交通信息采集系统

交通信息采集系统
交通信息采集系统

目前市场上主要的交通信息检测手段有那些?各有什么样的优缺点?

交通信息采集技术的研究已经开展多年。时至今日,已有多种交通信息采集技术在实际中应用。通过这些技术采集到的交通信息主要包括各车道的车流量、车道占有率,车速、车型、车头时距等。

最先开始发展的是接触式的交通信息采集技术,其主要代表是压电、压力管探测、环行线圈探测和磁力式探测。这些采集装置都有共同特点,就是埋藏在路面之下,当汽车经过采集装置上方时会引起相应的压力、电场或磁场的变化,最后采集装置将这些力和场的变化转换为所需要的交通信息。经过多年发展,路面接触式的交通信息采集技术已经很成熟,其测量精度高,易于掌握,一直在交通信息采集领域中占有主要地位。但是这种路面接触式的交通采集装置有着不可避免的缺点。首先是安装维护困难,必须中断交通、破坏路面;其次随着车辆增多,车辆对道路的压力导致这类装置的使用寿命也越来越短;现在道路扩张很快,各种环境下的道路日益增多,而路基下沉、盐碱和冰冻等条件将严重影响路面接触式交通信息采集装置的使用。所有这些都带来了其使用成本的上升。

新近发展起来的路面非接触式交通信息采集装置不存在安装维护困难、使用寿命短等缺点,主要分为波频探测和视频探测两大类。波频探测又可分为微波、超声波和红外三种,其中除了超声波探测只能进行单车道交通信息采集外,其余都可同时进行多车道交通信息采集。由于安装维护简单,路面非接触式交通信息采集技术发展非常迅速。视频探测是利用车辆进入检测区域导致背景灰度变化的原理来进行检测,直观可靠,但受光度,气候条件的影响很大。而波频探测则是利用车辆经过检测区域时引起的电磁波的返回时间或频率的变化进行检测,其中红外检测对车型分辨清晰,但受天气的影响很大,而超声检测对于车速和车型的判定准确,但受安装条件限制只能顶部正向安装,只能采集一个车道的信息。微波检测有着安装维护方便、使用寿命长、受天气气候影响小,能同时进行多个车道检测的优点,但存在侧向安装同时检测多个车道时不能检测单一车辆的速度等缺点。

1、基于线圈技术

原理:以金属环形线圈埋设于路面下,利用车辆经过线圈区域时因车身铁材料所造成的电感量的变化来探测车辆的存在。该探测技术可测车速,车流量,占有率等基本交通信息参数,但是不能多车道同时探测。

安装:埋设式。在路面开一条深槽,将探测线圈埋入其中,信息处理部分安装于路边的控制箱。

优点:首次投资较少、准确度高、不受气候和光照等外界条件影响。

缺点:安装与维修因为需要中断交通、破坏路面而变得很复杂,加上车辆重压等因素导致寿命不长,因而维护成本很高。另外特殊路段如桥梁、隧道等难以安装。

技术:最简单也最成熟

应用成本:首次投资相对较少,维护成本极高。

应用范围:可应用于除不能破坏路面情况外的所有地方。

与其他系统的兼容性:与交通信号灯控制系统兼容性很好,但是与基于其它技术的交通信息采集系统的兼容性较差。目前常规的线圈交通信息检测系统信息传输采用的是轮循,而基于其它技术的系统主要采用的是主动上报的方式。

2、基于视频技术

原理:使用计算机视频技术检测交通信息,通过视频摄象头和计算机模仿人眼的功能,在视频范围内划定虚拟线圈,车辆进入检测区域使背景灰度发生变化,从而感知车辆的存在,并以此检测车辆的流量和速度。该探测技术可测车速,车流量,占有率等基本交通信息参数,但是难以实现很多车道同时探测。

安装:正向安装于龙门架或者L型横梁上。

优点:在气候和光照等外界条件理想的情况下准确度高。

缺点:极易受气候和光照等外界条件等影响,因为需要正向安装于龙门架或者L型横梁上而使得安装与维修变得很复杂。

技术:不成熟,主要问题是要克服外界条件的影响。

应用成本:首次投资相对线圈要高,但是维护成本很低。

应用范围:可应用于能架设龙门架或者L型横梁的所有地方。

与其他系统的兼容性:好。

3、基于微波雷达技术

基于微波雷达技术的交通信息采集系统可分为侧向安装与正向安装2种。

1)侧向安装

原理:利用雷达天线发射出电磁波,当有车辆经过时,则会将波反射回来,再由雷达检测器接收并计算处理,不同车道由于其目标反射距离不同而导致回波信号不同,从而能同时检测多车道的交通信息。该探测技术可测车速,车流量,占有率等基本交通信息参数,但是不能准确测量单一车辆速度。

安装:侧向安装于道路边的立杆上。

优点:安装维护简单(不用破坏路面和中断交通)、车流量检测准确度高、不受气候和光照等外界条件影响、寿命长。可安装于桥梁与隧道等线圈难以安装的路段。

缺点:不能准确测量单一车辆速度,车型判断不准。

技术:复杂,成熟

应用成本:首次投资相对较高,但维护成本极低。

应用范围:可应用于所有地方。

与其他系统的兼容性:好。

2)正向安装

原理:利用雷达天线发射出电磁波,当有车辆经过时,则会将波反射回来,再由雷达检测器接收并计算处理,采用FMCW和Doppler双波束体制,因而既能准确测量车辆速度又能准确测量车流量等其他交通信息。

