燃气轮机型号及燃机电站设计

燃气轮机简介

我国工业燃气轮机的现状与前景 一、世界工业燃气轮机的发展趋势 1、世界工业燃气轮机的发展途径与现状 自1939年瑞士BBC公司制成世界上第一台工业燃气轮机以来,经过60多年的发展,燃气轮机已在发电、管线动力、舰船动力、坦克和机车动力等领域获得了广泛应用。 由于结构上的分野,工业燃气轮机分为重型燃气轮机和轻型燃气轮机(包括航机改型燃气轮机)。 80年代以后,燃气轮机及其联合循环技术日臻成熟。由于其热效率高、污染低、工程总投资低、建设周期短、占地和用水量少、启停灵活、自动化程度高等优点,逐步成为继汽轮机后的主要动力装置。为此,美国、欧洲、日本等国政府制定了扶持燃气轮机产业的政策和发展计划,投入大量研究资金,使燃气轮机技术得到了更快的发展。80年代末到90年代中期,重型燃气轮机普遍采用了航空发动机的先进技术,发展了一批大功率高效率的燃气轮机,既具有重型燃气轮机的单轴结构、寿命长等特点,又具有航机的高燃气初温、高压比、高效率的特点,透平进口温度达1300℃以上,简单循环发电效率达36%~38%,单机功率达200MW以上。 90年代后期,大型燃气轮机开始应用蒸汽冷却技术,使燃气初温和循环效率进一步提高,单机功率进一步增大。透平进口温度达1400℃以上,简单循环发电效率达37%~39.5%,单机功率达300MW以上。 这些大功率高效率的燃气轮机,主要用来组成高效率的燃气-蒸汽联合循环发电机组,由一台燃气轮机组成的联合循环最大功率等级接近500MW,供电效率已达55%~58%,最高60%,远高于超临界汽轮发电机组的效率(约40%~45%)。而且,其初始投资、占地面积和耗水量等都比同功率等级的汽轮机电厂少得多,已经成为烧天然气和石油制品的电厂的主要选择方案。由于世界天然气供应充足,价格低廉,所以,最近几年世界上新增加的发电机组中,燃气轮机及其联合循环机组在美国和西欧已占大多数,亚洲平均也已达36%,世界市场上已出现了燃气轮机供不应求的局面。 目前,美、英、俄等国的水面舰艇已基本上实现了燃气轮机化,现代化的坦克应用燃气轮机为动力,输气输油管线增压和海上采油平台动力也普遍应用了轻型燃气轮机。先进的轻型燃气轮机简单循环热效率达41.6%。采用间冷—回热循环的燃气轮机在110%~30%工况下,热效率下降很少,可保持在41%。现正在开发功率大于40MW,涡轮前温度为1427℃~1480℃,简单循环热效率达45℃~50℃的轻型燃气轮机。微型燃气轮机作为分布式电源也取得显着进展。 近20余年来,洁净燃煤发电技术已取得重要进展,最有希望的两种解决途径为:整体煤气化联合循环(IGCC)和增压流化床联合循环(PFBC),燃气轮机均是其中的关键设备。至今,全世界已投过了10余座各种功率等级的IGCC电厂,还有一批IGCC电厂正在筹建之中,IGCC电厂已开始进入商业化应用阶段。PFBC电站已投运5座,成功地

燃气轮机在船舶动力方面的应用

燃气轮机在船用动力方面的应用与发展 邵高鹏 (清华大学汽车系,北京 100084) 摘要:介绍船用燃气轮机的工作原理和特点,对比燃气轮机和内燃机性能的优缺点,总结燃气轮机应用于船用动力的现状和未来的发展方向。 关键词:船用燃气轮机;原理;应用;发展方向; 1.引言 燃气轮机动力装置在50年代开始用于船舶,在此之前,水面舰艇都已蒸汽轮机和内燃机作为其动力装置,大型舰船以蒸汽轮机为其主要的动力装置,蒸汽轮机的优势在于技术相对简单,制造相对容易,但是其同样存在油耗大,占用空间大等等劣势,而柴油机的单机功率有限,必须采用多机并用。并且由于燃气轮机汽固有的一些优点,使得它逐渐向柴油机动力在船舶动力上的统治地位发起了挑战。最初的燃气轮机还只能应用与军用舰艇,但是随着燃气轮机技术的发展,燃气轮机在商船上也逐步得到了推广。 2.船用燃气轮机的工作原理 船用内燃机的循环模式可以分为简单开式循环,其工作过程同内燃机类似,也可以分为吸气、压缩、做功及排气四个工作行程,但是与内燃机又有很大的不同,下图中是一种燃气轮机的结构示意图。 轴流压气机的转子高速回转,在压气机的进口处产生吸力,将新鲜空气吸入压气机,对应着吸气的过程。空气在轴流压气机中增压,压力和温度都有升高,空气继续流动经过扩压器,减速增压进入燃烧室中,此时的空气温度和压力都较高,比容很小,这就实现了空气的压缩过程。在空气进入燃烧室的同时,燃油同时喷入与空气混合形成可燃混合气,点燃后迅速燃烧,温度继续升高,而压力变化不大(由于流动损失的存在);高温高压的燃气,经过涡轮的静叶的导向之后冲击涡轮的动叶叶片,推动叶片使涡轮转子高速转动而产生转矩。涡轮常分为两级,第一级涡轮(高压涡轮)上产生的转矩用于驱动与之联动的压气机,第二级涡轮(动力涡轮)上产生的转矩经过传动轴和减速箱输出,这就是燃气轮机的燃烧和做工过

