高速铁路系杆拱桥正交异性钢桥面构造研究

高速铁路系杆拱桥正交异性钢桥面构造研究
高速铁路系杆拱桥正交异性钢桥面构造研究

正交异性桥面板设计参数和构造

正交异性桥面板设计参数和构造 细节的疲劳研究进展 1 背景 第二次世界大战后,一方面大量被战争毁坏的桥梁急需修复,另一方面建筑材料非常短缺。在此情况下,欧洲的工程师们开始尝试采用一种新型的桥面结构形式——正交异性钢桥面板。它由面板、纵肋和横肋组成,三者互相垂直,通过焊缝连接成一体共同工作。它以自重轻、极限承载力大、施工周期短等优点,成为世界上大、中跨度现代钢桥通常采用的桥面结构形式。从20世纪50年代德国最先使用这种桥面板至今,欧洲已有1000多座各种形式的正交异性钢桥面板桥梁,日本有将近250座正交异性钢桥面板桥梁,北美有100余座正交异性钢桥面板桥梁[1]。 我国正交异性钢桥面板我国正交异性钢桥面板的研究和应用起步较晚,直到20世纪70年代初,才建成第一座钢桥面板桥——潼关黄河铁路桥。改革开放以来,国内正交异性钢桥面板桥呈现出迅猛发展势头。迄今为止,我国已建造的采用正交异性钢桥面板的桥梁有30余座。正在建造的采用正交异性钢桥面板的铁路钢桥有郑州黄河公铁两用桥和京沪高速铁路南京大胜关长江大桥等。 正交异性钢桥面板有其独特的优点,但同时钢桥面板疲劳开裂的事例也在许多国家的钢桥中出现。最早报道的是英国Seven桥,该桥1966年建成通车后,分别于1971年和1977年发现了3种焊接细节的疲劳裂纹。德国的Haseltal和Sinntal桥投入使用后不久,钢桥面板也都出现了疲劳裂纹。此外,法国、日本、美国、荷兰等国也都发现了钢桥面板疲劳开裂事例。钢桥面板在我国使用的时间虽然不长,但是已经在某些桥中发现了钢桥面板疲劳开裂的现象。这些疲劳裂纹严重影响了桥梁的使用寿命,因此,对正交异性桥面板疲劳问题的研究是目前桥梁建设中的关键和热点,各国学者在此领域取得了一系列研究成果。国内在20世纪80年代初,铁道科学研究院等相关单位以西江大桥为研究背景,对公路正交异性钢桥面板参与主桁共同工作时的结构特性进行了较为全面的分析及试验研究[2]。1995年,同济大学童乐为在博士论文中对采用开口肋形式的钢桥面板的疲劳性能进行了较为系统的分析[3]。时至今日,正交异性桥面板的结构形式较当初已经发生很大变化,大量新的研究成果相继涌现。 2 正交异性桥面板设计参数的疲劳研究 2.1 面板 面板的最小厚度一般取决于其在轮载作用下的允许变形,为保证桥面铺装层不产生裂纹,纵肋之间面板的竖向挠曲变形不大于0.4mm。基于上述原 则,面板厚度t d可由Kloeppel公式计算: 式中:a为开口截面纵肋间距或闭口截面纵肋腹板最大间距,mm;p 为轮载面压力,kPa。 同时各国规范根据各自的车辆荷载及桥面铺装层情况,为保证钢桥面板的施

高速铁路路基工程试题

高速铁路路基工程试题 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

吉图珲客专X X X标 路基专业考试题 姓名:单位:职务:专业类别: 答题时间:120分钟满分:100分 一、填空(每空1分,共计40分) 1、工序之间应进行交接检验,上道工序应满足下道工序的施工条件和技术要求。相关专业工序之间的交接检验应经(监理工程师)检查认可,未经检查或经检查不合格的不得进行下道工序施工。 2、路堤填筑材料基床底层填料的粒径应小于( 60)mm,基床底层以下路堤填料的粒径应小于( 75)mm,且应级配良好。 3、区间原地面处理、浆体喷射搅拌桩、CFG桩沿线路纵向连续路基长度每(≤200m)的单个工点为一个检验批;站场路基折合正线双线每(≤200m)的单个工点为一个检验批; 4、路基相关工程包括(电缆槽)、(接触网支柱基础)、(防护栅栏)、(过轨管线、综合接地)等分项工程。 5、路堤填筑应按(三阶段、四区段、八流程)的施工工艺组织施工。每个区段的长度应根据使用机械的能力、数量确定,一般宜在200m以上或以构筑物为界。各区段或流程内严禁几种作业交叉进行。 6、基床以下路堤压实标准:压实系数(≥),砂类土及细砾土地基系数K30 (MPa/m) (≥ 110 ),碎石类及粗砾土K30 (MPa/m)(≥ 130 ),基床底层路堤压实标准:压实系数(≥),砂类土及细砾土地基系数K30 (MPa/m) (≥130 ),碎石类及粗砾土K30 (MPa/m)(≥ 150 ),动态变形模量Evd (MPa) (≥ 40 )。 7、路堤边坡宜采用加宽超填或专用边坡压实机械施工。当采用加宽超填方法时,

正交异性板简支钢梁桥建模(algor,ansys)

现代钢桥设计与计算理论参考材料 正交异性板简支梁桥空间模型计算孙秀贵孟续东陈艳秋唐毅周刚郑凯锋 西南交通大学

第一篇正交异性板简支钢梁桥ALGOR建模计算一、打开aglor软件和设定基本操作说明 将桌面上或相应目录中的algor的图标双击打开程序。 选择新建>FEM模型,分析类型选择>线性材料模型的静应力,点击新建,如下图。 弹出“另存为”对话框,确定文件名以及文件的保存路径,最后点击保存。