安装:正向安装于龙门架或者L型横梁上。

优点:既能准确测量车辆速度又能准确测量车流量等其他交通信息、不受气候和光照等外界条件影响、寿命长。同时还可以安装于桥梁与隧道等线圈难以安装的路段。

缺点:因为需要正向安装于龙门架或者L型横梁上而使得安装与维修变得很复杂。

技术:最复杂,成熟

应用成本:首次投资相对较高,但维护成本极低。

应用范围:可应用于所有地方。

与其他系统的兼容性:好。

交通信号控制系统方案

交通信号 控制系统(ATC)设计方案 x x x x有限责任公司

目录 1.概述 (1) 1.1系统简介 (1) 1.2设计原则 (2) 1.3系统设计依据及执行标准 (4) 2.总体设计方案 (6) 2.1控制系统总体功能 (6) 2.2通信系统总体结构 (6) 2.3通信系统主要优势 (8) 3.详细设计方案 (9) 3.1监测点设备 (9) 3.1.1设备功能描述 (9) 3.1.2监测点设备组成、结构及特点 (9) 3.2防雷保护及安全设计 (14) 3.3详细设备说明 (15) 3.3.1高清晰摄像机 (15) 3.3.2标清视频检测 (15) 3.3.3补光设备 (15) 3.3.4嵌入式存储 (15) 3.3.5 GOE210千兆工业以太网交换机 (15) 3.3.6 POE工业以太网光纤收发器 (17) 3.4系统典型配置清单 (18)

1.概述 城市发展交通智能信号灯,减少道路拥堵,最终达到智能化区域交通信号控制系统。智能交通信号灯迎合实现绿色经济的时代潮流,为了解决这个问题,提出智能交通信号灯及网络技术,会根据路口车辆多少,自动调节时间,可减少等候时间在75%以上,从而大大节省了人们的出行时间,减少了路口的无效等候,使出行更快捷。 在智能交通系统中,以往的常规摄像机是对所有通过该地点的机动车辆的车牌进行拍摄、记录与处理。由于受到图像采集设备分辨率的制约,图片仅能反映出车型、车身颜色、车牌号码等简单信息。公安执法部门对部分治安案件、交通肇事案件的取证要求上,希望能掌握更详细更清楚的资料,如驾驶员的面貌特征、车内驾驶室的情况、清晰的车辆信息、货车的装载情况。采用高清晰摄像机做前端采集,可以实现所抓拍的图像中用肉眼清楚地分辨:车辆的颜色、特征、车牌的号码、车牌颜色、司乘人员的面部特征。 如此一来智能化同时也带来了网络数据流量的剧增,对网络通信的可靠传输提出了更高的要求。工业以太网交换机在区域交通信号控制系统网络中稳定性、高可靠性、高安全性成为关键中的关键。 1.1系统简介 区域交通信号控制系统(ATC) 智能化区域交通信号控制系统采用百万像素的数字化网络摄像机(1600×1200 CCD传感器),一台摄像机覆盖两条车道,准确抓拍正常行驶、压线行驶、并行通过的车辆,并自动识别车牌号码,抓拍的车辆图片可清晰地显示车辆特征及前排司乘人员的面部特征。摄像机工作于外触发方式,通过视频分析、环形线圈或者窄波雷达检测通过车辆,在抓拍车辆的同时可获取车辆的行驶速度。两条车道共用一台高清数字摄像机的方式在保障系统性能的前提下,大大降低了系统成本。

信息采集系统解决方案

信息采集系统解决方案

信息采集系统解决方案 1系统概述 信息采集是信息服务的基础,为信息处理和发布工作提供数据来源支持。信息数据来源的丰富性、准确性、实时性、覆盖度等指标是信息服务的关键一环,对信息服务质量的影响至关重要。针对交通流信息数据,包括流量、速度、密度等,目前主要是基于微波、视频、地磁等固定车辆检测器以及浮动车等移动式车辆检测器进行采集,各种采集方式都存在响应的利弊。针对车驾管以及出入境数据,包括车辆信息、驾驶人信息、出入境办证进度信息等,主要是通过和公安相关的数据库进行对接,此类信息将在信息分析处理系统进行详细介绍。 针对目前交通信息来源的多样性以及今后服务质量水平发展对信息来源种类扩展要求,需要建设一套统一的,具备良好兼容性和前瞻性的交通信息统一接入接口。一方面,本期项目的各种交通信息来源可以使用该接口进行数据接入,另一方面,当新的或第三方的交通信息来源需要加入到本系统中来时,可以使用该接口进行数据接入,不需要再次投入资源进行额外开发。 统一接入接口建成后,根据各种数据来源系统的网络环境、系统技术特性和交通流信息数据特点,开发相应的交通信息数据对接程序,逐一完成微波采集系统、浮动车分析系统、人工采集等来源的交通信息数据采集接入。 2系统架构及功能介绍 2.1统一接入接口 统一接入接口的建设的关键任务包括接口技术规范制定、路网路段编码规则约定及交通信息数据结构约定等多个方面。

2.1.1接口技术规范 一方面由于本系统接入的交通信息数据来源多样,开发语言和系统运行的环境均存在差异,不具备统一的技术特性;另一方面,考虑到以后可能需要接入更多新的或第三方的信息系统作为数据来源,应当选择较成熟和通用的接口实现技术作为本项目的交通流信息采集统一接入接口实现技术。 根据目前信息系统建设的行业现状,选择Web Service和TCP/UDP Socket 作为数据传输接口的实现技术是较优的选择。Web Service和TCP/UDP Socket 具有实时性强、通用性强、应用广泛、技术支持资源丰富等优势,可以实现跨硬件平台、跨操作系统、跨开发语言的数据传输和信息交换。 项目实施时需要根据现有的信息采集系统的技术特点来具体分析,以选定采用Web Service或TCP/UDP Socket作为接口实现技术,必要时可以两种方式并举,提供高兼容度的接口形式。 为了保护接入接口及其数据传输的安全性,避免恶意攻击访问,避免恶意数据窃取,可以使用身份认证、加密传输等技术来加以保证。 统一数据采集接口的工作流程可以如下进行:

交通信号控制系统解决实施方案

交通信号控制系统解决方案 1概述 交通信号控制系统,是智能交通系统(ITS)在交通管理工作中的基本应用,也是城市智能交通管控系统中最直接、最基础的应用系统。通过建设信号控制系统,实现信号路口联网远程控制、交通流量的采集、路口自适应控制、绿波协调控制以及区域的自适应控制,有效减少车辆的停车次数,节省旅行时间;后台实时调整信号配时,采取多时段控制方式,必要时,可通过智能交通管理中心人工干预,直接控制路口交通信号机执行指定相位,有效的疏导交通,减少行车延误,提高通行能力,缓解日益严峻的城区道路交通拥堵压力,提高城区交通综合管理能力,减少汽车尾气排放,美化环境,提升城区形象。 2系统结构设计 系统结构划分为3级:分别为中心控制级设备、区域控制级设备以及路口控制级设备。交通信号控制系统设备主要包括中心设备、前段设备和通信设备。

(1)中心控制级设备 中心控制级设备作用主要是: ?监控整个系统的运行。 ?协调区域控制级的运行。 ?具备区域控制级的所有功能。(2)区域控制级设备 区域控制级设备作用主要是: ?监控受控区域的运行。

?对路口交通信号进行协调控制。 ?对路口交通信号机的工作状态和故障情况进行监视。 ?通过人机回话对路口交通信号机进行人工干预。 ?监视和控制区域级外部设备的运行。 ?进行交通流量统计处理。 (3)路口控制级设备 路口控制级设备即信号机,其作用主要是: ?控制路口交通信号灯。 ?接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送。 ?接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息。 ?具有单点优化能力。 3系统功能设计 3.1基础功能 (1)区域自适应控制 系统以控制子区作为基本控制单元,综合考虑子区内的交通运行状态(如交通阻塞、交通拥挤、交通顺畅)、交叉口的关联性大小、交叉口的实际交通量,确定公共信号周期与相位差的决策模型,并运用智能优化算法实时优化子区协调控制配时参数,实现控制子区交叉口的协调控制功能。 系统的区域交叉口协调控制能够确保控制区域内的交通流时刻处于最佳运行状态,相邻交叉口之间协调方向的行驶车流可以获得尽可能不停顿的通行权,大大降低车辆在交叉口频繁加减速所产生的交通污染,减少区域交通总的车辆燃油

交通信号控制系统

1交通信号控制系统概述交通信号控制系统是智能交通管理系统的重要子系统,其主要功能是自动协 1.1调和控制整个控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染减至最小,充分发挥道路系统的交通效益。 必要时,可通过控制中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。 NATS交通信号控制系统用于城市道路交通的控制与管理,可以提高车速、减少延误、减少交通事故、降低能耗和减轻环境污染。 从上个世纪八十年代中期以来,中国电子科技集团公司第二十八研究所就开始了NATS系统和路口交通信号控制机的研制开发。 该系统通过了国家鉴定验收,获得了国家重大科技攻关成果奖、公安部科技进步一等奖和国家科技进步三等奖。 NATS交通信号控制系统特点: 适合中国城市混合交通的特点,具有自行车控制功能;系统支持多种硬件平台(微机、工作站以及大、中、小型计算机),多种软件平台(WINDOWS 98/NT/2000/XP);支持多种外部设备(动态地图板、室内信息板、室外信息板、违章记录仪…);支持多种系统互联(电视监视系统、地理信息系统、车辆定位系统、违章捕捉系统、信息管理系统…);系统配置灵活、裁剪方便;支持远程控制和维护;支持多种通信方式(光缆、电话线、GPRS/CDMA无线通信、城域网…);系统人机界面友好,显示内容丰富,操作使用方便;与国外同类系统相比,具有很高的性能价格比。 1.2系统结构 1.2.1系统控制应用层结构NATS交通信号控制系统采用三级分布式递阶基本控制结构: 中心控制级,区域控制级,路口控制级(参见下图)。

中心控制级区域控制级1区域控制级2路口控制级路口控制级路口控制级区域控制级N 1.2.2系统基本结构区域监控台动态地图板室内信息板违章捕捉仪区域控制计算机数据通信控制机(光端机)光纤(光端机)(光端机)路口信号机…(光端机)(光端机)路口信号机室外情报板…室外情报板交通信号灯车辆检测器其中: 区域控制计算机监视、控制、协调整个系统的运行,可同时控制128个外部设备,如果外部设备超过128路,可采用多台区域控制计算机。 区域监控台用作交通工程师工作台,实时显示被控区域内的交通状态和信息,下达人机会话命令;数据通信控制机为区域控制计算机与户外设备提供通信通道;路口信号机负责采集、处理、传送交通信息,控制路口信号灯色;环形线圈检测器和微波检测器安装位置可分布在路口或者路段;动态地图板实时显示被控区域内的交通状态。 1.3系统功能 1.3.1系统三级控制功能1)中心控制级监控整个系统的运行;协调区域控制级的运行;具备区域控制级的所有功能。 2)区域控制级监控受控区域的运行;对路口交通信号进行协调控制; 对路口交通信号机的工作状态和故障情况进行监视;通过人机会话对路口交通信号机进行人工干预;监视和控制区域级外部设备的运行;进行交通流量统计处理。 3)路口控制级控制路口交通信号灯;接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送;接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息;具有单点优化能力。 4)终端控制为了方便灵活地控制系统,系统可挂接终端控制计算机(工作站),终端控制计算机提供与区域控制计算机完全同样的显示操作功能,终端控制计算机既可以是本地的(如放在管控中心),也可以是远程的(如在任何地方通过公安网进行控制)。 1.