燃气轮机产品及技术发展介绍 88分

燃气轮机产品及技术发展介绍 1.以下不属于燃烧技术领域的是: (3.0分) A.低排放 B.燃料适应性 C.热声分析 D.喘振分析 我的答案:D√答对 2.不属于燃气轮机长期服务的工作是:( 3.0分) A.无损检测 B.叶片修换 C.寿命延长 D.性能试验 我的答案:D√答对 3.以下不属于透平叶片冷却方式的是:(3.0分) A.气膜冷却 B.蒸发冷却 C.冲击冷却 D.对流冷却 我的答案:B√答对

4.以下不属于中心拉杆转子的结构是:(3.0分) A.轮盘 B.中心拉杆 C.周向拉杆 D.赫兹齿 我的答案:C√答对 5.将空气进行压缩的燃气轮机部件是:(3.0分) A.燃烧室 B.透平 C.压气机 D.支撑 我的答案:C√答对 6.AE94.3A燃气轮机的单机功率是:(3.0分) A.943MW B.368MW C.325MW D.78MW 我的答案:C√答对 7.上海电气燃机总装车间投产年份是:(3.0分) A.1983年

B.2003年 C.2015年 D.2005年 我的答案:D√答对 8.用于对燃气轮机入口空气进行过滤的辅助系统是:(3.0分) A.气动模块 B.进气系统 C.排气系统 D.燃料系统 我的答案:B√答对 9.目前上海电气的主要燃气轮机合作伙伴是:(3.0分) A.安萨尔多 B.西门子 C.通用电气 D.西屋 我的答案:A√答对 10.属于二次空气冷却系统的主要功能的是:(3.0分) A.冷却透平叶片 B.冷却压气机叶片 C.提高压气机流量

D.提高燃烧温度 我的答案:A√答对 1.以下属于透平叶片的材料的是:(4.0分)) A.镍基合金 B.球墨铸铁 C.钴基合金 D.不锈钢 我的答案:ABD×答错 2.属于轴系动力学分析的内容有:(4.0分)) A.横振分析 B.扭振分析 C.燃烧调整 D.熔模铸造 我的答案:AB√答对 3.属于联合循环热力优化手段的有:( 4.0分)) A.进气冷却 B.抽汽配置 C.控制保护 D.余热利用 我的答案:ABCD×答错

燃气轮机系统建模与性能分析

燃气轮机系统建模与性能分析 摘要:燃气轮机机组具有超强的北线性,人们掌握它的具体实施工作过程运行 规律是很难得。在我过电力工业中对它的应用又不断加强。为了更加透彻的解决 这个问题,本文将通过建立燃气轮机机组系统建模及模拟比较研究机组设计和运 行中存在的问题,从而分析它的性能。 关键词:燃气轮机;系统建模;性能 1模拟对象燃气轮机的物理模型 在标准IS0工况条件(15℃101.3kpa及相对湿度60%)下,压气机不断从大气中 吸入空气,进行压缩。高压空气离开压气机之后,直接被送入燃烧室,供入燃料 在基本定压条件下完成燃烧。燃烧不会完全均匀,造成在一次燃烧后局部会达到 极高的温度,但因燃烧室内留有足够的后续空间发生混合、燃烧、稀释及冷却等 复杂的物理化学过程,使得燃烧混合物在离开燃烧室进入透平时,高温燃气的温 度己经基本趋于平均。在透平内,燃气的高品位焙值(高温、高压势能)被转化为功。 1.1燃气轮机数值计算模型与方法 本文借助于 GateCycle软件平台,搭建好的燃气轮机部件模块实现燃气轮机以上物理模型的功能转化,进行燃气轮机的热力学性能分析计算的。在开始模拟燃 气轮机之前,首先对燃气轮杋部件模块数学模型及计算原理方法进行简单介绍。1.2压气机数值计算模型 式中,q1 、q2 、ql 分别为压气机进、出口处空气、压气机抽气冷却透平的 空气的质量流量; T1*、 p1* 分别为压气机进出口处空气的温度、压力; T2*、 p2* 分别为压气机出口处空气的温度、压力 ηc、πc分别为压气机绝热压缩效率,压气机压比 γa为空气的绝热指数;ρa为大气温度;?1为压气机进气压力损失系数 ιcs、ιc分别为等只压缩比功和实际压缩比功 i*2s、i*2、i*1分别为等只压缩过程中压气机出口处空气的比焓,实际压缩过程中压气机出日处空气的比烩和压气机进日处空气的比焓; 当压气机在非设计工况下工作时,一般计算方法是将压气机性能简单处理编制成 数表,通过插值公式求得计算压气机的参数,即在压气机性能曲线上引入多条与 喘振边界平行的趋势线,这样可以把压比,流量,效率均视为平行于喘振边界的 等趋势线和转速的函数。本文采用了同样的计算方法,在计算燃气轮机变工况性 能过程中引入无实际物理涵义的无量纲参变量CMV(compressor map variable),仅相当于引入的平行于压气机喘振边界的趋势线,压气机的质量流量、压力和效 率计算是通过上下游回馈的热力计算结果,插值寻找能够使得上下游热力参数 (压力,温度,输出功率,转速,流量)计算收敛的工作点,即压气机的变工况 工作点。 1.3燃烧室数值计算模型 其中 式中: α为过量空气系数: L0为燃料的理论空气量:

