水箱恒温控制系统的设计

水箱恒温控制系统的设计
水箱恒温控制系统的设计

水箱恒温控制系统的设计

[摘要]恒温控制在工业生产过程中举足轻重,温度的控制直接影响着工业生产的产量和质量。本设计是基于STC89C521单片机的恒温箱控制系统,系统分为硬件和软件两部分,其中硬件包括:温度传感器、显示、控制和报警的设计;软件包括:键盘管理程序设计、显示程序设计、控制程序设计和温度报警程序设计。编写程序结合硬件进行调试,能够实现设置和调节初始温度值,进行数码管显示,当加热到设定值后立刻报警。另外,本系统通过软件实现对按键误差、加热过冲的调整,以提高系统的安全性、可靠性和稳定性。本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机STC89C52作为主控芯片,数码管作为显示输出,实现了对温度的实时测量与恒定控制。

The Design of Refrigerator Door Shell Shaping Control

System

Abstract:The system makes use of the single chip STC89C52 as the temperature controlling center, uses numeral thermometer DS18B20 which transmits as 1-wire way as the temperature sensor, through the pressed key, the numerical code demonstrated composite of the man-machine interactive connection ,to realize set and adjust the initial temperature value. After the system works, the digital tube will demonstrate the temperature value, when temperature arriving to the setting value, the buzzer will be work immediately. In addition, the system through the software adjusting to the pressed key error, and the excessively hutting. All of these are in order to enhance the system’s security, reliability and stability.

第一章·绪论

1.1课题研究的背景

温度是工业上常见的被控参数之一,特别是在冶金、化工、建材、食品加工、机械制造等领域,恒温控制系统被广泛应用于加热炉、热处理炉、反应炉等。在一些温控系统电路中,广泛采用的是通过热电偶、热电阻或PN结测温电路经过相应的信号调理电路,转换成A/D转换器能接收的模拟量,再经过采样/保持电路进行A/D转换,最终送入单片机及其相应的外围电路,完成监控。但是由于传统的信号调理电路实现复杂、易受干扰、不易控制且精度不高。本文介绍单片机通过数字温度传感器检测外部温度对水箱进行恒温控制的设计,通过控制继电器的通断,进而控制电炉的加热来实现恒温控制。因此,本系统采用一种新型的可编程温度传感器(DS18B20),不需复杂的信号处理电路和A/D转换电路就能直接与单片机完成数据采集和处理,实现方便、精度高,可根据不同需要用于各种场合。在日常生活中,也经常用到电烤箱、微波炉、电热水器、烘干箱等需要进行温度检测与控制的家用电器。采用单片机实现温度控制不仅具有控制方便、简单、灵活等优点,而且可以大幅度地提高被控温度的技术指标,从而大大提高产品的质量,现以恒温水箱控制系统的设计进行介绍。

1.2 国内外恒温控制技术发展现状及趋势

1、国外恒温控制的发展现状及趋势

自70年代以来,由于工业过程控制的需要,特别是在微电子技术和计算机技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外恒温控制系统发展迅速,并在智能化,自适应参数的自整定等方面取得了很大的科技成果。在这方面以日本、美国、德国、瑞典等国技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表。

目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。虽然温度控制系统在国内各行各业的应用已经十分广泛,但从国内生产的温度控制器及技术来讲,其总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。

2、国内恒温控制的发展现状及趋势

我国目前在恒温控制技术这方面总体技术水平处于20世纪80年代中后期水平,成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后、复杂、时变的温度系统控制。在适应于较高控制场合的智能化、自适应控制仪表领域内,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。因此,我国在恒温控制等控制仪表行业与国外还有着一定的差距。

从过程量的检测角度出发,温度是最常见的过程变量之一,它是一个非常重要的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。而恒温控制技术在工业领域应用非常广泛,由于其具有工况复杂、参数多变、运行惯性大、控制滞后等特点,它对控制调节器要求较高。其温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。尽管恒温控制很重要,但是要控制好温度常常会遇到意想不到的困难。

