VIPer22A 18V0.2A、5V0.1A小功率无线充电器IC方案BOM、原理图和变压器参数(两路输出)

VIPer22A 18V0.2A、5V0.1A小功率无线充电器IC方案BOM、原理图和变压器参数(两路输出)
VIPer22A 18V0.2A、5V0.1A小功率无线充电器IC方案BOM、原理图和变压器参数(两路输出)

VIPer22A 18V/0.2A 、5V/0.1A 系统板 原理图、BOM 单及变压器参数

一、原理图

N

L

T1

5V

18V

二、变压器参数

三、BOM表

基于单片机的无线充电器设计

基于单片机的无线充电器设计 学生: 学生学号: 院(系):电气信息工程学院 年级专业:电子信息工程 指导教师: 助理指导教师: 二〇一五年五月

摘要 随着用电设备对供电质量、可靠性、方便性、安全性、特殊场合、特殊地理环境等要求的不断提高,接触式的电能传输方式对于满足实际需要越来越显得捉襟见肘了。与此同时,无线电能传输系统,摆脱了线路的限制,实现电器和电源的完全分离,具有无线传输电能、设备体积小、传输效率高、便于携带和集成等优点。 本课题设计介绍了一种运用新型的能量传输利用电磁波感应原理和有关的交流感应技术,采用STC12C5A60S2低功耗单片机作为无线传能充电器的监测控制核心,实现电流控制和电压控制功能,电能充满后给出充满提示且自动停止充电。基于STC12C5A60S2单片机控制发射端和接收端产生的相应交流信号来进行充电的智能无线充电器。 利用设计通过对系统的硬件部分和软件部分的设计实现无线能量传输,在距离发射线圈的指定围对小型用电器如手机、MP3等直接充电。硬件部分包括高效直流稳压模块、驱动模块、显示模块、控制模块等的设计;软件部分主要根据系统的设计思想设计出了主程序和子程序流程图,并通过C语言实现相应的编程要求。通过理论分析和仿真证明,建立谐振耦合无线电能传输系统模型以及谐振耦合无线电能传输系统模型,通过计算得出了系统中电路参数与输出功率的关系。设计并制作谐振耦合无线电能装置,使用LCD1602设计显示,实时充电电压显示。 关键词无线电能传输,谐振耦合,无线充电器, LCD1602,STC12C5A60S2单片机

ABSTRACT This paper introduced the use of a power transmission technology, wireless power supply technology model, using the principle of electromagnetic induction and the induction technology,intelligent wireless charger for charging the AC signal based on the STC12C5A60S2 single-chip microcomputer to control the transmitting end and the environment and other requirements continue to increase, the power transmission mode of contact to meet the actual needs become more and more difficult. At the same time, wireless power transmission system, get rid of the limit line, completely separate electrical and power, with the wireless transmission of electrical energy, the equipment has the advantages of small volume, high transmission efficiency, easy to carry and integration. In the rapid development of science and technology in 21 Century, the prospects for the development of intelligent wireless charger . The design through the design of the hardware part and the software part of the system to achieve the wireless energy transmission, within the specified range of the transmitting coil in small appliances such as mobile phone, MP3 and other direct charge. The hardware part includes efficient DC power module, drive module, display module, control module and so on; the software part is mainly based on the design thought of the system design of the main program and the subprogram flow chart, and through the C language to achieve the corresponding programming requirements. relationship between the circuit parameters and the output power of the system. The design and fabrication of resonant coupling wireless device, using the LCD1602 design draw progress bar shows charging, charging voltage, charging time display. Key words radio transmission, resonant coupling, wireless charger ,LCD1602 STC12C5A60S2

谈不同毫安数充电器混用

浅谈充电器与供电问题 相信我们很多人都有过这样的经历,我们每个人的身边都有这样那样的电子产品,并且每个产品都各自的充电器,手机,mp3mp4,平板电脑,有的时候他们的充电接口都是一样的,然而仔细观察他们的充电器输出电流及功率却不一样,于是我们经常会产生这样的问题:到底相同接口的用电器能不能共用一个充电器。下面我就把我在工作中得到的一点经验跟大家分享一下。 我也曾经在网上查阅了大量资料,也曾经看过大家在网上发表的看法,大致的观点有两种:一种是电流大的充电器不能为额定电流小的充电器充电。他们的理由是过大的电流会使小电流的用电器承受不住,导电子产品的损坏。比如一个的mp3的标配充电器是5伏600毫安就不能用输出为5伏800毫安的充电器因为会把用电器损坏而使用400毫安的充就没问题。另一种观点恰恰相反,额定输出大的充电器可以为小电流的电子产品充电。他们认为充电器上面标明的是这个充电器工作的电流冗余度。充电时的功率由用电器来决定,也就是说如果一个mp3的额定充电电流为600毫安那么即使使用五伏一安培的充电器充电,工作时的电流也会是600毫安,不会损坏mp3,而如果用了400毫安的充,那么同样会一600毫安的电流工作,这会使充电器损坏。 那么究竟哪种说法对,下面我谈谈我自己的看法。我认为要搞清楚能不能充电,就得从充电器的原理说起。充电器,其实就是一个变压装置,将二百二十伏交流电降压。而且确实工作时