军舰动力装置概况——燃气轮机

军舰动力装置概况——燃气轮机美国FT-8舰用燃气轮机 (一)研制背景和研制打算 FT-8燃气轮机由普拉特?惠特尼(P&W)公司的JT8D-219航空涡扇发动机派生。JT8D-219是JT8D系列中的最新型号,1985年开始投入使用。研制时充分利用了FT-4燃气轮机的成功体会,并移植了普拉特?惠特尼公司的PW2037和PW4000航空发动机的先进技术。在设计上突出了机组的高效率、高寿命和高可靠性。JT8D系列是一型成熟的航空发动机,20余年来已生产14000余台,并装在3000多架民航飞机上,如波音727、737、DC-9、MD-82等。累计运行了两亿八千五百万飞行小时,平均单台寿命超过1 8000h。 FT-8是1986年开始设计的。派生时将低压压气机改为8级,前两级用JTSD的风扇改成,第3级至第8级除对第3级压气机叶型作修改外,其他5级不变。进口导流叶片与前2级静子叶片可调。高压压气机共7级,7级高压压气机不变,重新设计了燃烧室和燃料系统。高、低压涡轮叶片加大了冷却,并设计了涡轮间隙操纵结构。动力涡轮4级,涡轮效率93.6%,燃气轮机总效率38.7%,是当代同等功率燃气轮机中最高的。 (二)系统组成和要紧性能 FT-8燃气轮机由进气道、低压压气机、高压压气机、燃烧室、高压涡轮、动力涡轮、排气装置和操纵系统等部套组成。 高压涡轮。单级轴流式。涡轮叶片和导向叶片为气冷,涡轮叶片材料为MAR-M-247,导向叶片为MAR-M-509,轮盘为In718。叶片涂层为N iCoCrAly。 低压涡轮。2级轴流式,第1级气冷。所有叶片材料皆为MAR-M-247,轮盘皆为Was-paloy。除第2级导向叶片涂层为PtAl外,其余叶片涂层皆为NiCoCrAly。 动力涡轮。4级轴流式,叶片材料除第3和第4级导向叶片为In7 18外,皆为In738。轮盘为Ing01。第1和第2级涡轮叶片及导向叶片涂层为PW A73铝硅,轴采纳PW All0铝涂层。

联合循环燃气轮机发电厂简介.doc

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组 成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回 收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽 轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机 各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美 国 GE公司的 MS9001E燃气轮机 , 其热效率为 33.79%,余热锅炉为杭 州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1 简介 燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的 结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部 分: 1、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送 入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空 气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀 作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和 寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分 为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转 型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用 于电力调峰、船舶动力。重型燃气轮机为工业型燃机,其优势为运行 可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、 热电联产。埕岛电厂采用的MS9001E燃气轮发电机组是50Hz,3000 转/ 分,直接传动的发电机。该型燃气轮发电机组最早于1987 年投入商

燃气轮机用于发电的主要形式

燃气轮机用于发电的主要形式 燃气轮机用于发电的主要形式 燃气轮机装置是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分:1、燃气轮机(透平或动力涡轮);2、压气机(空气压缩机);3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,如LM6000PC和FT8燃气轮机,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃气轮机为工业型燃机,如GT26和PG6561B等燃气轮机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 燃气轮机用于发电的主要形式: 简单循环发电:由燃气轮机和发电机独立组成的循环系统,也称为开式循环。其优点是装机快、起停灵活,多用于电网调峰和交通、工业动力系统。目前的最高效率的开式循环系统是GE公司LM6000PC 轻型燃气轮机,效率为43%。 前置循环热电联产或发电:由燃气轮机及发电机与余热锅炉共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收,转换为蒸汽或热水加以利用。主要用于热电联产,也有将余热锅炉的蒸汽回注入燃气轮机提高燃气轮机出力和效率。最高效率的前置回注循环系统是GE公司LM5000-STIG120 轻型燃气轮机,效率为43.3%。前置循环热电联产时的总效率一般均超过80%。为提高供热的灵活性,大多前置循环热电联产机组采用余热锅炉补燃技术,补燃时的总效率超过90%。 联合循环发电或热电联产:燃气轮机及发电机与余热锅炉、蒸汽轮机或供热式蒸汽轮

索拉燃气轮机

燃气轮机发电案例介绍-天然气应用 1 案例背景 燃气轮机热电(冷)联产系统可同时提供电能和热(冷)能,相比传统能源解决方式,系统效率高,简单可靠,应用灵活,节能环保,且受国家政策鼓励,可广泛应用于各种场合,为用户降低能耗并改善当地环境,以下是以天然气为燃料,应用于工业用户的典型案例介绍。 1.1 现场条件(以上海为例) 海拔高度5m 设计大气温度14℃ 设计大气压力101.3Kpa 设计大气相对湿度60% 1.2 燃料 以天然气为燃料 燃气热值:8400 KCal/Nm3 燃气压力:0.3Mpa(假设) 1.3 热电负荷及运行时数 最大蒸汽流量:29t/hr 蒸汽压力: 1.0 Mpa 蒸汽温度:185℃ 年供热时间:7000小时 年运行小时数:7000小时 2 方案 燃气轮机热电联产系统一般根据以热定电的原则进行设计和设备选择,该项目选用1台索拉公司大力神130(TITAN 130)燃气轮机,配1台余热锅炉,两台燃气压缩机(1用1备),整个系统可布置在简易厂房内,总占地面积约3200平方米。 2.1 燃气轮机 每台大力神130机组在项目现场主要参数如下: 铭牌功率:15000KW 发电机出力:14556 KW 燃烧空气进口温度:14℃ 燃机工况点:满负荷运行 燃料流量:4339Nm3/hr 涡轮排气温度:500 ℃ 尾气流量:177882 Kg/hr

