的溶解氧,因而在湖滨处及入湖河流较为集中的西南部出现较低的溶解氧浓度及p H值,这一现象在雨季尤为明显。不

同湖区营养盐的差异引起藻类空间分布的不同,在工农业排放较集中的东部、西南部湖区,水体叶绿素a浓度远高于其他湖区。 夏季水温及光照的增强、外源输入的增加、以及生物活性的加强,加重了不同湖区水体理化性质的空间差异性。进而引起湖泊底质释放增加、水生物种结构单一化、水体自净能力下降等诸多环境问题。 (3)杞麓湖富营养化程度较高,监测时期内处于中度—重度富营养化状态,水体氮磷浓度全年处于较高水平。磷是湖泊藻类生长繁殖的限制因子。 湖泊总磷浓度季节波动较大,夏季相较冬季总磷浓度增加了近40%,总氮季 节变化相对较小,夏季高于冬季。湖滨化工业排放使湖泊氮磷含量(特别是总磷)大幅上升,农业排放对水体总氮影响较大,对总磷影响则相对较小。 流域河水、地下水营养盐浓度也很高,当地的水资源及水安全问题较为突出。 (4)湖水同位素组成随深度变化不明显,蒸发和河水补给的作用决定了湖泊水同位素的空间分布特征。 水温对表层湖水同位素分馏有一定的影响,对其空间分布的作用也存在,但整体影响不大。其他水质参数与湖泊水同位素组成之间没有必然的联系,在空间分布变化上也没有明显的规律。 (5)杞麓湖无论是全年还是各季节湖水蒸发线方程的斜率、截距相较全球大气水线有着明显的偏离,湖水受到了长时期蒸发分馏作用的影响。杞麓湖流域内河水、地下水的同位素组成相对湖水偏负,蒸发水线的偏离程度也小于湖水,地下水受到的非平衡分馏作用更弱一些。 海洋水汽是当地降水主要来源,入湖河流补给是湖泊水主要补给方式。(6)根据雨季前后湖水同位素组成的差异,利用降水数据我们模拟得出湖水换水周期

浅谈生活饮用水法律法规及标准对水质问题的控制

浅谈生活饮用水法律法规及标准对水质问题的控制 水是维持生命和新陈代谢必不可少的物质。正常情况下,一个成年人每天饮水2500ml左右。饮用水水质的优劣直接关系到人体的健康程度及寿命的长短。我国属于缺水国家,人均水资源占有量只有2400m3,只相当于世界人均占有水量的1/4。近30年我国经济飞速发展,但是以牺牲有限的资源和环境为代价的,加之人口增加,大量污染物被排放环境中,天然水体受到了不同程度的污染。我国xx年环境状况公报指出:黄河、珠江、松花江、淮河、辽河主要污染指标为高锰酸盐指数、氨氮、生化需氧量。各城市典型水域仍以氨氮和有机污染为主。大型淡水湖泊:**、**池、**等主要污染指标为总磷、总氮、高锰酸盐指数。可以看出,我国水环境污染以有机污染为主,主要污染指标为高锰酸盐指数,氨氮等[1]。 目前我国县级以**市多以城建系统的自来水公司供水为主,企业单位的自备供水系统作为补充,大多供水入户,**小区内有上、下水管道及卫生设施。从总体来讲县级以上大部分城市的供水能力已基本解决。但影响生活饮用水水质的因素较多,城市饮用水水质合格率不高。据卫生部今年对28个省的城市集中式供水管网末梢水浑浊度、色度、臭和味、肉眼可见物、细菌总数、总大肠菌群、游离余氯7项指标抽检结果,合格率为82.6%。自建供水系统末梢水合格率为 66.84%。城镇供水重点转向改善和提高水质。 随着工业废水、城乡生活污水的排放量和农药、化肥用量的不断增加,许多饮用水源受到污染,水中污染物含量严重超标。据调查,