的功率取决于用电器。但是要注意的是每个变压器都不是理想变压器,变压器内存在电阻,所以,就存在电压降的现象。根据分压u=ir电流越大电压降越大。为了保证在经历了电压下降后仍能恒压五伏输出,所以空载时电压肯定超出标称值,有时甚至远超出标称值。所以标称电流越大,为了在电压降落后保证5伏稳压输出空载时的电压也就越大,有时甚至超过8伏。如果用大功率充电器为小电流元件充电,电压降就不不等于标准时的计算值,所以会造成输出电压偏高的情况,这种情况对于用电器是一种伤害。另一种情况,如果这时用小功率充电器充电那么首先电流肯定会超过充电器的额定输出这就是很多人用小电流充电器为大功率用电器充电时发现充电器非常热的原因——电流过载。另外,根据电压降的公式计算由于电流大于充电器的额定值,导致电压降很大,也就会造成输出的电压小于额定的5伏,所以这样带来的结果就是用电器的电压不够,导致冲不满电。所以,这样对于充电器和用电器的电池都是伤害。所以,我觉得充电器还是原装的好,但是如果有紧急情况不得不用非原装充电器充电,那么尽量找输出电流接近的充电器也行。输出越接近,对设备的伤感还越小。而且就算与标配充稍微有一些差距的充电器大家也不必过于担心,因为我们的充电器和用电设备都是有一定的电压和电流的适应范围的。 上面就是我个人对于充电器的一些分析,希望能对大家有所帮助。

关于“无线充电”项目介绍方案

“无线充电”项目介绍方案 2013-1-13

一、无线充电项目概述 二、无线充电项目远景分析 三、无线充电项目近期进展 四、目前国内外公司研究状况

一、无线充电项目概述 我们都知道,无线能源似乎是一个听起来很棒的新奇概念,但是我们很 难想象会很快将它实现商业化。 据engadget 报道,美国宾州的一家公司,目前靠着这个Powercast 技术,已经和超过 百家的主要电子产品公司,签下内容尚未公 开的合作案,包括一些耗电量“相对较低” 的电子产品,诸如手机、MP3 随身听,还有汽 车零件、温度传感器、助听器,甚至是医疗 仪器等的制造业者。 基本上整个系统包含了两件东西,一个是 插在插座上的发信器,另一个是整合在电子 产品上,跟硬币大小差不多的接收器(技术 核心),只要在一定的范围内(目前是在 1 米的距离内,美国可达到10米左右),电能可 以瞬间自发信器传到对应的接受器。 该项技术之所以会得到这么多家厂商的 青睐,原因是在他独特的电磁波接收装置,能够根据不同的负载、电场强 度来作调整,同时还能维持稳定的直流电压,这也表示在空中散射的电磁 波功率, 能够被 减到最 低。(据 说这种 设备已 经获得 了FCC 认证) 最 神奇的是,这种接收器的制造成本只需要 5 美金。由于价格昂贵、产品笨重以及 不完善的解决方案,无线充电产品一直都没有能够真正的进入消费市场。 另外对于经常在外奔波的移动设备使用者,将来也可以在无线上网的同时,通过无线网络对自己的移动设备进行充电。 2010 年9 月1 日,全球首个推动无线充电技术的标准化组织——无线 充电联盟在北京宣布将Qi 无线充电国际标准率先引入中国。信息产业部通 信电磁兼容质量监督检验中心也加入该组织。

无线充电器的设计

引言 §1.1 无线充电技术的背景 随着智能手机、数码相机以及平板电脑等移动电子产品在人们生活中的广泛应用,内置锂电池续航短问题日益凸显,在这种情况下,无线充电技术应运而生。有研究指出,全球无线充电技术将于2017年形成一个70亿美元的市场。 据了解,无线充电技术来源于日本。日本富士通公司2010年9月宣布其研究出了新的无线充电技术,可实现在距离充电器几米远的地方进行无线充电。而所谓的无线充电技术,即不用通过电源线和电缆等一切外接设备,就可给电子设备充电。其原理是利用磁共振在充电器与设备之间的空气中传输电荷,线圈和电容器则在充电器与设备之间形成共振,实现电能高效传输的技术。 综观目前的电子市场,锂电池等电子产品用电池在技术上迟迟没有取得新的突破,导致电池根本满足不了用户的用电需求。而目前出现的移动电源充电器在给电子产品充电时也需要数据线。而且移动电源容量有限,并不能从根本上解决用户移动用电的需求。无线充电技术的出现,或可解决移动电子产品的充电难题。据了解,目前在北美,大批通过近距离无线充电技术解决智能手机充电难题的创业公司开始出现。而随着无线充电网点的完善,无线充电技术有望得到更广泛的应用[1]。 §1.2 无线充电技术的先驱 根据报道和网络检索,世界上各个国家已经投入到这个领域的研究当中[2]。 Palm︱美国 Palm公司是美国老牌智能手机厂商,它最早将无线充电应用在手机上。它推出的充电设备“触摸石”,就可以利用电磁感应原理无线为手机充电。 海尔︱中国 海尔推出的概念性“无尾电视”,不需要电源线、信号线和网线。海尔称该产品采用了与麻省理工学院合作的无线电力传输技术。 Powermat︱美国 目前 Powermat 推出的充电板有桌面式和便携式等多种,主要由底座和无线接收器组成,售价在100美元左右。 劲量︱美国