视频交通流采集系统解决方案

视频交通流信息采集系统解决方案 1概述 视频交通流信息采集系统主要包括视频图像采集设备、视频传输网络、交通流视频检测器等。视频检测器采用虚拟线圈技术,利用边缘信息作为车辆的检测特征,实时自动提取和更新背景边缘,受环境光线变化和阴影的影响较小;同时采用动态窗的方式来进行车辆计数,解决了采用以往固定窗方式进行车辆计数时由于车辆变道而导致的错误、重复计数问题。视频检测器能对视频图像采集设备或交通电视监视系统的视频信号自动进行检测,主要采集道路的微观交通信息如流量、速度、占有率、车辆间距、排队长度等,适用于近景监控模式。 2系统功能及特点介绍 2.1数据接口设计 视频交通流信息采集系统可以通过调用本项目提供的交通流数据统一接入接口,或由本项目提供数据格式标准化及上传程序,将采集到的交通流数据共享给本项目相关系统,以实现视频交通流数据的采集功能。 图1 数据接口设计 2.2系统功能 交通流信息视频检测系统的主要功能如下: (1)车辆检测 系统能够对输入的视频流图像进行车型、车牌等特征检测。

(2)交通流数据采集功能 系统可以采集交通流数据包括交通流量、平均车速、车道占有率、车型、平均车头间距、车辆排队长度、车辆密度、交通流状态等,交通流数据采集时间间隔在1~60分钟任意可调。 图 2 视频交通流检测模块 (3)视频图像跟踪功能 系统能对单路监控前端设备在不同预置位采集的视频图像进行不同区域不同事件的自动检测。一旦检测到特定的交通事件,事件检测器应具有该交通事件的视频图像目标自动跟踪、记录、分析功能。 当输入的视频图像不为设定的预置位的视频图像,系统应能自动不进行事件检测。一旦监控前端设备恢复至设定的预置位,系统应能自动进行事件检测。 (4)事件图像抓拍、录像功能 系统可以根据用户的设置,完成相应的录像和图片抓拍功能。 事件录像可以按摄像机、按事件类型、按时间归档存储在系统的预录像子系统中,由系统服务器进行统一的管理调用。 系统循环进行录像,当发生交通异常事件时,系统能够提供事发之前和之后的3分钟间的录像(可设置)。 系统可通过多种组合查询条件对视频交通流检测所采集的数据进行统计,包括时间-流量统计、时间-平均车速统计、时间-占有率统计、速度-流量统计等;统计结果可导出为

交通信号控制系统技术方案.doc

交通信号控制系统技术方案 智能交通信号控制系统技术方案目录一、交通信号控制系统综述-3-1.1系统设计原则-3-1.2系统建设依据-5-1.3交通信号控制系统组成-5-二、交通信号控制系统功能指标-8-2.1交通信号控制器-8-2.1.1交通信号控制器功能-8-2.1.2交通信号控制器指标-10-2.2交通信号控制系统-12-2.2.1交通信号控制系统组成-12-2.2.2系统功能-14-2.2.3区域自适应控制-15-三、交通信号远程控制系统-17-3.1详细配置信号机运行数据-17-3.2信号机实时控制-23-3.3信号机运行状态-24-3.4系统故障状态-25-3.5警卫线路-25-3.6实时流量-25-3.7流量查询-26-四、区域自适应优化控制-28-4.1系统控制策略-28-4.1.1单点感应控制-30-4.1.2单点自适应控制-30-4.1.3干道绿波控制-30-4.1.4感应式协调控制-38-4.1.5区域自适应控制-39-4.1.6拥堵控制-42-4.1.7潮汐车道控制-43-4.1.8优先控制-43-4.2路网组态模块-44-4.3参数配置模块-45-五、道路交通信息采集系统-54-5.1系统总体设计-54-5.2信息采集分系统设计-55-5.3交通数据综合处理-57-六、交通信号控制器-59-6.1故障检测-60-6.2防雷措施-61-6.3信号机机箱防护-62-6.4手持式交通信号控制器-62-6.5信号机结构介绍-64-6.7安装说明图-64-6.8信号机实际效果-73-一、交通信号控制系统综述根据城市发展的一般规律,在城市发展与演变过程中,交通工具的增长速度通常远高于城市道路和其他交通设施的增长,在经济快速发展的年代,城市交通往往面临着巨大的压力与挑战。

智能交通信号控制系统

HiCon智能交通信号控制系统 青岛海信网络科技股份有限公司 2008年1月

目录 1海信交通信号控制系统介绍 (1) 1.1系统概述 (1) 1.2系统特点 (2) 1.3H I C ON交通信号控制系统软件功能 (2) 1.4HSC-100交通信号机 (4) 1.4.1概述 (4) 1.4.2 3.4.2信号机的生产和检测 (5) 1.4.3信号机功能 (7) 1.4.4信号机性能指标 (7)

1海信交通信号控制系统介绍 1.1系统概述 “HiCon交通信号控制系统”是我公司开发的交通控制领域高端产品,该产品与国内著名高校强强联合,应用国际领先技术,结合国内复杂交通特征及国外城市交通特点研发,为同内外城市提供完备的交通管理与控制方案、自适应控制系统软件及系统兼容的信号机,我公司对该产品具备自主知识产权。 “HiCon交通信号控制系统”是包括HiCon交通信号控制系统中心软件、HSC系列交通信号机和CMT交通信号机配置与维护工具软件。 图1 海信交通信号控制系统结构图 系统的结构图如上图所示,分为管理控制平台、中心控制级、通信级和路口控制级。路口级交通信号机通过串行通信或以太网连接到控制中心,通信协议采用的是NTCIP。 路口信号机实时从路口采集交通流量、时间占有率、速度等信息,并实时上