二、设置单位体系 在主菜单中选择工具>单位 在“unit system”对话框中选择“Metric mks(SI)”; 进行同样操作,更改“unit system”对话框,选择“Custom”; 在“length”对话框中选择“mm”,其他对话框保持不变; 点击“ok”按钮。 三、建立材料库 主菜单>工具>管理材料库 选择“Create New Library”,输入自定义材料库文件的保存路径和名称,单击保存按钮。 再点击确定按钮。

根据本模型需要,建立两种材料:1、钢材;2、混凝土。 右击自定义的材料库,选择“Add New Material” “Material name”对话框中输入材料名称“steel”; “Material model”对话框中选择标准; 在单位体系对话框中选择米制,米千克秒(SI); 更改单位体系,为自定义,长度对话框中选择“毫米(mm)”,单击“ok”按钮。

进行上述相同操作,增加材料“concrete”自定义材料。建立两种材料后,如下图所示: 分别对新建的两种材料输入材料特性: concrete(采用C40混凝土): 质量密度(N/mm^3/g):2.548e-9 弹性模量(N/mm^2):3.25e+4 泊松比:0.2; 剪切弹性模量(N/mm^2):1..3e+4 线膨胀系数:1.0e-5 Steel: 质量密度(N/mm^3/g):7.85e-9

高速铁路路基施工及维护

路基排水设备施工 地面排水设备的类型?分别适用于什么条件? 地面排水设备主要有:排水沟、测沟、天沟、截水沟、矩形沟槽、跌水沟和急流槽等。 排水沟是设置于路堤护道的外侧,用以排除路堤范围内的地面水和截排从田野方向流向路堤的地面水的地面排水设备。 测沟是位于路堑路肩边缘的外侧,用以汇集和排除路堑范围内的地面水。在线 路不填不挖的地段亦应设置测沟。 天沟位于堑顶边缘以外,可设一道或几道,用以截排堑顶上方流向路堑的地面水。截水沟设置于路堑边坡平台上及排水沟、测沟、天沟所在部位以外的其他地方,用以截排边坡平台以上的坡面水或所在地区的部分地面水。 矩形水槽,当水沟所在地段土质不良或地质不良,水沟易于变形,以及受地形、地物或建筑限界的限制,不能设置占地较宽的梯形水沟时,排水沟、测沟、天沟、截水沟均宜采用矩形水沟的形式。 跌水、缓流井和急流槽,在地形陡峻地段,水沟的沟底纵坡很大时,可修建跌水、急流槽和缓流井等排水设施,以减少沟内流速,降低动能。 地下排水设备的类型?分别适用什么条件? 地下排水设备的类型有:明沟与槽沟、边坡渗沟、支撑渗沟、截水渗沟与引水渗沟、渗水隧洞、水平钻孔、立式集水渗井与渗管 明沟与槽沟是敞开的地下排水设备,用于拦截、引排埋藏不深的地下水(一般为2m以内的潜水和上层滞水),并可兼排地表水。设置时,宜沿线路方向和顺沟谷走向布置,沟底应埋入不透水地层内,沟壁最下一排渗水孔的底部应高出沟底不小于0.2m。为避免开挖断面过大,明沟深度不宜超过1.2m,若再深可用槽沟;槽沟深度不宜超过2m,若再深宜改用渗沟。 边坡渗沟是为疏导潮湿边坡及引排边坡上层滞水和泉水而修建的排水设备,同时可起支撑边坡的作用。其适用于土质路堑边坡不陡于1:1 或路堤边坡因潮湿容易发生表土坍滑的部位。 支撑沟是用来支撑可能滑动的不稳定土体或山坡,并排除在滑动面附近的地下水和疏干潮湿土体的一种地下排水设备。 截水渗沟与引水渗沟,截水渗沟用于拦截地下水,使其不流入病害区;引水渗沟是用来引排山坡湿地、洼地或路基内的地下水,以便疏干附近土体和降低地下水位。

(完整版)一块简支正交各向异性板的振动模态分析

课程设计(论文)任务书 院系(教研室)年月日 学生姓名: 学号: 专业: 1 设计(论文)题目及专题:一块简支正交各向异性板的振动模态分析 2 学生设计(论文)时间:自月日开始至月日止 3 设计(论文)所用资源和参考资料: 1、弹性力学下册 2、ANSYS软件 3、有限元法 4 设计(论文)完成的主要内容: 1)利用有限元法,用ANSYS编程计算一块简支正交各向异性板的振动模态 2)应用板壳理论知识得到板的解析解,并对两种方法所得结果进行比较 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: 提交课程设计论文一本 6 发题时间:年月日 指导教师:(签名) 学生:(签名)

用ansys解法如下: 模态分析步骤 第1步:指定分析标题并设置分析范畴 选取菜单途径Main Menu>Preference ,单击Structure,单击OK 第2步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框, 单击Add出现Library of Element Types 对话框,选择Structural shell再右滚动栏选择Elastic 4node 63,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。第3步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material

Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>orthotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第4步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。 第5步:进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Blocklanczos模态提取法,在Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis 对话框,选择频率的起始值,其他保持不变,单击OK。 第6步:施加边界条件. 选取Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply或OK即可。