2.2 余热锅炉 每台余热锅炉在项目现场主要参数如下: 蒸汽温度:185.5℃ 蒸汽压力: 1.03 Mpa 蒸汽流量:29245 kg/hr 2.4 系统总容量及实际出力 总装机铭牌功率:15000 KW 现场实际净输出功率:14556 KW 总蒸汽流量:29245 Kg/hr 总燃气消耗量: 4339 Nm3/hr 3 索拉中国业绩 索拉公司进入中国已经超过30年,在国内已经有超过260台机组,其中金牛60机组超过70台,大力神130超过70台。在项目执行过程中和国内的许多设计院建立了良好的合作关系,他们也对索拉机组有充分的了解,可以非常快速地和可靠地完成设计任务。 此外,上海力顺燃机科技有限公司作为索拉在中国工业发电行业的代理,已在国内完成了多个燃气轮机热电联产项目,可以为项目的规划、建设提供技术服务。 在国内已经建设成功、投入使用的索拉燃气轮机天然气热电联产项目有:浦东国际机场能源中心热电联产项目和成都国际会展中心热电联产项目,其中浦东机场项目运行已经超过十年,目前运行情况良好。 ●浦东国际机场能源中心(1×4000KW)1999年建成并投入使用。 ●成都国际会展中心(1×10690KW,1×5670KW)分别于2005年11月 和2009年4月建成并投入使用。 此外,针对中低热值燃气应用,索拉燃气轮机热电联产项目清单: 1)山东金能煤气化有限公司一期项目(1×5670KW 热电联产),2006 年4 月 投产,目前运行情况良好。 2)内蒙古太西煤集团乌斯太项目(2×5670KW 热电联产),2008 年10 月投产, 目前运行情况良好。 3)山东金能煤气化有限公司二期项目(3×5670KW 联合循环),2008 年4 月 投产,目前运行情况良好。 4)河南顺成集团煤焦有限公司一、二项目(2×15000KW 热电联产),分别于

联合循环燃气轮机发电厂简介(最新版)

联合循环燃气轮机发电厂简介 (最新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0727

联合循环燃气轮机发电厂简介(最新版) 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的MS9001E燃气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1简介 燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三

部分:1、燃气轮机(透平或动力涡轮);2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 埕岛电厂采用的MS9001E燃气轮发电机组是50Hz,3000转/分,直接传动的发电机。该型燃气轮发电机组最早于1987年投入商业运行,基本负荷燃用天然气时的功率为123.4MW,热效率为33.79%,排气温度539℃,排气量1476×103公斤/小时,压比为12.3,燃气

(完整版)燃气轮机

燃气轮机简介 1、燃气轮机发展史 1939年世界上第一台燃气轮机投入使用以来,至今已有65年的历史。在这65年中燃气轮机的发展非常快,其性能、结构不断地提高和完善。燃气轮机的用途已从过去的军事领域扩展到铁路运输、移动电站、海上平台、机械驱动和各种循环方式的大中型电站等。例如:简单循环、回热循环、间冷循环、再热循环、燃气—蒸汽联合循环(单压、双压、三压再热)、增压硫化床燃烧—联合循环(PFBC—CC)、整体式煤气化联合循环(IGCC)等。由于燃气轮机具有用途广泛、启动快、运行方式灵活、用水量少、热效率高、建设周期短以及对燃料的适应性非常广(各种气体燃料、液体燃料和煤)等特点,因此可以这样说,燃气轮机已经成为热机中的一支劲旅,汽轮机长期独霸发电行业的格局已经开始动摇。 近二十年来,燃气轮机在电站中的应用得到了迅猛发展。这是因为燃气轮机启动速度快、运行方式灵活,且能在无电源的情况下启动(黑启动Black),机动性能好且有极强的调峰能力,可保障电网安全运行。进入八十年代以后,燃气轮机技术得到了迅猛发展,技术性能大幅度提高。到目前为止单机容量已达334MW,简单循环的燃气轮机热效率达43.86%,已超过大功率、高参数的汽轮机电站的热效率。而燃气—蒸汽联合循环电站的热效率更高达60%。先进的燃气轮机已普遍应用模块化结构,使其运输、安装、维修和更换都比较方便,而且广泛应用了孔探仪定期检查、温度控制、振动保护、超温保护、熄火保护、超速保护等措施,使其可靠性和可用率大为提高。此外,由于燃气轮机的燃烧效率很高,未燃烧的碳氢化合物、一氧化碳、二氧化硫等排放物一般都能达到严格的环保要求。注水/蒸汽燃烧室和DLN燃烧室的应用使NO X的排放降至9-25ppm。 2、我国燃气轮机工业概况 我国解放前没有燃气轮机工业,解放后全国各地试制过十几种型号的陆海空用途的燃气轮机。1956年我国制造的第一批喷气式飞机试飞,1958年起又有不少工厂设计试制过各种燃气轮机。 1962年上海汽轮机厂试制船用燃气轮机,1964年与上海船厂合作制成 550KW燃气轮机,1965年制成6000KW列车电站燃气轮机,1971年制成3000KW卡车电站。在这期间还与703研究所合作制造了3295KW、4410KW、18380KW等几种船用燃气轮机。 1969年哈尔滨汽轮机厂制成2200KW机车燃气轮机和1000KW自由活塞式燃气轮机,1973年与703研究所合作制成4410KW船用燃气轮机,与长春机车车辆厂合作制成3295KW机车燃气轮机。 1964年南京汽轮电机厂制成1500KW电站燃气轮机;1970年制成37KW 泵用燃气轮机;1972年制成1000KW电站燃气轮机;1977年制成21700KW快装式电站燃气轮机;1984年与GE公司合作生产了PG6541B型36000KW燃气轮机;从1984年至2004年已生产了PG6541B型、PG6551B型、PG6561B型、PG6581B型四种型号燃气轮机,功率由36000KW上升到现在的43660KW。2003年国家发改委决定南京汽轮电机集团有限责任公司与GE公司进一步扩大

燃气轮机原理(精华版)