传到中心机级,存入实时和历史数据库,为路口的统计分析提供数据,提供辅助决策支持和交通信号设备维护与管理。 控制中心根据实时的检测信息对当前的交通状态进行合理决策,对所控制的路口信号配时参数进行实时优化,并将优化结果下达给信号机执行,目的在于减少车辆及行人等待时间,缓解城市交通拥堵,降低环境污染,实现对城市交通的最佳控制。 1.2系统特点 (1)系统的应用范围广,可以用于城市的一般交叉口控制、也可以用于快速路、高速路的匝道、车道灯的控制,同时还能用于公交优先的控制。 (2)系统采用的是NTCIP通信协议,NTCIP作为美国乃至整个北美地区的智能交通系统的标准通信协议,体系完整,通用性与兼容性好。 (3)系统具有高效可靠开放的通信子系统,保证了内部实时通讯的可靠性、效率、可扩展性,同时实现了系统的开放性. (4)系统的接口透明,提供二次开发能力,便于多系统的集成。 (5)系统具备良好的故障诊断功能,实时显示路口设备故障状况,并能通过网络实现信号机的远程维护功能。 (6)系统采用方案选择与方案生成相结合的实时优化算法。 (7)系统采用的是先进的交通数据预测及故障降级技术,使得系统对检测器的依赖性大大降低。 (8)交通信号机的CPU采用的32位的芯片,控制功能强大。 1.3HiCon交通信号控制系统软件功能 HiCon交通信号控制系统软件能够从信号机获得实时交通信息及设备状态信息,并采用先进的预测技术对交通流量、时间占有率进行预测,利用优化模型对交通信号配时参数进行实时优化,实现各种协调控制。 系统软件还能够提供用户进行各种远程控制功能,包括警卫路线控制、动态绿波控制、干预线控等。系统软件能够为用户提供GIS平台上的各种方便快捷的操作,如在地图上漫游、缩小、放大等,用户可查看路口的信号配时、设备状

交通信息采集技术研究现状与发展趋势

交通信息采集技术研究现状与发展趋势 在2014年8月份北京道路交通安全展览上,一些交通信号控制行业厂家问到我,想了解地磁车辆检测器产品的技术和市场情况,对地磁车辆检测器的使用存有比较多的疑问。于是我连同Tranbbs市场研究部的同事,从最终用户、设计院、研究所、集成商、产品商等几个方向对这一产品的使用状况进行了调研。带着用户众多的疑问,以怀疑的眼光去调研产品的适用性,发现造成目前最终用户“远离或观望”地磁车辆检测器的主要原因一个是:在产品不成熟时过快的随着物联网的火热进行了市场推广,安装了大量的目前看存在缺陷的产品;另外一个原因是停车应用场景中,产品技术成本和客户成本意愿没有形成平衡,以至于一些低端产品被使用,有了诸多失败案例。 智能交通技术框架主要包括交通采集、信息传输、信息处理和信息发布四个部分,交通采集技术是智能交通发展的重要的共性基础技术。根据公安部交通管理研究所统计,“十一五”期间,交通流信息固定采集点由1.6万个增加到7.3万个,交通监控点由9250个增加到5.1万个。根据Tranbbs 市场研究成果,2014年与2010年城市智能交通整体市场规

模将会翻倍增长,因此初步预测交通流固定采集点也将会有翻倍的增长,达到15万个点左右。 从技术类型上来划分,目前市场中比较常见的交通采集技术包括磁频的车辆检测技术、射频的车辆检测技术、视频的车辆检测技术、波频的车辆检测技术、移动型交通数据采集技术等,有的技术类型中又包括几种采集方式。归纳起来目前市场中常用的交通采集方式主要有线圈、视频、地磁、超声波、雷达、红外线、手机移动终端、浮动车、激光等。 2. 主要交通采集技术的发展历程 2.1 感应线圈 1928年,出现了世界上第一台公认的车辆检测器,安装于道路附近的麦克风,需要通过的司机鸣笛来触发设备以检测车辆的经过。这种检测器主要应用于十字路口的信号控制。同一时期,开始使用的另一设备是压感的车辆检测器。直到20世纪60年代,感应线圈被用作为车辆检测器,成为到目前为止使用最广泛的检测系统。 2.2 视频 视频交通检测最初由美国加州在1976年提出,国外早在70年代已经开始视觉提取交通参数研究。20世纪90年代起进