我国高速铁路发展概况

我国高速铁路的发展概况 中国铁道科学研究院研发中心徐鹤寿 速度是铁路运输现代化的重要标志之一。自1964年日本成功建成世界第一条高速铁路——东海道新干线以来,高速铁路以其速度快、运能大、效益高、全天候、节能、环保、安全等显著特点,在世界各国得到迅速发展。 1.我国高速铁路的发展 1.1 国外高速铁路简介 目前,日本、德国、法国、西班牙、意大利、瑞典、韩国、英国、荷兰、比利时、丹麦、瑞典、中国台湾等国家和地区已拥有不同长度、不同速度的高速铁路。世界各国由于国情和运输需求不同,采用了不同的技术标准和装备,其最高运行速度也在不断地提高。 日本是世界第一个修建高速铁路的国家。自1964年修建了世界第一条高速铁路——东海道新干线后,陆续又修建了山阳、上越、东北、北陆、九州等5条新干线,全部是纯客运运输,新干线总长度已达2258km。同时,其最高运行速度不断提高,如东海道新干线从建成运营的210km/h,已提高到270km/h;山阳新干线的运行速度已达300km/h。2011年3月采用最新型高速列车“隼”号,运行速度300km/h,2012年达到320km/h。 德国从1991年建成汉诺威~维尔茨堡高速铁路以来,陆续修建了曼海姆~斯图加特、汉诺威~柏林、科隆~法兰克福、纽伦堡~英戈尔施塔特等高速铁路以及科隆~迪伦、拉斯塔特~奥芬堡、莱比锡/哈雷~格勒伯斯等高速段,运行速度均为250km/h及以上,其总里程已达1057km。其中,2002年建成的科隆~法兰克福高速铁路的运行速度最高,为300km/h。德国高速铁路的运输模式分为两类:一类为客货共线,如汉诺威~维尔茨堡,采用旅客列车与货物列车分时段运行,最高运行速度为250km/h;科隆~法兰克福高速铁路为纯客运。 法国第一条新建高速铁路为1983年通车的TGV巴黎东南线,初期运行速度为270km/h,1989年提高到300km/h。目前,已建成并开通运营8条高速铁路,总长度已达1884km,运营速度均为250km/h 及以上,都是纯客运运输。目前,法国高速铁路的运行速度都达到300km/h,其中TGV东部线的运行速度达320km/h,是国外高速铁路中运行速度最高的。 西班牙的既有铁路为轨距1668mm的宽轨铁路,新建高速铁路为与欧洲铁路网连接,均采用标准轨距。1992年建成马德里~塞维利亚高速铁路,客货混运,运行速度为270km/h;2008年全线开通的马德里~巴塞罗那,为纯客运,设计速度350km/h,最高运行速度300km/h。目前,已建成的高速铁路的总里程达1902km(运营速度均为250km/h及以上),为欧洲高速铁路长度第一。 上世纪90年代,世界上时速300公里速度等级的高速铁路技术已趋于成熟。因此,随后新建高速铁路的国家或地区,充分利用已成熟的先进技术,实现速度的技术跨越,将速度目标值确定为300km/h及以上,如法国2001年开通的TGV地中海线、2007年开通的TGV东部线(巴黎~斯特拉斯

高速铁路路基设计规范标准

6 路基 6.1一般规定 6.1.1路基工程应加强地质调绘和勘探、试验工作,查明基底、路堑边坡、支挡结构基础等的岩土结构及其物理力学性质,查明不良地质情况,查明填料性质和分布等,在取得可靠地质资料的基础上开展设计。 6.1.2路基主体工程应按土工结构物进行设计,设计使用年限应为100 年。 6.1.3基床表层的强度应能承受列车荷载的长期作用,刚度应满足列车运行时产生的弹性变形控制在一定范围内的要求,厚度应使扩散到其底层面上的动应力不超出基床底层土的承载能力。基床表层填料应具有较高的强度及良好的水稳性和压实性能,能够防止道砟压入基床及基床土进入道床,防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。 6.1.4路基填料的材质、级配、水稳性等应满足高速铁路的要求,填筑压实应符合相关标准。 6.1.5路堤填筑前应进行现场填筑试验。 6.1.6路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在线路纵向的均匀变化。 6.1.7路基工后沉降值应控制在允许范围内,地基处理措施应根据地形和地质条件、路堤高度、填料及工期等进行计算分析确定。对路基与桥台及路基与横向结构物过渡段、地层变化较大处和不同地基处理措施连接处,应采取逐渐过渡的地基处理方法,减少不均匀沉降。路基施工应进行系统的沉降观测,铺轨前应根据沉降观测资料进行分析评估,确定路基工后沉降满足要求后方可进行轨道铺设。 6.1.8路基支挡加固防护工程应满足高速铁路路基安全稳定的要求,路基边坡宜采用绿色植物防护,并兼顾景观与环境保护、水土保持、节约土地等要求。 6.1.9路基排水工程应系统规划,满足防、排水要求,并及时实施

高速铁路路基设计规范

6路基 6.1一般规定 6.1.1路基工程应加强地质调绘和勘探、试验工作,查明基底、路堑边坡、支挡结构基础等的岩土结构及其物理力学性质,查明不良地质情况,查明填料性质和分布等,在取得可靠地质资料的基础上开展设计。 6.1.2路基主体工程应按土工结构物进行设计,设计使用年限应为100年。 6.1.3基床表层的强度应能承受列车荷载的长期作用,刚度应满足列车运行时产生的弹性变形控制在一定范围内的要求,厚度应使扩散到其底层面上的动应力不超出基床底层土的承载能力。基床表层填料应具有较高的强度及良好的水稳性和压实性能,能够防止道砟压入基床及基床土进入道床,防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。 6.1.4路基填料的材质、级配、水稳性等应满足高速铁路的要求,填筑压实应符合相关标准。 6.1.5路堤填筑前应进行现场填筑试验。 6.1.6路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在线路纵向的均匀变化。 6.1.7路基工后沉降值应控制在允许范围内,地基处理措施应根据地形和地质条件、路堤高度、填料及工期等进行计算分析确定。对路基与桥台及路基与横向结构物过渡段、地层变化较大处和不同地基处理措施连接处,应采取逐渐过渡的地基处理方法,减少不均匀沉降。路基施工应进行系统的沉降观测,铺轨前宜应根据沉降观测资料进行分析评估,确定路基工后沉降满足要求后方可进行轨道铺设。 6.1.8路基支挡加固防护工程应满足高速铁路路基安全稳定的要求,路基边坡宜采用绿色植物防护,并兼顾景观与环境保护、水土保持、节约土地等要求。