随着嵌入式系统开发技术的快速发展及其在各个领域的广泛应用,人们对电子产品的小型化和智能化要求越来越高,作为高新技术之一的单片机以其体积小、价格低、可靠性高、适用范围大以及本身的指令系统等诸多优势,在各个领域、各个行业都得到了广泛应用。

1.3 课题目的及意义

随着社会的发展,科技的进步,以及测温仪器在各个领域的运用,智能化已经成为现在温度测量的主流发展方向。温度是科学技术中最近本的物理量之一,物理、化学、生物等学科都离不开温度的测量。在工业生产和实验研究中,温度常常是表征对象和过程的重要参数之一。例如,某些化学反应要在适当的温度下进行一定的时间才能出现反应现象;分馏的操作也是要有苛刻的温度环境才能正常进行以免产生杂质;生物工程中的培养基的培养等。此课题的恒温水箱主要是用于实验室的化学反应,对温度的环境要求比较苛刻,对温度控制的先决条件是必须能够精确地掌握实时温度。

通过对恒温水箱的设计,不仅能够满足实验室的实验需求,同时也是让自己对protel等专业软件在电路设计及仿真、51单片机的开发编程又一个深入的学习。同时也让自己对开发一个完整的系统有了一个更加深入的认识。

1.4 技术要求

1.4.1 本设计的主要功能

(1)可以对温度进行自由设定,但必须在0~100℃内,设定时可以实时显示出设定的温度值。

(2)根据设定的温度值与实际检测的温度值之差来采取不同的加热制冷方式。

(3)能够保持实时显示水温,显示位数4位,分别为百位、十位、个位和小数位(但由于规定不超过70度,所以百位也就没有实现,默认的百位是不显示的)。

1.4.2 本设计的技术指标

(1)可以对温度进行自由设定,并能用液晶显示,显示最小区分度为0.1°C。(2)可以测量并显示水的温度测量误差在±0.5°C内。

(3)水温控制系统应具有全量程(10°C-70°C)内的升温、降温功能。

第2章 系统方案选择和工作原理

2.1 系统综述

本文所要研究的课题是基于单片机控制的水箱恒温控制系统主要是介绍了对水箱温度的测控,实现了温度的实时显示及控制。用DS18B20、STC89C52单片机及LCD 的硬件电路完成对水温的实时检测及显示,由DS18B20检测炉内温度并在LCD1602中显示。控制器是用STC89C52单片机,根据设定的算法计算出控制量,根据控制量通过控制固态继电器的导通和关闭从而控制电阻丝的导通时间,以实现对水温的控制。DS18B20可直接将温度转化成串行数字信号供微机处理。而且每片DS18B20都有唯一的产品号,可以一并存入其ROM 中,以便在构成大型温度测控系统时在单线上挂接任意多个DS18S20芯片。从DS18S20读出或写入DS18S20信息仅需要一根口线其读写及其温度变换功率来源于数据总线,该总线本身也可以向所挂接的DS18B20供电,故不需要额外电源。同时DS18B20能提供九位温度读数,它无需任何外围硬件即可方便地构成温度检测系统。本设计主要实现温度测控,温度显示,温度门限设定,超过设定的门限值时自动启动相应的功能。

2.2各模块电路的方案选择及论证

根据题目的基本要求,设计任务主要设计一个水温测控系统,控制水箱中水的温度,选择合适的控制规律,使水箱中水的温度按预定规律变化,并且能够进行越限报警。可通过键盘,显示电路设定目标温度、控制参数、运行等。

2.2.1 系统硬件、软件总框图 单片机按键电路

温度采集电路

晶振电路复位电路

降温电路升温电路LCD 显示电路报警电路

图2-2-1 温度控制系统硬件设计方框图

图2-2-2 温度控制系统软件设计方框图

2.3 方案论证

2.3.1 温度传感器的选择

方案一:采用热敏电阻,可满足40~90℃的测量范围,但热敏电阻精度、重复性、可靠性都比较差,其测量温度范围相对较小,稳定性较差,不能满足本系统温度控制的范围要求。