交通信息采集系统

目前市场上主要的交通信息检测手段有那些?各有什么样的优缺点? 交通信息采集技术的研究已经开展多年。时至今日,已有多种交通信息采集技术在实际中应用。通过这些技术采集到的交通信息主要包括各车道的车流量、车道占有率,车速、车型、车头时距等。 最先开始发展的是接触式的交通信息采集技术,其主要代表是压电、压力管探测、环行线圈探测和磁力式探测。这些采集装置都有共同特点,就是埋藏在路面之下,当汽车经过采集装置上方时会引起相应的压力、电场或磁场的变化,最后采集装置将这些力和场的变化转换为所需要的交通信息。经过多年发展,路面接触式的交通信息采集技术已经很成熟,其测量精度高,易于掌握,一直在交通信息采集领域中占有主要地位。但是这种路面接触式的交通采集装置有着不可避免的缺点。首先是安装维护困难,必须中断交通、破坏路面;其次随着车辆增多,车辆对道路的压力导致这类装置的使用寿命也越来越短;现在道路扩张很快,各种环境下的道路日益增多,而路基下沉、盐碱和冰冻等条件将严重影响路面接触式交通信息采集装置的使用。所有这些都带来了其使用成本的上升。 新近发展起来的路面非接触式交通信息采集装置不存在安装维护困难、使用寿命短等缺点,主要分为波频探测和视频探测两大类。波频探测又可分为微波、超声波和红外三种,其中除了超声波探测只能进行单车道交通信息采集外,其余都可同时进行多车道交通信息采集。由于安装维护简单,路面非接触式交通信息采集技术发展非常迅速。视频探测是利用车辆进入检测区域导致背景灰度变化的原理来进行检测,直观可靠,但受光度,气候条件的影响很大。而波频探测则是利用车辆经过检测区域时引起的电磁波的返回时间或频率的变化进行检测,其中红外检测对车型分辨清晰,但受天气的影响很大,而超声检测对于车速和车型的判定准确,但受安装条件限制只能顶部正向安装,只能采集一个车道的信息。微波检测有着安装维护方便、使用寿命长、受天气气候影响小,能同时进行多个车道检测的优点,但存在侧向安装同时检测多个车道时不能检测单一车辆的速度等缺点。 1、基于线圈技术 原理:以金属环形线圈埋设于路面下,利用车辆经过线圈区域时因车身铁材料所造成的电感量的变化来探测车辆的存在。该探测技术可测车速,车流量,占有率等基本交通信息参数,但是不能多车道同时探测。 安装:埋设式。在路面开一条深槽,将探测线圈埋入其中,信息处理部分安装于路边的控制箱。 优点:首次投资较少、准确度高、不受气候和光照等外界条件影响。 缺点:安装与维修因为需要中断交通、破坏路面而变得很复杂,加上车辆重压等因素导致寿命不长,因而维护成本很高。另外特殊路段如桥梁、隧道等难以安装。 技术:最简单也最成熟 应用成本:首次投资相对较少,维护成本极高。 应用范围:可应用于除不能破坏路面情况外的所有地方。 与其他系统的兼容性:与交通信号灯控制系统兼容性很好,但是与基于其它技术的交通信息采集系统的兼容性较差。目前常规的线圈交通信息检测系统信息传输采用的是轮循,而基于其它技术的系统主要采用的是主动上报的方式。 2、基于视频技术 原理:使用计算机视频技术检测交通信息,通过视频摄象头和计算机模仿人眼的功能,在视频范围内划定虚拟线圈,车辆进入检测区域使背景灰度发生变化,从而感知车辆的存在,并以此检测车辆的流量和速度。该探测技术可测车速,车流量,占有率等基本交通信息参数,但是难以实现很多车道同时探测。 安装:正向安装于龙门架或者L型横梁上。

智慧交通信号控制系统技术方案

智慧交通信号控制系统 技术方案

目录 第一章建设原则 (1) (一)加强指导、统筹规划 (1) (二)面向需求、重点突出 (1) (三)互联互通、资源共享 (1) (四)求实勿虚、提升服务 (1) (五)覆盖全局,深化应用 (1) 第二章总体框架 (2) 第三章交通信号控制系统 (3) 1.系统建设分布 (3) 2.技术选型 (3) 3.系统结构 (5) 4.系统功能 (5) 5.系统关键设备技术指标 (8)

第一章建设原则 (一)加强指导、统筹规划 智能交通系统是一项巨大的系统工程,具有多元化、层次化、多学科交叉的特点,具有很强的广泛性和综合性,涉及政府、企业多个层面,必须在统一领导下进行统筹规划建设,使各单位遵照统一的规范建设,充分发挥整体作用和整体效益,充分运用云计算等先进技术,同时避免重复建设和开发,确保交通智能化建设的顺利实施。 (二)面向需求、重点突出 ITS 建设项目要根据交通运营与管理的需要,满足社会公众对交通行业信息的要求,加强智能管理信息系统特别是公共交通相关信息系统的开发利用,讲求实效,以应用促发展。项目建设要突出重点、分层建设、各负其责、共同发展、稳步推进,要根据实际情况和发展需求,制订项目实施计划,分步实施。 (三)互联互通、资源共享 把握“十二五”时期经济社会发展的新形势、新任务、新要求,从交通运行系统的全局出发进行ITS 建设,对各部门现有的基础资源加以整合,统一管理资源,避免交通行业内部资源分隔、各自为政,进而理顺各交通部门间信息交互关系,实现交通信息网络的互联互通和资源共享。 (四)求实勿虚、提升服务 坚持以人为本,以具有鲜明时代特征和行业特点的交通信息服务为重点,以智能交通信息化工程为推手,以支撑解决行业发展中的重大经济社会问题为宗旨,以需求、效果并重为导向,加快推进交通信息服务规范化、产业化发展,推动建立丰富实用、经济便捷的综合交通信息服务体系,使交通信息真正服务于民。 (五)覆盖全局,深化应用 以信息化覆盖智能交通现代化建设的全局,实现信息技术在智能交通系统运行监测、管理与服务领域的深度渗透与融合,加速推进深化应用,促使智能交通信息化在加快转变发展方式中发挥更重要的牵引和支撑作用,有效提高智能交通的发展质量和效益。