6.1.9路基排水工程应系统规划,满足防、排水要求,并及时实施。 6.1.10路基设计应重视防灾减灾,提高路基抵抗连续强降雨、洪水及地震等自然灾害的能力。 6.1.11路基上的轨道及列车荷载换算土柱高度和分布宽度应符合表6.1.11的规定。 表6.1.11轨道和列车荷载换算土柱高度及分布宽度 6.1.12车站两端正线、利用既有铁路地段、联络线、动车组走行线和养护维修列车走行线等路基设计标准按其设计最高速度确定,路基基床结构变化处应设置长度不小于10m的渐变段。 6.1.13路基工程应加强接口设计,合理设置电缆槽、电缆过轨、接触网支柱基础、声屏障基础及综合接地等相关工程,避免因相关工程破坏路基排水系统、影响路基强度及稳定。 6.2路基面形状及宽度 6.2.1无砟轨道支承层(或底座)底部范围内路基面可水平设置,支承层(或底座)外侧路基面两侧设置不小于4%的横向排水坡。有砟轨道路基面形状应为三角形,由路基面中心向两侧设置不小于4%的横向排水坡。曲线加宽时,路基面仍应保持三角形。 6.2.2有砟轨道路基两侧的路肩宽度,双线不应小于1.4m,单线不应 小于1.5m。 6.2.3直线地段标准路基面宽度应按表6.2.3采用。

李乔说桥-13:正交异性钢桥面板

李乔说桥-13:正交异性钢桥面板 1让人爱、让人恨的桥面板形式对正交异性钢桥面板,大家都很熟悉,这是钢桥尤其是大跨度钢桥结构中采用最多的一种桥面板结构形式,也是现代钢桥结构重要的标志性成果之一。但这种桥面结构同时也是钢桥领域里最令人头痛的结构之一,可以说是既“让人爱”又“让人恨”的一种桥面结构形式。让人爱,是因为这种结构具有众多的优点,如重量轻、承载力高、适用性强等,是目前为止仍然不能用其他形式桥面板取代的主要结构形式。而让人恨,则是因为它服役几十年以来,不断地出现令人头痛的疲劳开裂和桥面铺装破坏问题,而且成为了一个出现概率很高的普遍性病害、至今也没有公认的既经济又有效的解决措施的病害。 一般的正交异性钢桥面板指在桥面的面板下面采用纵横加 劲肋加强的构造形式,而目前应用最为广泛的正交异性钢桥面板是采用U形纵向加劲肋的构造形式。如图1所示,它由面板(顶板)、U形纵向加劲肋以及横向加劲肋或横隔板组成。目前世界各国已建成的采用正交异性钢桥面板的各类桥梁已超过1500座,我国正在运营和在建中的该类型桥梁数量已达200余座。(a)大跨度钢箱梁斜拉桥(b) 采用正交异性钢桥面板的钢箱梁横断面(c) 正交异性钢桥面板构造示意图及疲劳开裂统计图1 大跨度钢桥及正交异性钢桥面板

2 两大病害最早在大跨度钢桥上发现正交异性钢桥面板疲 劳开裂的是英国Severn桥,该桥开通运营仅5年即发现其 正交异性钢桥面板出现疲劳裂纹。此后,正交异性钢桥面板结构在包括欧洲、美国、日本及我国等世界范围内相继出现了大量的疲劳开裂案例。例如国内某大桥通车数年后即发现大量疲劳裂缝,经过维修加固,再经过几年的运营,又出现了更多的疲劳开裂。这种现象在很多类似结构的桥面板中出现,给桥梁的安全和耐久性带来巨大影响。由于桥面铺装的存在,这种发生在桥面板上的裂缝在开裂初期不容易被发现,一旦发现就已经贯穿顶板了。而且这种裂缝较难修复加固,多数情况下必须中断交通并拆除桥面铺装才能进行。 根据日本对东京2条代表性高速公路中约7000个闭口纵肋正交异性钢桥面板的疲劳病害进行的统计分析结果,主要疲劳裂纹类型及其构成如图1(c)所示。图中带圆圈的编号表示疲劳开裂的部位及类型,圆饼图表示各类型开裂所占的比例。由图可见,占比例最大的为②、③、④类,分别为纵向U肋与横隔板、竖向加劲肋与纵腹板以及纵向U肋与顶板的焊缝开裂。其中的第③类开裂对应的构造现在基本不再采用,所以目前出现最多的是②、④两类。 除了钢桥面板开裂以外,这种结构带来的另一个通病是桥面铺装过早损坏(图2),并成为每座同类桥面板结构的大桥设计时让人颇为纠结的问题。从我国90年代修建的此类结构

高铁路基工程施工技术标准

高铁路基工程施工技术标准(2011) 【标准概况】 适用范围:高铁路基施工适用速度范围:250-350km/h 编制意义:统一主要技术要求 2011年 1 总则 1.0.1为指导高速铁路路基工程施工,统一主要技术要求,加强施工管理,保证工程质量,制定本指南。 1.0.2本指南适用于新建时速250-350高速铁路路基工程 施工。时速250km以下客运专线铁路路基工程施工可参照执行。 1.0.3高速铁路路基工程施工必须执行国家法律法规及相关技术标准,按照设计文件施工,满足工程结构安全、耐久性能及系统使用功能要求,保证设计使用年限内正常运营。 1.0.4高速铁路路基工程施工应从管理制度、人员配备、现场管理和过程控制四个方面加强标准化管理,采用机械化、工厂化、专业化、信息化等先进的施工管理手段,实现质量、安全、工期、投资效益、环境保护、,技术创新等建设目标。 1.0.5高速铁路路基工程施工应重视地质核査,作好地基处理、填料生产供应及压实成型、过渡段处理、支挡结构、边坡防护及防排水、变形观测评估、接口工程等关键环节的施工。