无线充电系统设计方案

电源招聘专家 无线充电系统设计方案 无线充电是指具有电池的装置透过无线感应的方式取得电力而进行充电,其方便性可以让消费者愿意支付额外的费用购买无线充电相关产品;因为有商机才会有厂商愿意投入相关产品开发,目前可以知道非常多知名品牌厂商已经将无线充电这个功能列入新一代的产品的规格之一。由于这产技术相当新颖且各厂商有自己对技术的表述,所以无线充电、感应式电力、非接触充电、无接点充电都是泛指相同的技术,距离1mm到数公尺都是一样是无线,供电端与受电端交互作用就称感应,所以无线充电是广义的名词没有一定的规格。 原理简单·实作困难 无线充电的方法在实验阶段有开发出很多方法,但目前唯一有机会量产商品化为线圈感应式。线圈感应式的原理很简单,是百年前就被发现物理现象,但过去长久以来这样的线圈感应只运用在绕线式的变压器中。早期就有人发现将绕线式的变压器的将“E”型铁心绕线后对向紧贴后接上市电就可以感应传电,但距离略为分开后感应效果就消失,这是因为在市电60Hz下,电磁波传递会随着距离增加能量快速衰退。 在现今的应用中,由于装置本身需要有外壳包装,发射端加上接收端的外壳厚度至少从3mm 起算,早期电动牙刷产品开发时就发现当距离拉开后需要将线圈上的操作频率提高才能让电力能传送的更远;在电磁波中有一个特性,就是频率越高的电磁波可以传送比较长的距离后能量衰减较低。 后来rfid应用开始发展,主要就规划的三个频段LF低频(125~135KHz)、HF高频(13.56MHz)、UHF超高频(860~960MHz)可以使用,而这些频段也造就了目前无线电力系统在设计之初频率采用的参考点。早在10年前电动牙刷的无线充电就已经上市,当时的传送功率小、充电时间长,在现在的智能手持装置的耗电状况来看,当时的充电能量不敷使用所以10年来还无法实用化。但这几年来发展出新的技术可用较高的“共振”接收效率运作方式,由于这个技术较新所以各界的说法很多,但都是有一个很重要的特性,就是接收线圈上都会有配置电容来构成一个具有频率特性的接收天线,在特定的频率下可以得到较大的功率移转。这部份就跟早期的电磁感应不同,当距离拉开后依然就可以得到良好的电力传送效果。共振的原理非常简单,就跟钢琴调音师一样放不同水量的玻璃杯,在精准的调音下可以将某个玻璃杯透过共振将其振碎;但其它的文章都没有提到,若是没有经过专业钢琴调音师训练的一般人,可能永远也调不出可以让玻璃杯振碎的频率!这就是原理简单、实作困难。

小功率无线充电器设计

` 三江学院 本科生毕业设计(论文) 题目小功率无线充电器设计 电气与自动化工程学院(系)电气工程及其自动化专业学生姓名学号 指导教师职称 % 指导教师工作单位电气与自动化工程学院 起讫日期

摘要 无线充电器是指采用电磁感应原理来充电的器材,原理很像变压器。这个系统有两个端口,一个是发射端,一个是接受端,发射端和接受端都是由线圈构成,发射端线圈和电路相连可以发射电磁波,接收端接收电磁波后连接到内部电路产生直流电压。因为这种技术还没有完全成熟很多厂商都在研究这个技术,他们对这种技术都有自己的叫法,例如无线充电、感应电力、不接触充电、无接点充电都是指这种的技术,供电与受电端交互作用就是电磁感应,所以无线充电技术是广义的词没有绝对的参数设定。无线充电技术有很多好处,例如非常方便,通用,安全,很多电气设备都可以使用一种充电基站,相信在将来,所有的设备都会用无线充电。这给人们带来的意义和影响非常重大。这篇文章讲解一种以电磁感应原理为基础在运用一些无线充电控制芯片实现电能传输的无线充电器装置。对电磁感应原理,系统电路和控制芯片进行了重要分析。 关键词:电磁感应;无线充电技术;无线充电控制芯片