方案二:采用温度传感器铂电阻 Pt1000。铂热电阻的物理化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件,且此元件线性较好。在 0—100 摄氏度时,最大非线性偏差小于 0.5 摄氏度。铂热电阻与温度关系是,Rt = R0(1+At+Bt*t);其中 Rt 是温度为 t 摄氏度时的电阻;R0 是温度为 0 摄氏度时的电阻;t 为任意温度值,A,B 为温度系数。

方案三:采用模拟温度传感器AD590K,AD590K具有较高精度和重复性(重复性优于0.1℃),其良好的非线性可以保证优于±0.1℃的测量精度。但其测量的值需要经过运算放大、模数转换再传给单片机,硬件电路较复杂,调试也会相对困难,所以本系统不宜采用此法。

方案四:采用数字温度传感器DS18B20,DS18B20提供九位温度读数,测量范围-55℃~125℃,采用独特1-WIRE 总线协议,只需一根口线即实现与MCU 的双向通讯,具有连接简单,高精度,高可靠性等特点。并且,DS18B20支持一主

多从,若想实现多点测温,可方便扩展。

综合以上四种方案,本设计采用第四种方案,利用数字温度计DS18B20作为温度传感器。

2.3.2 显示器件的选择

方案一采用三个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有亮度高、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,显示时要加驱动电路,硬件电路复杂。

方案二采用带有字库的12864液晶显示屏。12864液晶显示屏(LCD)具有功耗低、轻薄短小无辐射危险,平面显示及影像稳定,不闪烁,可视面积大,画面效果好,能显示文字和图像,抗干扰能力强。但是12864价格昂贵。

方案三1602液晶也叫1602字符型液晶它是一种专门用来显示字母、数字、符号等的点阵型液晶模块它有若干个5×7或者5×11等点阵字符位组成每个点阵字符位都可以显示一个字符。每位之间有一个点距的间隔每行之间也有间隔起到了字符间距和行间距的作用,正因为如此所以他不能显示图形但是价格便宜编程简单。

比较以上方案方案三是首选,采用方案三作为显示模块。

2.3.3 单片机的选择

所设计控制系统主要用于控制电热丝和制冷片的工作与否、对温度测量信号的接收和处理、控制显示电路对设定温度值、系统实际温度值和温度曲线的实时显示以及控制键盘实现对温度值的设定等。由于单片机运算功能强,软件编程灵活、自由度大,可用软件编程实现各种算法和逻辑控制,并且其具有功耗低、体积小、技术成熟和成本低等优点。因此采用STC89C52作为系统控制器。

2.3.4 加热降温装置的选择

要实现任意设定点温度的控制,就必须能控制电加热器/制冷片的工作与否,因此要利用所选定的单片机控制加热器/制冷片电源的通断。因为加热器/制冷片的工作电压是220V和12V对单片机来说都是“强电”因此要用弱电实现对强电的控制。由于可控硅在电路中能够实现交流电的无触点控制,适合在高电压、大电流下工作。以小电流控制大电流,并且不像继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好。在调速、调光、调压、调温以及其他各种控制电路中都有它的身影。由于单片制冷片电流在8-10A电流较大,因此本文采用可控硅实现对加热器/制冷控制模块设计。

根据以上分析,结合器件和设备等因素确定如下方案

①采用STC89C52单片机作为控制器,分别对温度采集、LCD显示、温度设定、加热装置进行控制。

②温度测量模块采用DS18B20,此器件的使用可以省去A/D,模数转换部分。

③可控硅实现对加热器/制冷控制模块可以满足设计要求。

④显示用LCD1602显示屏显示温度值和时间用数字键和功能设置键实现温度、时间的设置。

相关主题
相关文档
最新文档