1.0.6高速铁路路基工程施工应加强现场管理,严格施工工序,根据工艺流程合理划分施工段落,提髙文明施工水平。 1.0.7高速铁路路基工程施工应重视对地质灾害的识别、评估和预防工作,加强路基变形监控量测,保证排水系统畅通无阻,及时完成支护结构,有效减少地质灾害及其影响。 1.0.8高速铁路路基工程施工涉及文物古迹时,应立刻停止作业上报有关部门并做好现场保护工作,严格按文物保护部门批准的保护措施进行施工。 1.0.9高速铁路路基工程施工应根据国家节约资源、节约能源、减少排放等相关法规和技术标准,结合工程特点和施工环境,编制并实施工程施工节能减排技术方案。 1.0.10 高速铁路路基工程施工应根据批准的指导性施工组织设计编制实施性施工组织设计和作业指导书。 1.0.11 高速铁路软土、松软土路基工程应作为控制工程组织施工。 1.0.12 防排水工程是高速铁路路基工程的重要组成部分,应加强施工全过程管理,及时做好防、排水工程。 1.0.13修筑于路基上的端刺、电缆槽、接触网支柱基础、声屏障基础、预埋管线等工程项目应与路基同步协调施工,不应损坏或危及路基的稳定和安全。 1.0.14高速铁路路基工程施工爆破器材的储存、保管、运输、使用等方面必须符合国家爆破安全规程的相关规定。 1.0.15高速铁路路基工程应加强施工过程的安全管理和监控,高陡边坡、地质不良地段、临近营业线或营业线施工等危险性较大的路基工程应编制专项施工方案,并按相关规定经审批后实施。 1.0.16高速铁路路基工程施工中,应重视对农田水利和环境的保护,节约用地,少占耕地,临时占用的土地应及时做好复垦工作。 1.0.17高速铁路路基工程施工的各类人员应经过专门培训,合格后方可上岗。 1.0.18高速铁路路基工程施工资料的收集和整理工作应与工程进度同步,做到系统、完整、真实、准确,保正其具有有效的查考利用价值和完备的质量责任追溯功能,并应按相关规定做好资料的归档管理工作。 1.0.19高速铁路路基工程施工除应执行本指南外,尚应符合国家现行相关标准的规定。

钱冬生--关于正交异性钢桥面板的疲劳

关于正交异性钢桥面板的疲劳 ——对英国在加固其塞文桥渡时所作研究的评介 钱冬生3 提 要 对英国塞文桥渡正交异性板构造的疲劳裂纹产生的原因、所作试验及对其疲劳寿命计算作了介绍,并进行了探讨。 关键词 英国 塞文桥渡 钢正交异性板 疲劳 3教授,610031,西南交通大学 1 塞文桥渡的原结构 塞文桥渡包含:中跨988m 的塞文悬索桥,中跨 234.7m 的瓦埃斜拉桥,跨度61.7~64.0m 的连续梁(引桥)。其钢梁为全部采用正交异性钢桥面板的单室单箱截面梁。 钢正交异性板桥面是在第二次世界大战之后于50年代初期出现的。开始时纵肋用开口截面,在60年代逐渐改为闭口截面。由于制造工艺使闭口纵肋长度受到限制,其设计长度以相邻两横梁之间的距离来决定。在塞文桥渡,此长度为4.572m (悬索桥范围内)和4.267m (其余部分)。纵梁两端抵住横梁,用角焊缝作连接(横梁实质上由横肋及横隔板组成,将箱梁的部分顶板和底板 当作横梁的翼缘使用;横梁高度与箱梁高度相同。)。按照悬索桥的设计说明,强度和刚度都不控制加劲 梁。因此,钢材厚度主要按制造和安装要求决定。面板厚度为11.5mm ,纵肋厚度为6.4mm ,角焊缝焊脚为6mm 。图1为英国TRRL (T ran spo rt and Road R esearch L abo rato ry ,运输和道路研究试验所)所用试件的截面,其中(a )完全按塞文桥渡各钢梁的尺寸办理,(b )表示改进方案,将纵肋截面从梯形改为V 形; 在纵 图1 TRRL 试件截面 肋同横梁相遇处,在横梁开孔,让纵肋穿过。 还需指出:塞文悬索桥在压低造价方面有些过火。它省去储梁场地,省去运梁驳船;只是需要在梁段端头敞口处,用一厚5mm 的横隔板充当“封头板”,使梁段变成浮体;既可在水上储存,又可用拖船直接将它推顶到桥位。这样一来,封头板上端便同梯形纵肋下缘相焊,而这一焊接构造就使纵肋在运营中开裂。2 英国桥规BS 5400第10篇 英国B S 5400第10篇是1980年公布的。其译本见文献[1],对其主要部分、特别是其从文献[3]制订焊接构造分级的经过,见文献[2]。 此规范的优点,在于讲明基本原理,那就是凭借荷载频值谱来推算验算点的应力频值谱,再用M iner 的线性积伤规则,将应力频值谱换算成常幅加载的应力,借以同验算点的疲劳抗力相比,若前者不大于后者,则验算就是通过。文献[1]p 182的插页内的表11,或文献[2]p 84的插页内的图3-11,都是该规范的典型营业车荷载。而文献[1]p 181的图10-17则是迹线分布频数图,这就是说,当某验算点的应力在横桥方向的影响线很短而纵标变化剧烈时,需要将横向影响线按100mm 宽度划分成10多份,按这图所给分布频数推算各份之内的车数,再按影响线纵标推算相应的应力,从而推出应力频值谱。文献[4]p 1所介绍的疲劳检算方法,就指出了要使用文献[1]的表11和图10-17。 关于验算点的疲劳抗力,文献[1]在第10篇附录H 用表17a 、b 、c 的图和文字说明了各种构造按疲劳抗力所进行的分级,包含A 、B 、C 、D 、E 、F 、F 2和G 以及W ,而附录A 则用S 2N 关系(致伤应力脉—加载次数)表达不同分级构造对疲劳的抗力。由文献[2]所介绍的制订这项构造分级的经过可知:所用作依据的疲劳试验的试件,一般是承受轴向力的小试件。因此,在这一规范正文第5.4条(见文献[1]p 115)明确指出:表17中的各分级不适用于公路桥正交异性钢桥面板的焊接构造。 8 桥梁建设 1996年第2期