ABSTRACT Wireless charger is the principle of electromagnetic induction to charge the equipment, principles like transformers. This system has two ports, one transmitter and one receiving end , the transmitting end and the receiving end is constituted by a coil , the transmitter coil and the circuit connected to the electromagnetic wave can be transmitted , the receiving side receives an electromagnetic wave generating circuit connected to a DC voltage to the internal . Because this technology is not yet fully mature , many manufacturers are looking at this technology, they have their own name for this technology , such as wireless charging , inductive electricity, do not touch the charge , non-contact charging all refer to this technology, interaction with the receiving end power is electromagnetic induction , the wireless charging technology is a broad term there is no absolute parameters. Wireless charging technology has many advantages , such as very convenient , universal , safe, many electrical devices can use a rechargeable base , I believe that in the future, all devices will use wireless charging . This gave rise to a very substantial significance and impact . This article explains a kind of electromagnetic induction principle is based on the use of some wireless charging control chip wireless power transmission device charger . On the principle of electromagnetic induction , circuits and control systems important chip analysis . Key words: Electromagnetic induction principle; Wireless charging technology; Wireless charging control chip;

手机无线充电技术详解

手机无线充电技术详解 未来的愿景:每个人的手机上,只需要有个充电的APP,就可以实现无线充电,网上付费。随时随地,不受环境限制。 不久前三星Galaxy S8发布,其亮点功能之一便是无线充电。三星Galaxy S8搭配了折叠式无线充电器,利用无线充电,三星Galaxy S8的电量能被很快充满。但一个尴尬的事实是,无线充电仍然只是少数厂商的坚持。不过在三星坚持的同时,苹果也暴露了布局无线充电的野心,两大巨头的不谋而合,很可能在这个尚未被重视的领域再次开战。 就目前手机行业现状来说,无线充电尚未大面积流行,没火的原因并不是因为无线充电没有搭载的必要,而是现阶段该技术还存在诸多短板。三星的无线充电方案已经达到了手机无线充电领域最为前端的水准,但仍需要在技术方面得到质的飞跃。 有消息称,三星Galaxy S8无线充电支持Qi和PMA两种协议,这两种协议仍有两大短板尚未解决——传输距离短,摆放位置要求严格,这也是阻碍无线充电流行起来的技术门槛。为何技术难点迟迟难以攻克,我们先要从无线充电的原理讲起。 手机无线充电原理 无线充电的原理就是利用电磁波感应,其过程类似于变压器通电,在发送和接收端各有一个线圈,发送端线圈连接有线电源产生电磁信号,接收端线圈感应发送端的电磁信号从而产生电流给电池充电。无线充电技术的原理研究可以追溯到19世纪30年代,科学家迈克尔?法拉第首先发现了电磁感应原理,即周围磁场

的变化将使电线中产生电流。到了19世纪90年代,爱迪生光谱辐射能研究项目的一名助手,伟大的科学家尼古拉?特斯拉证实了无线传输电波的可能性。现阶段无线充电存在四种不同的商用技术:电磁感应技术、无线电波技术、电磁共振技术、电场耦合技术,主要用在手机无线充电的技术是电磁感应技术和电磁共振技术。当然无线供电在以后的家电,以及发展势头正猛的电动汽车上也有比较广阔的前景。一旦无线充电突破技术壁垒,在保证转化率、安全性、易用性的同时,高效快速的充电就会像科幻小说《三体》里描述的那样,给人类带来生产力的进一步发展。在这里,我们单说一下关乎手机充电的电磁感应、电磁共振。 ①电磁感应式充电 初级线圈一定频率的交流电,通过电磁感应在次级线圈中产生一定的电流,从而将能量从传输端转移到接收端。目前最为常见的手机无线充电解决方案就采用了电磁感应,手机无线充电使用的充电座和终端分别内置了线圈,二者靠近便开始从充电座向终端供电。为提高供电效率,需要使线圈之间的位置对齐,不产生偏移。 现阶段电磁感应无线充电相对于磁场共振充电能够拥有更高的转化率,充电转化率可达80%左右,目前该技术被广泛的运用到了手机无线充电领域。但这种方式的无线充电技术也存在比较明显的弊端——传输距离短、位置要求严格。现阶段上市的无线充电手机,都需要手机与充电板接触才能进行无线充电,而且对放置位置有着极为苛刻的要求。 采用这种方式的无线充电传输距离难以改进,所以厂商针对其放置位置要求严苛的情况进行了改良。2011年8月从事智能手机外设业务的日本Oar公司推出了