QD20燃机轮机机组 第 1章概述 1.1 燃气轮机简介 燃气轮机(Gas Turbine)是以连续流动的气体为工质、把热能转换为机械功的旋转式动力机械,包括压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备等。 走马灯是燃气轮机的雏形我国在11 世纪就有走马灯的记载,它靠蜡烛在空气燃烧后产生的上升热气推动顶部风车及其转轴上的纸人马一起旋转。15世纪末,意大利人列奥纳多〃达芬奇设计的烟气转动装臵,其原理与走马灯相同。 现代燃气轮机发动机主要由压气机、燃烧室和透平三大部件组成。当它正常工作时,工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热等四个工作过程而完成一个由热变功的转化的热力循环。图1-2为开式简单循环燃气轮机工作原理图。压气机从外界大气环境吸入空气、并逐级压缩(空气的温度与压力也将逐级升高);压缩空气被送到燃烧室与喷入的燃料混合燃烧产生高温高压的燃气;然后再进入透平膨胀做功;最后是工质放热过程,透平排气可直接排到大气、自然放热给外界环境,也可通过各种换热设备放热以回收利用部分余热。在连续重复完成上述的循环过程的同时,发动机也就把燃料的化学能连续地部分转化为有用功。 燃气轮机动力装臵是指包括燃气轮机发动机及为产生有用的动力(例如:电能、机械能或热能)所必需的基本设备。为了保证整个装臵的正常运行,除了主机三大部件外,还应根据不同情况配臵控制调节系统、启动系统、润滑油系统、燃料系统等。 燃气轮机区别于活塞式内燃机有两大特征:一是发动机部件运动方式,它为高速旋转、且工质气流朝一个方向流动(不必来回吞吐),使它摆脱了往复式动力机械功率受活塞体积与运动速度限制的制约,在同样大小的机器内每单位时间内通过的工质量要大得多,产生的功率也大得多,且结构简单、运动平稳、润滑油耗少;二是主要部件的功能,其工质经历的各热力过程是在不同的部件中进行的,故可方便地把它们加以不同组合处理,来满足各种用途的要求。 燃气轮机区别于汽轮机有三大特征:一是工质,它采用空气而不是水,可不用或少用水;另是多为内燃方式,使它免除庞大的传热与冷凝设备,因而设备简单,启动和加载时间短,电站金属消耗量、厂房占地面积与安装周期都成倍地减少;再是高温加热高温放热,使它有更大的提高系统效率的潜力,但也使它在简单循环时热效率较低,且高温部件需更多的镍、铬、钴等高级合金材料,影响了使用经济性与可靠性。 自 20 世纪60 年代首次引进6000kW 燃气轮机发电机组以来,我国已建成不少烧油气的燃气轮机及其联合循环发电机组。但由于我国一次能源以煤为主的消费结构,并受到规定的“发电设备只准烧煤”的前燃料政策的制约,目前我国燃气轮机在现有发电设备装机容量中,占有量很小,只有700 万kW 左右,且绝大部分为进口的。但发展速度很快,正在建设和计划的就超过800 万kW,正在建设的一批大型35 万kW 级燃用天然气的联合循环电站。随 着天然气和液体燃料在一次能源中比例的上升和燃气轮机燃煤的技术成熟之后,燃气轮机在我国发电设备中的比例将会愈来愈大。研究表明,由于燃气轮机在效率,环保和成本方面的优势,我国在电站基本负荷发电、老电站技术更新改造、洁净煤发电技术、石油与天然气的输运和高效利用以及舰船、机车交通动力等领域对燃气轮机都将有较大的需求。许多专家还强调燃气轮机在西部大开发中的重要性,国家构想实施的新世纪四大工程:西气东输,西电东送,青藏铁路,南水北调,前三个都与燃气轮机有关。总之,以燃气轮机为核心的总能系统也将成为我国跨世纪火电动力的主要发展方向,我国将是世界最大的燃气轮机潜在市场。 第2章燃气轮机热力循环 2.1热力循环的概念 热力循环是指热力系统经过一系列状态变化,重新回复到原来状态的全部过程。热力循环分为正向循环及逆向循环。将热能转换为机械功的循环称为正向循

燃气轮机及辅助系统

1.1.1 燃气轮机原理 填空题 1.燃气轮机理想简单循环包括、、和。(绝热压缩过程;等压燃烧过程;绝热膨胀过程;等压放热过程)。 2.燃气轮机实际循环中当提高时,比功和效率都提高。(压比) 3、燃气轮机是一种以为工作介质、将热能转变为机械能的高速回转式动力机械。与内燃机、蒸汽轮机一样,为原动力机。(空气和燃气) 4、进气温度的升高会使燃气轮机的功率及热效率下降,其中热效率受进气温度的影响较功率要。(小) 5、评价燃气轮机变工况性能优劣的指标主要是和。(经济性、稳定性) 6、提高燃气温度(初温)的方法有和。(采用高温材料、改进冷却技术) 单选题 1.理想回热循环的比功较简单循环的比功。(C) A 、大B、小C、一样 2.透平中高温燃气的焓降大于在压气机低温空气的焓增,比例大约为。(B) A 、2:3 B、3:2 C、1:1 D、4:3 3.随着大气温度的提高,下面哪个说法是正确的。(C) A、机组出力会上升B、机组热效率会略微上升C、燃机排气温度上升 4.温比一定时,燃气—蒸汽联合循环亦存在最佳压比,其效率最佳压比燃气轮机简单循环的效率最佳压比。(A) A、小于 B、等于 C、大于 D、接近 5.一般情况下,对燃气轮机设计效率的影响程度最大的影响因子是。(B) A、压气机效率 B、透平效率 C、燃烧效率 D、温比 6.一般在描述燃机功率和热效率时所说的ISO条件是指。(D) A、环境温度0℃,50%相对湿度和海平面海拔高度 B、环境温度0℃,60%相对湿度和海平面海拔高度 C、环境温度15℃,50%相对湿度和海平面海拔高度 D、环境温度15℃,60%相对湿度和海平面海拔高度 7.燃气轮机简单理想布雷顿循环在燃烧室完成的是。(B) A、等熵绝热压缩过程 B、可逆定压吸热过程 C、等熵绝热膨胀过程 D、可逆定压放热 8.燃气轮机的净效率用计算。 A、lc/q B、ls/q C、le /q 多选题 1、提高燃气轮机简单循环比功的措施有。(ABCDE) A 、提高温比B、提高压比C、采用间冷循环D、采用再热循环E、采用联合循环 2、提高燃气轮机简单循环效率的措施有。(ABCDE) A 、提高温比B、提高压比C、采用回热循环D、采用再热循环E、采用联合循环 3、燃气轮机采用空气冷却有包括下列典型方式。(ABCDEF) A 、对流冷却B、冲击冷却C、膜式冷却D、发散冷却E、蒸汽冷却F、综合冷却