正交各向异性单层板

正交各向异性单层板 对于复合材料,由于复合材料是由基体和增强纤维组成的多相非均质材料,因此 复合材料具有明显的各向异性性质。一般来说,确定复合材料力学性能有两种方法: 物理机理的力学分析方法和唯象理论方法。物理机理的力学分析方法是通过细观或微 观力学理论建立描述复合材料物理力学性能的各参数之间关系表达的方法,唯象理论 方法是将非均质多相复合材料作为均ABC电子质连续介质(以非均质多相复合材料与均质连续介质单相材料建立宏观上物理力学性能的等效模型),在实验的基础上建立复合材料以总体宏观强度性能为特征的破坏准则(强度条件)。两种方法的主要区别在于; 物理机理的力学分析方法通过分折复合材料破坏过程的物理机理,从而给出复合材料 物理力学性能的各参数之间关系表达式;唯象理论方法则是通过实验,以实验为基础,从而给出复合材料以总体宏观强度性能为特征的破坏准则(强度条件)。 显然,唯象理论方法虽然能够在各种载荷条件下给出复合材料的破坏准则强度条件,但其所给出的复合材料的破坏准则(强度条件)不能解释复合材料破坏过程的物理 机理。尽管唯象理论方法不能解释复合材料何时从何处开始破坏,以及从局部开始破 坏到最终整体破坏的复杂过程,但唯象理论方法能够提供各种载荷(各种复杂应力状态)下的强度破坏指标,且该指标正是工程设计个保证所设计构件(或罗部件)安全的基本 指标。因此,基于唯象理论方法的破坏准则研究仍然是复合材料强度理论研究的一个 重要方向。本章关于复合材料强度理论的分析属于唯象理论方法范畴。正夹各庙异性 单层扳强魔理论的路本IC现货商概念各向同性线弹性体的一个显著特点是:各向同性线弹性体内同一点各个方向强度等同,且强度与方向无关。 如所示各向同性(均质)线弹性体,在各向同性(均质)线弹性体内两个不同方向取和舶试件进行试验。实验结果表明和两试件所呈现的力学性能在宏观统计学意义上完全 相同,即各向同性(均质)线弹性体内任意点、任意方向上具有完全相同的力学性能(包 括完全相同的强度)。对于复合材料,如图所示。由于纤维增强复合材料的各向异性,在纤维增强复合材料内冕个不同方向取和比试件进行试验。显然,由于沿增强纤维方向,因此具有较其他方向更高的强度;由于沿与增强纤维正交方向因此具有较其他方 向更低的强度;而介于和两方向艾博希电子之间,其强度也介于两者之间。由此可知,复合材料的强度与方向有关复合材料内同一点不同方向的极限应力不相同,即复合材 料的强度是方向的函数。在采用唯象理论方法分析复合材料单层板的强度时,增强纤 维复合材料单层板可看做是(均质)正交各向异性线弹性体。增强纤维复合材料单层板 只承受中面内裁荷时,增强纤维复合材料单层板可视为平面应力状态下的正交各向异 性单层板。cjmc%ddz

正交异性板钢桥面(3.14)2

正交异性板钢桥面结构应用技术工艺的探讨 The structural characteristics and manufacturing craft of steel box girder with an orthotropic steel bridge deck 叶翔叶觉明 ( Ye Xiang Ye Jue-ming ) 中铁大桥局武汉桥梁科学研究院武汉 430034 ( Bridge Science Research Institute, Major Bridge Engineering Bureau of China Railways, Wuhan 430034) 摘要: 正交异性钢桥面板是钢结构桥梁的重要结构件,正交异性钢桥面板由钢板、U肋和横隔板组成。以钢箱梁正交异性钢桥面板为例,介绍正交异性钢桥面板结构特点和组拼、 焊接和工地连接工艺特点,探讨在目前焊接和组装工艺条件下,延长正交异性钢桥面板 使用寿命的加工技术和工艺。 abstract: The orthotropic steel bridge deck is important structural of the steel structure bridge, the orthotropic steel bridge deck made is composed by the steel plate、 the U-shaped stiffener and the cross spacer . Taking the steel box girder deck plate as research object, the orthotropic steel bridge deck unique feature and craft characteristic for assembling、welding and site connection of the plate elements was deal with。 under the condition of the current welding and assembling workmanship, technology and technique to prolong the service life of orthotropic steel bridge deck was researched and discussed. 关键词: 正交异性钢桥面板板单元横隔板 U肋焊接工艺焊接残余应力 Key word: orthotropic steel bridge deck plate element cross spacer U-shaped stiffener welding technology Weld residual stress 对于大跨度悬索桥和斜拉桥,钢箱梁是非常有利的结构形式。钢箱梁以面板、底板、腹板、纵横隔板及加劲结构件为主要构成。其中面板钢板一般刚度较小,在轮载作用下易发生较大的变形,因此需要一定的钢板厚度,同时在面板上安装纵肋和垂直于纵肋的横隔板加劲,这是一种典型的正交异性桥面板。钢桥面板结构在桥梁上是不可能更换的,如果产生缺陷或裂纹扩展后修补又比较困难,需要从结构和实用焊接加工技术工艺等方面予以重视,延长桥面板的安全使用寿命。 1.正交异性桥面板结构和制造加工特点