智能交通信号控制系统

智能交通信号控制系统 一、信号控制的基本概念 (一) 信号相位。信号机在一个周期有若干个控制状态,每一种控制状态对某些方向的车辆或行人配给通行权,对各进口道不同方向所显示的不同灯色的组合,称为一个信号相位。我国目前普遍采用的是两相位控制和多相位控制。 (二)信号周期。是指信号灯各种灯色显示一个循环所用的时间,单位微秒。信号周期又可分为最佳周期时间和最小周期时间。 (三)绿信比。是指在一个周期内,有效绿灯时间与周期之比。周期相同,各相位的绿信比可以不同。 (四)相位差。是指系统控制中联动信号的一个参数。它分为相对相位差和绝对相位差。相对相位差是指在各交叉口的周期时间均相同的联动信号系统中,相邻两交叉口同相位的绿灯起始时间之差,用秒表示。此相位差与周期时间之比,称为相对相位差比,用百分比表示。在联动信号系统中选定一个标准路口,规定该路口的相位差为零,其他路口相对于标准路口的相位差,称为绝对相位差。 (五)绿灯间隔时间。从失去通行权的上一个相位绿灯结束到得到通行权的下一个相位另一方向绿灯开始的时间,称为绿灯间隔时间。在我国,绿灯间隔时间为黄灯加红灯或全红灯时间。当自行车和行人流量较大时,由于自行车和行人速度较慢,为保证安全,需进行有效调整,可以适当增加绿灯间隔时间。 此外,信号控制的基本参数还有饱和流率、有效绿灯时间、信号损失时间、黄灯时间、交叉口的通行能力与饱和度等。 信号灯的分类: (一)交通信号灯,按用途可分为车辆交通信号灯、行人交通信号灯、方向交通信号灯和车道交通信号灯等。 (二)交通信号灯,按操作方式可分为定周期控制信号灯和感应式控制信号灯。感应式控制信号灯又分为半感应控制和全感应控制两种。 (三)交通信号灯,按控制范围可分为单个交叉路口的交通控制、干道交通信号联动控制和区域交通信号控制系统,即“点控”、“线控”、“面控”三种。

交通信号控制系统技术方案

... 智能交通信号控制系统技术方案

目录 一、交通信号控制系统综述.................................... - 3 - 1.1系统设计原则................................................ - 3 -1.2系统建设依据................................................ - 5 - 1.3交通信号控制系统组成........................................ - 5 - 二、交通信号控制系统功能指标................................ - 8 - 2.1交通信号控制器.............................................. - 8 - 2.1.1交通信号控制器功能............................ - 8 - 2.1.2交通信号控制器指标........................... - 10 -2.2交通信号控制系统........................................... - 12 - 2.2.1交通信号控制系统组成......................... - 12 - 2.2.2系统功能..................................... - 14 - 2.2.3区域自适应控制............................... - 15 - 三、交通信号远程控制系统................................... - 17 - 3.1详细配置信号机运行数据..................................... - 17 -3.2信号机实时控制............................................. - 23 -3.3信号机运行状态............................................. - 24 -3.4系统故障状态............................................... - 25 -3.5警卫线路................................................... - 25 -3.6实时流量................................................... - 25 - 3.7流量查询................................................... - 26 - 四、区域自适应优化控制..................................... - 28 - 4.1系统控制策略............................................... - 28 - 4.1.1单点感应控制................................. - 29 - 4.1.2单点自适应控制............................... - 30 - 4.1.3干道绿波控制................................. - 30 - 4.1.4感应式协调控制............................... - 38 - 4.1.5区域自适应控制............................... - 39 -

信号控制和交通流采集系统

第1章信号控制和交通流采集系统 1.1系统综述 我公司在XX交通信号控制系统中,控制中心交通控制平台采用XX 集团XX开发且具有自主知识产权的AUTMIS-UTC软件平台。该软件是XX集团XX专为公安交通指挥中心开发的一套综合指挥调度平台软件。该软件平台能为XX交通信号控制系统提供完整的、科学的城市控制管理手段. 1。1.1系统目标 1、建立XX市“智能交通信号控制系统UTC”和实时的“交通流数 据采集与显示系统”,提高城市路网的最大化利用。 在完善交通工程设计的基础上,利用交通检测器采集的实时交通流数据,实现城市交通流动态变化的实时显示,实现路口交通信号状态的中心监视与中心控制,实现交通流组织优化、分流和导流,保障交通秩序和交通畅通。 2、实施区域控制与单点自适应的控制策略,建立高效的信号控制系 统 利用检测器信息,根据不同时间、不同地点、不同的交通需求、不同的优化目标,实现不同的控制策略。系统具有多相位的单点定周期、单点时间表、单点自动感应控制、无电缆绿波协调控制、中心单点手控、中心时间表协调控制、中心区域(或子区域)优化协调控制的能力,可以动态修正控制方案参数,最大化发挥信号系统控制效能的同时,提高系统数据方案的时效性。 3、建立科学的交通工程设计方法,实现现代化的反馈式“闭环交通 控制” 改变传统的“经验式”信号控制方法,实现:交通流量检测——数据采集积累、交通流仿真——数据分析与评价、交通控制策略——数据优 化、交通信号控制方案——数据应用的自动、连续、动态管理分析,建立科学的交通工程设计方法,提高交通工程控制手段和信号控制的实效性。

1。1。2系统架构 系统总体结构采用递阶分布式控制结构,结构图见附图。 1.2系统介绍 1。2。1中心控制系统统 交通信号控制- UTC系统将使用一台微机服务器,作为交通管理与控制主机(MASTER),在WINDOWS2000中文操作系统和ORACLE数据库管理环境下,运行最新版本的AUTMIS-UTC软件。整个系统的中心设备以以太网的形式相连接,并通过TCP/IP通信协议,使本系统与其他计算机系统交换信息。操作员终端为普通的PC个人计算机,同时可以集成由交通监视、交通控制、交通报警、交通信息综合管理等子系统组成的交通综合指挥与管理系统,通过在同一台计算机进行综合管理和操作,形成交通综合指挥系统的资源与设备共享,以减少指挥中心操作台面的设备堆叠,简化交通指挥与操作人员繁琐复杂的操作。