燃气轮机概述

燃气轮机 燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。中国在公元十二世纪的南宋高宗年间就已有走马灯的记载,它是涡轮机(透平)的雏形。15世纪末,意大利人列奥纳多·达芬奇设计出烟气转动装置,其原理与走马灯相同。至17世纪中叶,透平原理在欧洲得到了较多应用。 概述 1791年,英国人巴伯首次描述了燃气轮机的工作过程;1872年,德国人施托尔策设计了一台燃气轮机,并于1900~1904年进行了试验,但因始终未能脱开起动机独立运行而失败;1905年,法国人勒梅尔和阿芒戈制成第一台能输出功的燃气轮机,但效率太低,因而未获得实用。1920年,德国人霍尔茨瓦特制成第一台实用的燃气轮机,其效率为13%、功率为370千瓦,按等容加热循环工作,但因等容加热循环以断续爆燃的方式加热,存在许多重大缺点而被人们放弃。随着空气动力学的发展,人们掌握了压气机叶片中气体扩压流动的特点,解决了设计高效率轴流式压气机的问题,因而在30年代中期出现了效率达85%的轴流式压气机。与此同时,涡轮效率也有了提高。在高温材料方面,出现了能承受600℃以上高温的铬镍合金钢等耐热钢,因而能采用较高的燃气初温,于是等压加热循环的燃气轮机终于得到成功的应用。1939年,在瑞士制成了四兆瓦发电用燃气轮机,效率达18%。同年,在德国制造的喷气式飞机试飞成功,从此燃气轮机进入了实用阶段,并开始迅速发展。随着高温材料的不断进展,以及涡轮采用冷却叶片并不断提高冷却效果,燃气初温逐步提高,使燃气轮机效率不断提高。单机功率也不断增大,在70年代中期出现了数种100兆瓦级的燃气轮机,最高能达到130兆瓦。与此同时,燃气轮机的应用领域不断扩大。1941年瑞士制造的第一辆燃气轮机机车通过了试验;1947年,英国制造的第一艘装备燃气轮机的舰艇下水,它以1.86兆瓦的燃气轮机作加力动力;1950年,英国制成第一辆燃气轮机汽车。此后,燃气轮机在更多的部门中获得应用.在燃气轮机获得广泛应用的同时,还出现了燃气轮机与其他热机相结合的复合装置。最早出现的是与活塞式内燃机相结合的装置;50~60年代,出现了以自由活塞发气机与燃气轮机组成的自由活塞燃气轮机装置,但由于笨重和系统较复杂,到70年代就停止了生产。此外,还发展了柴油机燃气轮机复合装置;另有一类利用燃气轮机排气热量供热(或蒸汽)的全能量系统,可有效地节约能源,已用于多种工业生产中。 燃气轮机的工作过程是,压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气涡轮中膨胀作功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。燃气轮机的工作过程是最简单的,称为简单循环;此外,还有回热循环和复杂循环。燃气轮机的工质来自大气,最后又排至大气,是开式循环;此外,还有工质被封闭循环使用的闭式循环。燃气轮机与其他热机相结合的称为复合循环装置。燃气初温和压气机的压缩比,是影响燃气轮机效率的两个主要因素。提高燃气初温,并相应提高压缩比,可使燃气轮机效率显著提高。70年代末,压缩比最高达到31;工业和船用燃气轮机的燃气初温最高达1200℃左右,航空燃气轮机的超过1350℃。燃气轮机由压气机、燃烧室和燃气涡轮等组成。压气机有轴流式和离心式两种,轴流式压气机效率较高,适用于大流量的场合。在小流量时,轴流式压气机因后面几级叶片很短,效率低于离心式。功率为数兆瓦的燃气轮机中,有些压气机采用轴流式加一个离心式作末级,因而在达到较高效率的同时又缩短了轴向长度。 燃烧室和涡轮不仅工作温度高,而且还承受燃气轮机在起动和停机时,因温度剧烈变化引起的热冲击,工作条件恶劣,故它们是决定燃气轮机寿命的关键部件。为确保有足够的寿命,这两大部件中工作条件最差的零件如火焰筒和叶片等,须用镍基和钴基合金等高温材料制造,同时还须用空气冷却来降低工作温度。对于一台燃气轮机来说,除了主要部件外还必须有完善的调节保安系统,此外还需要配备良好的附属系统和设备,包括:起动装置、燃料系统、润滑系统、空气滤清器、进气和排气消声器等。燃气轮机有重型和轻型两类。重型的零件较为厚重,大修周期长,寿命可达10万小时以上。轻型的结构紧凑而轻,所用材料一般较好,其中以航机的结构为最紧凑、最轻,但寿命较短。与活塞式内燃机和蒸汽动力装置相比较,燃

燃气轮机动力系统.