我国高速铁路及路基工程技术发展

中南林业科技大学课程考查作业学科专业:工程管理 年级:2011级 学号:20111518 姓名:梁志杰 课程名称:铁道工程

我国高速铁路与路基工程技术发展 【摘要】:高速铁路是当今世界铁路高新技术的一项重大成就,是当今世界安全可靠的现代交通工具。它在许多国家得到迅猛发展,成为世界铁路的新潮流。高速铁路的出现已突破了传统铁路路基的设计理念,其设计理论、施工技术和检测手段等都有了很大发展,相关的技术标准不断提高,新技术也不断被应用于高速铁路路基中。 【关键字】:高速铁路、路基、技术特点 【正文】: 高速铁路是指通过改造原有线路,使营运速率达到每小时200公里以上,或者专门修建新的高速新线,使营运速率达到每小时250公里以上的铁路系统。高速铁路是当今世界铁路高新技术的一项重大成就,是当今世界安全可靠的现代交通工具。它在许多国家得到迅猛发展,成为世界铁路的新潮流。 我国高速铁路的运输组织模式主要有以下3种类型:(1)高速客运专线。这种高速铁路建于客货运输都十分繁忙的通道上,一般沿既有线修建,设计速度达350km/h。承担本线到发与跨线客流的输送任务,采用300km/h及以上的高速列车与200~250km/h的跨线列车混合运行的运输组织模式。(2)城际铁路。这种高速铁路建于两相邻大城市间,设计速度为200~250km/h。承担两城市间到发客流的输送任务,采用高密度、短编组、公交化的运输组织模式。(3)快速客运

通道。这种高速铁路建于客货运输潜在需求都十分旺盛但还没有铁路的地区,设计速度为200~250km/h,承担吸引区内客货运输任务,采用200~250km/h的旅客列车与120km/h货物列车混合运行的运输组织模式。我国高速铁路的技术体系构建,主要应针对高速客运专线。 高速铁路不仅仅是高速,它具有三点优势:一是高速铁路速度快、省时间,安全系数高,乘坐空间大,舒适又方便,价格又适宜,迎合了现代社会出行的需求,因而受到人们的青睐,成为世界各国振兴铁路的强大动力。二是高速铁路运输系统是铁路大面积吸纳现代高科技成果进行技术创新的产物。推动了铁路科学技术和装备登上一个崭新的台阶,增强了铁路的竞争力。三是高速铁路不仅运输能力特别大,有年运输量可达数亿人次以上的优势,又有减少环境污染的优势,因而特别适宜于大运量的城市间、城市群和城郊的高频率运输。旅行时间的节约,旅行条件的改善,旅行费用的降低,再加上国际社会对人们赖以生存的地球环保意识的增强,使得高速铁路在世界范围内呈现出蓬勃发展的强劲势头。总之,发展高速铁路是科技进步的必然,是时代发展的需要。 我国高速铁路以其高速、平稳、舒适的优良品质赢得了人民群众的广泛赞誉,有力促进了沿线区域经济发展,带动了相关产业升级,改善了人民群众生活。 从旧时落后的铁路到如今的高速铁路,我国铁路的发展经历了几代人不懈的努力,从封建落后的清朝至今已有百余年的历史,旧时中国铁路发展缓慢,受到清政府封建势力的强烈发对。在那个动荡的年

高速铁路路基的基本要求

高速铁路路基的基本要求 1.路基主体工程 路基主体工程应按土工结构物进行设计。路基工程应加强地质测绘、勘探和试验工作,查明基底、路堑边坡、支挡结构基础等的岩土结构及其物理力学性质,查明不良地质情况,查明填料的性质和分布等,在取得可靠地质资料的基础上开展设计。 路基主体工程的设计使用年限应为100年,路基排水设施结构及路基边坡防护结构的设计使用年限应为60年。路基工程应保障列车高速行驶的安全性和舒适性。 路基基床结构的刚度应满足列车运行时产生的弹性变形被控制在一定范围内的要求;其强度应能承受列车荷载的长期作用;其厚度应使扩散到其底层面上的动应力不超出基床底层土的承载能力。基床表层结构应能防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。 2.路基填料 路基填料的材质、水稳性等应符合高速铁路的技术要求,填筑压实应符合相关标准的规定。当路基连续填筑长度较长时,应积极采用连续压实控制等技术。路基填料的最大粒径在基床底层内应小于60 mm,在基床以下路堤内应小于75 mm。路基边坡的最大限制高度应根据边坡稳定性分析和工后沉降控制标准,并结合地形地貌、岩土工程特性、填料性质、施工条件、土地资源及周边环境情况等因素综合分析确定。路堤填筑前应进行现场填筑试验。路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在线路纵向的均匀变化。地基处理措施应根据路基工后沉降控制标准、路堤高度、填料、地形和地质条件、建设工期、材料来源、施工机械及环境影响等因素综合分析确定,并符合《铁路工程地基处理技术规程》(TB 10106—2010)的相关规定。 3.路基工后沉降值 路基工后沉降值应控制在允许范围内,并进行系统的沉降观测;轨道铺设前应根据沉降观测资料进行分析评估,评估通过后方可进行轨道铺设。路基边坡工