交通信号控制系统的现状与发展

交通信号控制系统的现状与发展 Michael Bai

1我国信号机产品市场现状 ------------------------------------------------------------------------------------------ 1 2我国信号机产品发展及标准情况--------------------------------------------------------------------------------- 1 2.1我国信号机产品发展情况 ------------------------------------------------------------------------- 1 2.2信号机产品标准-------------------------------------------------------------------------------------- 1 2.3信号机通讯手段-------------------------------------------------------------------------------------- 1 2.3.1串口通讯----------------------------------------------------------------------------------------- 1 2.3.2电话通讯----------------------------------------------------------------------------------------- 1 2.3.3基于TCP/IP的网络通讯 -------------------------------------------------------------------- 2 2.4我国信号机产品的技术现状及发展------------------------------------------------------------- 3 2.4.1多时段定时式信号机 ------------------------------------------------------------------------- 3 2.4.2感应式信号机 ---------------------------------------------------------------------------------- 3 2.4.3集中协调式信号机 ---------------------------------------------------------------------------- 3 2.5目前我国信号机产品存在主要问题------------------------------------------------------------- 3 2.5.1质量问题----------------------------------------------------------------------------------------- 3 2.5.2使用问题----------------------------------------------------------------------------------------- 3 3当前主流信号机系统在我国的应用------------------------------------------------------------------------------ 3 3.1SCOOT系统 ------------------------------------------------------------------------------------------ 3 3.2ACTRA系统------------------------------------------------------------------------------------------ 4 3.3SCATS系统------------------------------------------------------------------------------------------- 5 3.4ITACA系统------------------------------------------------------------------------------------------- 8 3.5HiCon系统 -------------------------------------------------------------------------------------------- 9 4未来市场展望-------------------------------------------------------------------------------------------------------- 10

交通流采集系统简介.

交通流采集实施技术方案 简介

目录 一、概述.............................................................................................................................. - 3 - 二、系统分析.............................................................................................................................. - 5 - 1.项目建设的目标和内容................................................................................................... - 5 - 1.1用于统计交通数据 ................................................................................... - 5 - 1.2检测与事件有关的交通数据.............................................................. - 6 - 三、系统技术方案...................................................................................................................... - 6 - 1.设计原则........................................................................................................................... - 6 - 2交通流采集系统的组成................................................................................................... - 8 - 3系统功能......................................................................................................................... - 10 - 4交通流采集系统的特点................................................................................................. - 14 - 5检测性能指标................................................................................................................. - 15 -

智能交通流量采集系统方案

智能交通流量采集系统方案 1.1系统概述 随着我国经济社会持续快速发展,群众购车刚性需求旺盛,汽车保有量继续呈快速增长趋势,据公安部交管局统计,截至2015年底,全国机动车保有量达2.79亿辆,其中汽车1.72亿辆,新注册量和年增量均达历史最高水平。另一方面,由于道路规划跟不上机动车增长的速度,导致道路流量资源分配不合理,不能有效的疏导车流量,所以加强对道路交通流量监测势在必行。 交通参数采集是智能交通系统建设中相对基础且重要的一环,交通参数的采集可为指挥调度、交通信号控制、交通诱导等、道路路网规划提供决策依据。 1.2设计目标 通过对城市道路上的某些关键路口、路段建设流量检测系统,以达到为管理部门提供一个辅助管理的手段: 1、在城市道路重点路段设置监控卡点,实现对重点部位的24小时全天候监控覆盖,视频流可用于实时监控或存储。 2、基于视频流进行车流量、平均车速、排队长度、车头时距等交通数据的检测采集,为交通规划和指挥调度提供数据支持。 1.3设计原则 本系统建设以“统一标准、技术先进、稳定可靠、信息安全、方便实用、便捷扩容、易于维护”为原则,以相关行业标准作为设计依据,结合我国道路特点,同时综合考虑车辆检测技术的发展趋势,确保系统的设计和建设满足当今交通管理部门对交通参数检测系统的应用和扩展需求: 1、统一标准:本系统的数据格式严格按照相关的标准规范要求进行设计,所有数据格式与接口均符合国家标准,并提供功能定制以适应地方应用差异。

2、技术先进:充分利用科技进步成果,采用当今先进成熟的技术,在相当长的时间内保持国内外先进水准。 3、稳定可靠:本系统具有防盗、耐高温、抗寒、散热排风等功能设计,使用的各类电气接线端子、过载、漏电及断路保护装置、避雷装置等装置均符合国家有关电气安全标准要求,保证系统能够可靠地、连续地运行。 4、信息安全:系统具有防非法接入、防误操作、防病毒等特性,通过合理的硬件结构设计、有效的外场保护措施以及完善的内部管理机制有效避免系统遭到恶意攻击和数据被非法提取的现象出现,保障系统的信息安全。 5、方便实用:系统提供清晰、简洁、友好的中文操作界面,操控简便、灵活,易学易用,便于管理和维护,能自动纠错和系统恢复,整个系统的操作简单、快捷、环节少,以保证不同的操作者都能熟练操作系统,具有高度友好的界面和使用性。 6、便捷扩容:随着业务的拓展以及技术的进步,用户的需求将会不断增加,系统的规模也将随之扩大,故在设计时,既应保证技术的先进性,又要兼顾与原有系统的兼容。因此,我们采用模块化结构设计,系统接口具备良好的扩展性,能够很好的完成系统的平滑升级,实现软硬件产品升级的系列化和模块化。 1.4系统总体设计 实现基于视频的车辆检测功能,在城市常规杆件上安装视频检测设备,支持3~4车道的流量检测。支持到车流量、平均速度、车头时距、车头间距、车道时间占有率、车道空间占有率、车辆排队长度、车辆分类、交通状态等信息的检测和统计。在支持交通参数采集的同时,兼顾视频监控的功能。

相关文档
最新文档