简易无线充电系统DIY设计方案

简易无线充电系统DIY设计方案 1、原理简介 无线充电系统主要利用电磁感应原理。电磁感应方案就是利用变压器原理,通过初、次级线圈的感应来实现电能的传输。基于这种方式的无线电能传输系统主要有三大部分组成,即能量发送端、无接触变压器、能量接收端。当发送线圈中通以交变电流,该电流在将在周围介质中形成一个交变磁场,接收线圈中产生的感应电动势可供电给移动设备或者给电池充电。这种方案的特点是能量接收端和次级线圈相连,可灵活移动,电路简单,易于实现,可用于距离要求不高但又不需要机械和电气连接的场合。 2、系统设计 2.1总体设计 无线充电系统由电源电路、高频振荡电路、高频功率放大电路、发射、接收线圈和高频整流滤波电路 5 部分组成,系统框架如下图(1)所示,最后给可充电电池充电。从无线电路传输的原理上看,电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播,要产生电磁波首先要有电磁振荡,电磁波的频率越高其向空间辐射能力的强度就越大,电磁振荡的频率至少要高于 100KHZ,才有足够的电磁辐射。 2.2 高频振荡电路设计

用CMOS 电路六反相器 CD4069 的晶体振荡电路CD4069 构成的两种晶体振荡电路如图(2)所示 用CD4069产生高频振荡比LC振荡电路的效果要好 2.3 功率放大器的设计 电路如图(3)所示 场效应管属于电压控制元件,是一种类似于电子管的三极管,与双极型晶体管相比,场效应晶体管具有输入阻抗高,输入功耗小,温度稳定性好,信号放大稳定性好,信号失真小,

噪声低等特点,而且其放大特性也比电子三极管好,图( 3)功率场效应管电路中三个电阻R1、R2、R3 并联接到场效应管的栅极 G,前级的高频振荡电路也接到 G;原级 S 直接接地;漏极 D 接LC 振荡电路,其谐振频率和前级的高频振荡频率相同。 2.4发射、接收线圈电路流程图 4 如下所示

浅谈ti无线充电芯片及方案

浅谈ti无线充电芯片及方案 无线充电技术发展至今在电子领域已经被深入研究应用,虽然还未曾大范围普及,但在消费电子领域的发展已经取得不错的成绩。手机厂商也纷纷在自家旗舰机上加入这一革新性的先进充电技术,如三星S6、索尼Xperia Z3+、谷歌Nexus 6、诺基亚Lumia 930 等手机均采用了无线充电技术。 无线电源可在应用中带来实际的系统优势,例如,移除连接器以提高可靠性和耐用性、使系统能够防水以方便清洁并通过提高方便性来提供更好的用户体验。其他应用则可受益于移除接触点而带来的更高安全性,以及在极具挑战性的接口上传送电力甚至数据的能力。TI 是无线电源领域久经考验的行业翘楚,可提供广泛的解决方案来支持可穿戴设备、智能手机、汽车、工业和医疗应用。 德州仪器(TI)宣布推出一款支持业界首款全面集成型10 W无线充电解决方案,该解决方案的接收器及相应发送器更为高效,可帮助工业、医疗及个人电子产品的设计人员让设备在摆脱所有连接器的同时,更快、更高效地充电。此次推出的bq51025和bq500215目前都已投入量产,它们不仅支持防水、防尘以及便携式设计,而且还更快的为1节及2节(1S和2S)锂离子电池充电且不会产生过热。此外,该充电解决方案还兼容于市场上任何符合5W Qi标准的产品,有助于消费类电子产品可以更为灵活的在比以往更多的地方充电。 10W高效率无线充电Bq51025接收器不仅支持4.5V至10V的可编程输出电压,而且与TI bq500215无线电源发送器相结合,还可在10W功率下实现高达84%的充电效率,从而可显着提高散热性能。该功能齐备的无线电源接收器解决方案尺寸仅为 3.60 毫米 2.89毫米,可设计应用在众多便携式工业设计方案中,包括零售终端扫描仪、手持式医疗诊断设备以及平板电脑和超级本等个人电子产品。 最新发布的bq500215是一款专用的固定频率10W无线电源数字控制器发送器,兼容于5W Qi接收器。该发送器采用增强型异物检测(FOD)方法在发送任何电源之前可进行异物检