正交异性板和箱形结构运用于桥梁的历史

正交异性板和箱形结构运用于桥梁的历史(三) 发布时间:2008-04-25 作者:钱冬生 摘要:介绍了正交异性板和箱形结构运用于桥梁的历史。 4 、英国的塞文桥——它在1966 年的胜利建成,与在1991 年的整修完竣 塞文桥在1966 年的建成,是当时桥梁界的一大盛事。它总长约3km ;包括: Wye 斜拉桥(主跨234.7m )、引桥(跨度61.7~ 64.0m 连续钢箱紧)和正桥(主跨988m 的悬索桥)。它的悬索桥第一次使用流线形的扁钢箱加劲梁,这是由风洞试验认识到它的实用价值的(阻力系数小、对风致振动的反应较优),其加劲梁钢面板厚11.50mm ,纵肋为闭口的梯形,肋厚6.4mm ,肋的高度228mm ,纵肋的中心距为610mm ,纵肋跨度(横肋中距)用到4.57m 。横肋板厚 6.4mm ,高度为3m (从桥面板到箱底板,它实际上就是横隔板)。这加劲梁又第一次使用全焊钢结构,因耽心它在振动时的阻尼系数要比铆接结构为小(注:对桥面辅装的阻尼作用当时还缺乏认识),不利于抑制振动,乃将其吊索从竖置改为呈V 字形的斜置,因为,斜置吊索当桥振动时所受的拉力有脉动,这一脉动将使其钢绞线时松时紧,由此而对振动产生阻尼。对于塔柱,它又第一次采用了矩形单箱式;而且对于柱的工地水平接头,不是用拼接板及高强栓作连接,而是靠承压传力,并用20 根φ 50mm 高强栓在竖向将上下拉紧(用以抵抗施工荷载);这使每塔用钢量仅是1200t 。对于塔顶主鞍,又第一次采用了全焊式。[8] :127~139 在施工方面,也是非常俭省。加劲梁的制造,是分为88 个节段,每个节段再分为若干板件;将板件在工厂预制完成后,运到一造船厂的滑道附近,在滑道上进行节段的拼装;在滑道长度方面只需其能保留三个节段,每当向上再拼装一个新节段时,就先将最下一个节段

正交异性板

正交异性板 正交异性版即正交异性钢桥面板,是用纵横向互相垂直的加劲肋(纵肋和横肋)连同桥面盖板所组成的共同承受车轮荷载的结构。这种结构由于其刚度在互相垂直的二个方向上有所不同,造成构造上的各向异性。 细部构造 对于大跨度悬索桥和斜拉桥,钢箱梁自重约为PC箱梁自重的1/5,1/6.5。正交异性钢板结构桥面板的自重约为钢筋混凝土桥面板或预制预应力混凝土桥面板自重的1/2,1/3。所以,受自重影响很大的大跨度桥梁,正交异性板铜箱梁是非常有利的结构形式。 通常在钢桥面板上铺装沥青混凝土铺装层,其主要作用是保护钢桥面板和有利于车辆的行走性。近代正交异性钢桥面板的构造细节如图回所示,由钢面板纵助和横肋组成,且互相垂直。钢面板厚度一般为12mm,纵肋通常为U形肋或球扁钢肋 或板式助,U形肋板厚一般为6mm或8mm,横梁间距一般为3.4,4.5m,两横梁之间设一横肋。 制造时,全桥分成若干节段在工厂组拼,吊装后在桥上进行节段间的工地连接。通常所有纵向角焊缝(纵向肋和纵隔板等)贯通,横隔板与纵向焊缝、纵肋下翼缘相交处切割成弧形缺口与其避开。 分析方法 正交异性板除作为桥面外,还是主梁截面的组成部份,它既是纵横梁的上翼缘,又是主梁的上翼缘。传统的分析方法是把它分成三个结构体系加以研究,即: (1)主梁体系:由盖板和纵肋组成主梁的上翼缘,是主梁的一部份。 (2)桥面体系:由纵肋、横梁和盖板组成,盖板成为纵肋和横梁的共同上翼缘。 (3)盖板体系:仅指盖板,它被视为支承在纵肋和横梁上的各向同性连续板。

计算方法 解析法是将正交异性钢桥面板结构作为弹性支承连续正交异性板分析的较为成熟的经典计算方法。根据所取的计算模型不同,解析法计算又可分为以下几种: (1)把板从肋的中间分开,并归并到纵横肋上去,构成格子梁体系。它的缺点是未能考虑板的剪切刚度。 (2)把纵横梁分摊到板上,也就是将板化成一种理想的正交异性板。当荷载作用在横肋上时,这种方法是较好的,但当荷载作用在两横肋中间时,此法的精度就差了。 (3)对法2的改进,即将作用有荷载的那个节间单独处理,令节间的横向抗弯刚度等于盖板的抗弯刚度,其余节间解同法2 (4)Pelikan-Esslinger法。此法是将纵肋均分摊到盖板上,而将横肋作为刚性支承,求解后再将横肋的弹性支承计入。 随着计算机技术的发展,正交异性板的求解又有了很多新的数值法。目前较有成效的是有限差分法、有限条法和有限单元法。疲劳问题 钢桥面板作为主梁的上翼缘,同时又直接承受车辆的轮载作用。如上所述,钢桥面板是由面板、纵肋和横助三种薄板件焊接而成,在焊缝交叉处设弧形缺口,其构造细节很复杂。当车辆通过时,轮载在各部件上产生的应力,以及在各部件交叉处产生的局部应力和变形也非常复杂,所以钢桥面板的疲劳问题是设计考虑的重点之一。自1966年英国Severn桥(悬索桥)采用扁平钢箱梁以来,钢桥面板陆续出现许多疲劳裂纹,主要产生的部位有纵助与面板之间的肋角焊缝、纵横肋交叉的弧形缺口处,U形肋钢衬垫板对接焊缝处等,其中梁段之间钢桥面板工地接头是抗疲劳最薄弱的部位。 由于钢桥面板不可能更换,产生裂纹后修补又比较困难,50年来(通过一系列的试验研究和有限元分析,以及实

相关文档
最新文档