燃气轮机动力系统微型实验台指示书(初稿) 清华大学热能工程系 2011年10月24日

目录 一、实验台简介 二、实验台主要组成部分 三、实验台安全操作指南 四、实验报告要求

一、实验台简介 由美国Turbine Technologies, LTD 公司研制生产的MiniLab TM(以下简 写为MiniLab)燃气轮机动力系统微型实验台是清华大学热能工程系动力机械与工程研究所最新购置的实验设备。2005年11月14日购置,2006年3月3日到货并进行安装调试。该实验台合同编号:BE25-06445BS2,设备号:06014272,型号:MINILAB#0423,规格:870000RPM0.5Kg/s,单价:¥343333.29元。 MiniLab 动力系统实验台包括SR-30 燃气轮机机组和相应的辅助系统。 除个别的外部接口以外,所有的系统均封装在一个整体的机壳中他的全貌如图1-.1。使得机组小巧、紧凑、便于搬运。 图1-1实验台全貌

二、实验台主要组成部分 SR-30 燃气轮机是MiniLab 的核心部件,包括进气道、一级离心式压气机、环形回流燃烧室、一级轴流式透平以及尾喷管等。图2-1 是SR-30 的一个剖面图,从中我们可以清晰地看到引擎的各个部分。下面将对这些部分进行简要介绍 图2-1 SR-30 燃气轮机剖面图 进气道:进气道是引擎与大气相通的部分,空气通过进气道进入压缩机。 SR-30 的进气道为喇叭型,可看作一个渐缩喷管。 离心式压气机:SR-30 的压气机为单级离心式压气机。空气从轴向进入压气机动叶,由径向流出进入静叶,当系统达到最大转速90000 转/分时,动叶末端的空气速度可达473 米/秒。在静叶中,空气减速增压,且流动方向又由径向变回轴向。空气经过一级动叶和一级静叶可产生的最大压比为3,远高于相同情况下轴流式压气机单级所能产生的压比。 环形回流燃烧室:SR-30 的燃烧室为环形回流燃烧室,燃烧室内气体流动方向为从引擎尾部向头部流动,与整体流动方向相反。在引擎尾部均

燃气轮机自动化性能优化——设计要素和经验

燃气轮机发电技术 第14卷 第3/4期2012年10月燃气轮机自动化性能优化——设计要素和经验 Christopher N. Chandler, 燃机优化技术副总裁,Wood Group 摘要:贫油预混燃烧系统常用于地面固定式的燃气轮机,目的是为了减少NOx和CO等的排放。这类系统使用以来一直很成功。在某些情况下,燃机的排放水平处于测量标准的下限范围,NOx和CO的排放大约为(1 ̄3)×10-6。尽管从减少排放的角度来看,这类系统的使用非常有益,但是某些变量(如系统的运行边界条件、燃料成分的变化)都会影响到机组的效率。 所谓的运行边界条件包括对燃料的状况、分配及注入燃烧区的控制。在贫油预混燃烧系统中,这已成为一个关键的运行参数,当温度、湿度、压强等环境条件改变的时侯,这一运行参数就需要频繁的调整。对燃料状况、分配、注入量的重新调整,称之为“调整(tuning)”。 燃料成分的变化足以引发贫油预混燃烧系统热量释放的变化。这种的变化可能导致排放偏移、燃烧过程不稳定,甚至是燃烧系统爆燃。 人为操控的燃烧系统通常是通过手动设置运行的参数,这些手动设置的参数都是基于平均运行条件。这些设定值在设定时是满足要求的,但是状况可能在大约数小时或数日之内发生变化并引起无法接受的状况。因此必须重新调整这些条件。常规的调整方法是使用一个基于燃机运行参数的公式来预测排放量。这种方法只为燃料分配以及整台机组的燃料与空气比率选取了一个设定值,但没有修改其他参数,如燃气温度。这种方法不允许及时的变动,也没有利用实时的动态和排放数据,没有改善燃料分配、燃料温度或燃机的其他运行参数。 对燃烧系统的操作不当的结果表现为压力脉动扩张或燃烧脉动增加。压力脉动具备足够的力量可以毁坏整个燃烧系统,大幅缩短燃烧硬件的寿命。此外,对燃烧系统不当的调整会导致排放偏差,超出排放标准。燃烧脉动和排放控制导致的另一个后果是电厂对出力降低和热耗提高水平低估的可能性。因此,通过定期或者周期的调整,在适当运行条件之内,维持贫油预混燃烧系统稳定性的方法对这个行业来说是非常有价值且有益处的。有一种系统,通过透平传感器获得近乎实时数据,从而对燃料分配、气体燃料的进气温度和机组整体的燃料与空气的比率进行调整,这是非常有价值的。 影响透平性能的变量 如图1所示,影响燃气轮机性能的主要参数有:气候(环境温度,湿度,压力),燃料成分,仪表偏差(LDVT drift),部件老化。 当这些参数的改变时,燃烧室的运行情况也随之改变。图2显示这些参数通常是如何影响透平的运行情况的。 图2描述的是燃烧室运行可允许的条件,以黑 气候 老化 变量 燃料偏差 图1 影响透平性能的变量

燃气轮机工作原理

燃气轮机工作原理 当您来到机场看到从事商业运营的喷气飞机时,一定会注意到为飞机提供动力的巨大发动机。大部分商用喷气飞机都采用涡轮风扇发动机,这种发动机属于一个大类,叫做燃气轮 机。 您可能从未听说过燃气轮机,其实在您意想不到的各种场所都会出现它的身影。例如,您看到的许多直升机,大量的小型发电厂,甚至M-1坦克,它们使用的都是燃气轮机。在 本文中,我们将看一看燃气轮机到底有哪些能力让它们如此受欢迎。 涡轮机的种类很多: 您可能听说过蒸汽涡轮机。大部分发电厂使用煤、天然气、石油,甚至核反应堆来产生蒸汽。通过一台巨大、设计精密的多级涡轮机,蒸汽带动输出轴旋转,输出轴再带动发 电机,从而产生电力。