我国城市约一亿人口饮用水不能完全符合生活饮用水卫生标准,农村有3.6亿人饮水不安全,农村约有1.9亿人饮用水有害物质含量超标,有的地方还因此暴发伤寒、副伤寒以及霍乱等重大传染病,个别地区癌症发病率居高不下[2]。 水致传染病主要包括了细菌性传染病、病毒性传染病和原虫性传染病。 细菌性传染病很多,主要的埃希氏大肠杆菌,这对人和动物都是常见的;著名的O157:H7,释放出胞外毒素,能引起严重的出血性腹泻;还有空肠弯曲杆菌、沙门氏菌、志贺氏菌,这些都会引起腹泻、发烧等疾病。现在比较新的传染病源是原生动物,原生动物有一个特点就是抗氯性比细菌要强,隐孢子虫、贾第虫、圆孢子虫都会导致原虫性传染病。另外一个是病毒,病毒很难检测。在国内,曾有单位做过一些城市的管网研究,发现其中有线病毒,这个对我们是一个很大的警示。 饮用水与传染病是人们最关心的问题之一,水致传染病是饮用水处理中高度关心的一个问题。在预防饮用水引发传染病方面,加强饮用水消毒是一个有效的手段。 氯化消毒是我国沿用多年且仍然普遍采用的自来水消毒技术。近二十年来,人们逐渐发现在氯化消毒的同时,会产生一系列消毒副产物,其中大部分对人体健康构成潜在的威胁。 现已发现氯化消毒副产物300多种,其中许多氯化副产物在动物实验中具有致突变性和(或)致癌性,有的还有致畸性和(或)神经

水质管理程序

1.适用范围 本标准适用于本公司生产工艺用水(饮用水、纯化水)的管理。 2.职责 制水操作人员:严格按SOP进行操作,保证工艺用水的质量。 质量部QC:负责工艺用水的取样监测。 质量部QA:负责对工艺用水的制备及使用进行监控。 3.内容 3.1.定义 3.1.1.饮用水 指经净化、消毒的自来水或深井水;水质必须符合GB5749-85《生活饮用水卫生标准》。 3.1.2.纯化水 以饮用水为水源经蒸馏法、离子交换法、反渗透法或其它适宜方法制备的制药用水,不含任何附加剂;水质必须符合《中国药典》纯化水质量标准,且电导率≤2.0μs/cm。 4.内容 4.2.生产用水的管理 4.2.1.饮用水 4.2.1.1.水源

我公司饮用水水源为深井水。 4.2.1.2.水质维护 ●饮用水的管道应避免穿过垃圾堆或毒物污染区。 ●水井周围20-30m的范围内不得设置渗水厕所、渗水池、垃圾或废渣 堆,不得铺设污水渠道,不得从事破坏深层土层的的活动。 4.2.1.3.水质监测 ●每年至少由防疫站检定全部项目一次; ●正常情况每月由QC按厂订饮用水质量标准,按《工艺用水取样SOP》 抽检一次; ●停产3天以上,由QC在开工前,按《工艺用水取样SOP》在饮用水 主管网末梢(锅炉房饮用水用水点)及关键用水点(如提取用水点) 取样,按厂订饮用水质量标准抽查一次。 ●发现检验结果不符合要求,立即执行《偏差处理程序》。 4.2.1.4.饮用水的使用 ●执行《厂区供用水管理程序》 ●饮用水使用前,打开水龙头,排掉管内残留水,至清澈后使用。 ●长期停用(一周以上),开工前放掉储水池中的存水,重新制水使用。 4.2.2.纯化水 4.2.2.1.水源:饮用水。 4.2.2.2.水质维护 ●纯化水系统必须经过验证合格后,方可投入使用,并进行严格的变更 控制。 ●纯化水系统正常情况每年进行一次再验证,以确认验证状态是否漂移。 ●纯化水系统操作人员执行经验证的管理程序及操作维护保养规程,进 行制水和定期的清洗、消毒及设备维护等操作。 4.2.2.3.水质监测 ●每小时由制水操作人员记录或检测一次原水、RO出水、混床出水、 贮罐出水电导率。 ●每班由制水操作人员在送水口抽检部分理化指标一次。(性状、酸碱度、 氯化物、硫酸盐、钙盐、氨、二氧化碳、易氧化物)

相关文档
最新文档