无线充电器原理

无线充电系统设计原理与实作 作者:富达通科技ART 到了2011年初,无线充电技术经过数年的推广 与演进后开始受到各界瞩目。无线充电是指具有电池的装置透过无线感应的方式取得电力而进行充电,其方便性可以让消费者愿意支付额外的费用购买无线充电相关产品;因为有商机才会有厂商愿意投入相关产品开发,目前可以知道非常多知名品牌厂商已经将无线充电这个功能列入新一代的产品的规格之一。由于这产技术相当新颖且各厂商有自己对技术的表述,所以无线充电、感应式电力、非接触充电、无接点充电都是泛指相同的技术,距离1mm 到数公尺都是一样是无线,供电端与受电端交互作用就称感应,所以无线充电是广义的名词没有一定的规格。 原理简单,实作困难 无线充电的方法在实验阶段有开发出很多方法,但目前唯一有机会量产商品化为线圈感应式。线圈感应式的原理很简单,是百年前就被发现物理现象,但过去长久以来这样的线圈感应只运用在绕线式的变压器中。早期就有人发现将绕线式的变压器的将“E”型铁心绕线后对向紧贴后接上市电就可以感应传电,但距离略为分开后感应效果就消失,这是因为在市电60Hz 下,电磁波传递会随着距离增加能量快速衰退。在现今的应用中,由于装置本身需要有外壳包装,发射端加上接收端的外壳厚度至少从3mm 起算,早期电动牙刷产品开发时就发现当距离拉开后需要将线圈上的操作频率提高才能让电力能传送的更远;在电磁波中有一个特性,就是频率越高的电磁波可以传送比较长的距离后能量衰减较低。后来RFID 应用开始发展,主要就规划的三个频段LF 低频(125~135KHz)、HF 高频(13.56MHz)、UHF 超高频(860~960MHz)可以使用,而这些频段也造就了目前无线电力系统在设计之初频率采用的参考点。早在10年前电动牙刷的无线充电就已经上市,当时的传送功率小、充电时间长,在现在的智能手持装置的耗电状况来看,当时的充电能量不敷使用所以10年来还无法实用化。但这几年来发展出新的技术可用较高的“共振”接收效率运作方式,由于这个技术较新所以各界的说法很多,但都是有一个很重要的特性,就是接收线圈上都会有配置电容来构成一个具有频率特性的接收天线,在特定的频率下可以得到较大的功率移转。这部份就跟早期的电磁感应不同,当距离拉开后依然就可以得到良好的电力传送效果。共振的原理非常简单,就跟钢琴调音师一样放不同水量的玻璃杯,在精准的调音下可以将某个玻璃杯透过共振将其振碎;但其它的文章都没有提到,若是没有经过专业钢琴调音师训练的一般人,可能永远也调不出可以让玻璃杯振碎的频率!这就是原理简单、实作困难。

基于单片机的无线充电器设计

基于单片机的无线充电器设计 学生姓名: 学生学号: 院(系):电气信息工程学院 年级专业:电子信息工程 指导教师: 助理指导教师: 二〇一五年五月

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

高效率的低功率充电器和适配器设计

高效率的低功率充电器和适配器设计 如图1所示的线性稳压电源因具有电路简单和成本低廉的优点,一直在低功率应用中很受欢迎。这个线性稳压电源只需少量元件,且与开关电源(SMPS)相比,更易于设计和制造。尽管与线性电源相比,SMPS有体积更小、重量更轻、可在全球范围内适用以及能效更高等多种优势,但无论是制造商还是消费者都不愿因此而付出额外费用。 然而,由于下面两个原因,近年来线性电源开始失宠:其一,许多线性电源都是作为PDA、无绳电话和手机等产品的外部电源(EPS)绑定销售。如今EPS必须遵循严格的新节能标准,而此类标准几乎将线性电源排除在外,因为线性电源通常无法达到工作效率和空载功耗方面的标准(图2)。 其二,大多数先进的低功率SMPS在成本和简单性方面与线性电源相当。本文将探讨低功率SMPS在初步应用阶段的不足之处,并讨论一种可行的方法,以帮助设计工程师设计出在成本效益方面符合EPS新节能标准的产品,并同时缩短设计时间、简化设计工作。 图1:基于线性稳压器、线性工频变压器的AC/DC电源电路。 低功率SMPS的传统设计方法 直到最近,实现低功率SMPS的成本最低的方式是采用振铃扼流变换器(RCC),如图3所示。但RCC有许多缺点,无法取代线性电源,因此在开发符合EPS新节能标准的设计时必须考虑到这些缺点。 首先,RCC本身并不节能,同时也没有热关断保护功能,但所有这些特性都必须添加到基本的RCC设计中,导致成本和设计周期上升。另外,典型的RCC所包含的元件数是同等

线性电源的5~10倍,虽然大部分元件都非常便宜,但由于绝对数量大,所以设计和制造成本较高。 图2:各种线性电源与EPS新节能标准之比较。 元件数目越多,PCB走线就越复杂,优化布局所需的时间也越长,元件贴装时发生误差的可能性也越高。首先,由于为低功率充电器和适配器分配的电路板尺寸通常都非常小,所以往往需要使用双面板来安装表面贴器件(SMD)和进行所有的连接。其次,贴装SMD元件还需要额外的制造步骤,这样会增加生产时间和成本。最后,RCC的性能取决于难以控制的寄生元件值与大量分立元件的组合公差之间的交互作用,在制造过程中需要持续监控和调整,以使收益率保持在可接受的水平。从图3的RCC电路中,可以发现许多这样的缺点: 1. 低效率的启动电路 典型的启动电路(图3中的R1、R2、R3和VR1)会向MOSFET开关驱动电路提供初始工作电流。但是,即使正常工作开始后电流仍会持续流经启动电路,而压降电阻(R1和R2)中的功率损耗(I2R)会使许多SMPS(并非仅RCC)无法满足EPS节能标准的空载功耗要求。当电源工作正常后,可以添加元件来抑制电流流动,但会增加设计的元件数量、复杂度和成本。任何实用的解决方案都必须能消除启动后的损耗,同时不会增加电源的元件数目或成本。