水电站大坝使用水力涡轮机(水轮机)产生动力,这种涡轮机的工作原理与蒸汽涡轮机相同。由于水的密度要远远大于空气,而且流动速度慢,因此水电站使用的涡轮机与蒸 汽涡轮机完全不同,不过,二者的基本原理是一致的。 风力涡轮机,也被称为“风磨”,是一种以风为动力的涡轮机。由于风的速度较慢,而且重量很轻,因此风力涡轮机看上去一点儿也不像蒸汽涡轮机或水力涡轮机,不过,它 们的基本原理是一致的。 燃气轮机也是相同原理的延伸。它采用压缩气体转动涡轮。所有现代燃气轮机,都是通过燃烧丙烷、天然气、煤油或喷气燃料等,自己产生压缩气体。燃料燃烧产生的热量使 得空气膨胀,热空气高速冲出,带动涡轮旋转。 那么,为什么M-1坦克要使用1,500马力的燃气轮机,而不使用柴油发动机呢,事实 上,与柴油机相比,涡轮机有两大优势: 燃气轮机的功率重量比远优于往复式发动机。也就是说,涡轮发动机的输出功率与自 身重量的比率非常好。 在相同输出功率下,燃气轮机的体积要小于往复式发动机。燃气轮机的主要劣势在于,与同体积的往复式发动机相比,它的造价昂贵。由于涡轮机的转速快,而且工作温度高,因此从工程和材料的角度看,燃气轮机的设计和制造都是一个很棘手的问题。此外,燃气轮机空转时消耗的燃料更多,而且要求负载恒定,不要有波动。这一点使得燃气轮机成为建造横贯大陆的喷气式飞机,以及发电厂的首选,同时也可以解释为什么汽车上不使用燃

重型燃气轮机控制系统的结构研究_夏心磊

第36卷 第4期热力透平Vol 36No 4 2007年12月THE RM ALTU R BINE Dec.2007 重型燃气轮机控制系统的结构研究 夏心磊,谢剑英 (上海交通大学自动化系,上海,200030) 摘 要: 分析介绍了目前应用于电站的重型燃气轮机控制系统的硬件组成,针对西门子燃机控制系统,详细描述了闭环调节回路的各个组成模块以及特点,为燃机控制系统的选择、控制方案的设计提供了技术借鉴。 关键词: 重型燃气轮机;西门子;控制策略;SIM A DY N-D 中图分类号:T K323 文献标识码:A 文章编号:1672-5549(2007)04-0245-06 Research on Stru ctu re of Control S ystem for Heavy-Duty Gas Turbine X I A X in-lei,X I E J ian-y ing (Au toma tio n D ep artme nt o f Sh a n gh a i Jia oto n g U nive rsity,Sh a ng h ai200030,Ch in a) Abstract: T he hardwar e com ponents ar e intr oduced fo r contro l system of heav y-dut y gas tur bine in po wer plants.T he char act eristics of each co nt ro l block for closed-loo p contro l cir cuit ar e giv en in det ail fo r the r efer-ence o f the co nt rol system cho ice of g as tur bine and the design of co ntr ol scheme. Key words: heav y-duty gas turbine;Siemens;contr ol str ategy;SIM A DY N-D 0 前言 燃气轮机自从1939年成功应用以来,目前以GE、西门子/西屋、三菱和阿尔斯通等主导公司为核心,其他制造公司多数与主导公司结成伙伴关系。燃气轮机的控制系统性能决定着相应的动力装置的变工况性能、经济性和安全性能,正因为控制系统的特殊重要性,各大公司也推出了相应的燃气轮机控制系统,比较著名的硬件有GE公司生产的Speed-tronic TM Mark系列硬件,西门子公司的SIMADYN-D、TELEPERM XP以及SPPA T3000控制系统等等。国内相应的燃气轮机电站也大多直接进口国外的控制系统;但随着国内燃气轮机技术的不断发展,燃气轮机的国产化程度逐步提高,必然对控制系统的可靠性和自动化程度提出更高的要求。本文以西门子燃机为例,对其控制系统进行分析和研究。 1 燃气轮机控制系统的软硬件结构 目前的燃气轮机控制系统普遍采用分布式控制系统,都有界面友好的人机接口,提供监视、调试组态的软件;重要的控制器、网络控制器、网络都采用冗余结构,有些控制系统甚至在I/O级也实现双重冗余。下图为西门子SIM ADYN-D系统在某燃机电站的实际硬件配置图(部分)。 多重网络按照不同的功能划分,Terminal Bus主要用于人机界面、数据的存储、分析;Plant Bus用来实现控制器之间的数据通讯,并提供与Terminal Bus的通讯接口;最底层是I/O级的总线,实时性要求高,负责与执行设备的数据连接。图中的TCS系统负责汽轮机和燃气轮机控制,实际上是整个电站控制系统的一部分。 从燃气轮机控制的软件功能来说,主要是在燃气轮机启动运行过程中实现对燃气轮机的控制与保护,以确保燃气轮机正常工作。 2 西门子燃气轮机控制系统的模块 化设计 由于电力能源目前不能通过一种高效的方式 收稿日期:2007-04-05 作者简介:夏心磊(1975-),男,工程师,大学本科,1997年毕业于江苏理工大学工业电气自动化专业,从事汽轮机控制系统工作,现任上海汽轮机有限公司自动化控制中心调节三组组长,在职就读上海交通大学自动化系工程硕士。

相关文档
最新文档