SP3100 and NU1007 NuVolta 符合Qi标准的无线充电应用设计方案

SP3100 and NU1007 Evaluation Module SP3100 and NU1007 evaluation module (EVM) is a 5V-10V input and 10W output, high efficiency WPC wireless power transmitter. The design presents two-chip solution in small package with minimum component count. It is fully compliant with WPC V1.2.3, and yet can be easily customized for any customer-requested solutions. Therefore, the EVM design can communicate with any WPC compliant receivers and guarantee 5W output. The EVM can also support 10W output suitable for fast charger with corresponding coil and receivers. Content 1 Applications (2) 2 Schematic and Bill of Materials (3) 2.1 Schematic (3) 2.2 Bill of Materials (4) 3 PCB layout (5) 3.1 Layout Guidelines (5) 3.2 Layout Example s (7) 4 Connector and Test Point Descriptions (9) 5 Electrical Performance Specifications (10) 6 EVM Test Setup (11) 6.1 EVM Test Setup (11) 6.2 EVM Test Procedure (11) 6.2.1 Power on with no receiver (11) 6.2.2 Power transfer (11) 6.2.3 Over Current Protection(OCP) (11) 6.2.4 Over temperature protection(OTP) (12) 6.2.5 Efficiency (12) 6.2.6 Foreign Object Detection(FOD) (13)

手机充电器用大电流还是小电流好

关于手机充电器用大电流还是小电流好一个人见解 手机电池容量基本是定型的,电池的充电时间跟充电电流大小息息相关,在同等充电电流下,电池容量越大所需的充电时间越长,同理,充电电流越大,所需的充电时间越短。 如果充电器所能提供的电流小于原装充电器标准电流,充电时间势必要延长,如小6一样是1830毫安的容量,原装的充电器是1.2安的,那么就需要4小时左右才能将一块完全没电的电池充满,而再小一点电流的充电器使用的充电时间会更长,如果电流过小还会充不上电,大家可能没有注意到在原装的小6电池上容量后面还有个7.0wh,1830毫mah/7.0wh,后面的7.0wh指的是瓦时,mah(毫安时)和wh(瓦时)是比较常见的2种表示电池容量的方式,用mah乘以电池额定电压就等于wh,以小6的电池为例就是1.83*3.7=12.81瓦时(指的是每小时消耗的电量)这是官标的理论值,对实际使用没有任何意义,因为各人玩机的时间不同和优化不同会有很大的差异,所以有些人在开屏或玩机时,因为使用的小电流的充电器(低于手机电量消耗瓦时)充不上电,而且,如果充电器电流过小,电池会因为长时间充不到额定容量而对电池造成损害(当然这个长时间可能会很长,没有有搜到相关评测资料),并有可能会烧坏充电器。 那为什么大电流充电不会烧机器,这是因为充电电流是由电池和它本身所带的充电保护电路IC决定的,和充电器无关,如果你所使用的充电器电流是5A的,因为机器充电保护电路已经把充电电流限制在一个安全的范围,所以不会对电池损伤,有些手机上还带了保护电流电路,在接入过高电流时,会自动切断充电电路,但是那不是绝对的,虽然有IC保护但是过大的电流,也有可能会让电池鼓涨或爆炸,为了保证电池的寿命和自己的安全,不建议用超过3A的充电器对电池进行充电,更不建议用过小(500mah)的充电器对手机进行充电。 近日,笔者有一款产品需要用到移动电源的电路,看到有一款移动电源带双USB输出,分别输出5V/1A和5V/2A,前者为IPHONE充电,后者为IPAD充电。 于是,笔者产生了一个疑惑:此款移动电源带双USB输出,且两个充电端口的输出电流不一样,那么,如果产品的用户错将IPHONE手机插至5V/2A的充电端口上,是

小功率充电器的设计文献翻译

单位代码01 学号__ 分类号TN7__ 密级___ _ 文献翻译 小功率充电器的设计 院(系)名称 专业名称 学生姓名 指导教师 2010年月6日

黄河科技学院毕业设计(文献翻译)第1页1 引言 为了使手机、电动自行车等所使用的充电器实现自动充电的功能,大都采用各种各样的专用IC充电器集成电路和各种采样电路。本文介绍一种既能省去复杂的IC电路及其外围电路,又能够实现自动充电功能的电路。 2 工作原理 图1充电器的原理图 原理图如图1所示,它由如下元件构成:C1,V1~V4,C2组成滤波整流电路,变压器T为高频变压器,V5,R2,C11组成功率开关管V7的保护电路,NF为供给IC电源的绕组。单端输出IC为UC3842,其8脚输出5 V基准电压,2脚为反相输入,1脚为放大器输出,4脚为振荡电容C9,电阻R7输入端,5脚为接地端,3脚为过流保护端,6脚为调宽单脉冲输出端,7脚为电源输入端。R6、C7组成负反馈,IC启动瞬间

黄河科技学院毕业设计(文献翻译)第2页由R1供给启动电压,电路启动后由NF产生电势经V6,C4,C5整流滤波后供给IC工作电压。R12为过流保护取样电阻,V8,C3组成反激整流滤波输出电路。R13为内负载,V9~V12及R14~R19组成发光管显示电路。V5,V6选用FR107,V8选用FR154,V7选用K792,当V7导通时,整流电压加在变压器T初级绕组Np上的电能变成磁能储存在变压器中,在V7导通结束时,Np绕组中电流达到最大值:Ipmax:Ipmax=(E/Lp)ton式中:E为整流电压;Lp为变压器初级绕组电感;ton为V7导通时间。在V7关闭瞬间,变压器次级绕组放电电流为最大值Ismax,若忽略各种损耗应为:Ismax=nIpmax=n(E/Lp)ton。式中:n为变压器变比,n=Np/Ns,Np,Ns为变压器初、次级绕组匝数。 高频变压器在V7导通期间初级绕组储存能量与V7关闭期间次级绕组释放能量应相等:n(E/Lp)ton=(Uo/Ls)toff,式中:Ls为变压器次级绕组电感;Uo为输出电压;toff为V7关闭时间。 因为Lp=n2Ls,则:(E/nLs)ton=(Uo/Ls)toffEton=nUotoffUo=(ton/ntoff)E,上式说明输出电压Uo与ton成 正比,与匝比n及toff成反比。 变压器在导通期间储存的能量WLp为:WLp=(1/2)LpI2pmax 变压器Lp愈大储能愈多。 变压器储存的能量能否在toff期间释放完,不仅与变压器的工作频率f有关,而且与次级绕组电感量Ls有关,更与负载的大小有关。 储能释放时间常数τ和V7关闭时间toff之间的差异形成变换器三种工作状态,下面分开介绍: (1)toff=τ这种状态为临界状态。各参数波形如图2所示。 图2中ub为Vp的控制电压波形;up为变压器初级Np电势波形;φ为变压器磁通变化波形;uces为V7集电极电压波形;ip,is为初、次级电流波形。 (2)toff>τ各参数波形如图3所示。 从图3中可以看出磁通φ复位时V7关闭还持续一段时间,ip呈线性上升,is线性下降。

关于无线充电技术方案实现的几点建议

关于无线充电技术方案实现的几点建议 一般见到的无线充电,运用的是电流磁效应和电磁感应的原理。1819 年,丹麦科学家厄斯特观察到一段导线上如果通有电流,四周将会产生磁场,可以让指北针偏转。后人则进一步发现,将导线围成环状,甚至绕成线圈,产生的磁场将会更强、更集中,这称为电流磁效应。 至于电磁感应,则是在1831 年由法拉第发现的。让一块磁铁或其他的磁场来源靠近一段没有电流的线圈,线圈上就会产生感应电流,称为电磁感应。值得注意的是,电磁感应的成立要点是磁场要有变化,例如磁铁愈来愈靠近(愈来愈远离其实也可以)。外加磁场若是一直保持不变,是不会有感应电流的。 总而言之,电流磁效应就是电流的流动在四周产生磁场,电磁感应则是不断变化的外加磁场使线圈产生感应电流。 利用电磁感应来充电 这两种物理现象同时运用,就可以进行无线充电。目前的无线充电设备,都包含一个充电座,里面其实正是线圈。将充电座接到家用插头后,线圈周围会因为电流磁效应而产生磁场。要充电的电子产品,里面也都有一个线圈,当它靠近充电座时,充电座的磁场将透过电磁感应,在电子产品的线圈上产生感应电流。感应电流导引到电池,就完成了充电座和电子产品间的无线充电。 你可能会问,磁场不是要改变才能有电磁感应吗?可是充电座与充电的对象距离却始终保持不变,这样为何会有电磁感应呢?原来,家用插座中流出的电是交流电,也就是说电流的方向不断的交替变化,一会儿顺着流,一会儿反着流。正因为如此,充电座线圈产生的磁场随之不断在变换方向,并非保持不变,符合电磁感应的要件。 近来愈来愈多智慧型手机、平板电脑开始提供无线充电的功能,但是不幸的是,它们充电

相关文档
最新文档