牛顿运动定律——传送带问题学案、试题、答案

合集下载

牛顿运动定律与直线运动 二轮专题复习:牛顿运动定律的传送带问题 含解析 精品

牛顿运动定律与直线运动 二轮专题复习:牛顿运动定律的传送带问题 含解析 精品

牛顿运动定律的传送带问题一.滑块在水平传送带上运动常见的三个情景情景一(1)可能一直加速(2)可能先加速后匀速情景二(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景三(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v 返回时速度为v0例题1.如图所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2>v1,则( )A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用解析:选B.物块滑上传送带后将做匀减速运动,t1时刻速度为零,此时小物块离A处的距离达到最大,选项A错误;然后在传送带滑动摩擦力的作用下向右做匀加速运动,t 2时刻与传送带达到共同速度,此时小物块相对传送带滑动的距离最大,选项B 正确;0~t 2时间内,小物块受到的摩擦力方向始终向右,选项C 错误;t 2~t 3时间内小物块不受摩擦力,选项D 错误.例题2. (多选)如图所示,质量为m 的物体用细绳拴住放在粗糙的水平传送带上,物体距传送带左端的距离为L .当传送带分别以v 1、v 2的速度逆时针转动(v 1<v 2),稳定时绳与水平方向的夹角为θ,绳中的拉力分别为F 1,F 2;若剪断细绳时,物体到达左端的时间分别为t 1、t 2,则下列说法正确的是( )A .F 1<F 2B .F 1=F 2C .t 1一定大于t 2D .t 1可能等于t 2解析:选BD.绳剪断前物体的受力情况如图所示,由平衡条件得F N +F sin θ=mg ,F f =μF N =F cos θ,解得F =μmg μsin θ+cos θ,F 的大小与传送带的速度无关,选项A 错误,B 正确;绳剪断后m 在两速度的传送带上的加速度相同,若L ≤v 212μg ,则两次都是匀加速到达左端,t 1=t 2,若L >v 212μg ,则物体在传送带上先加速再匀速到达左端,在速度小的传送带上需要的时间更长,t 1>t 2,选项C 错误,D 正确.例题3、 (多选)如图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P 速度随时间变化的图象可能是( )解析若v1>v2,且P受到的滑动摩擦力大于Q的重力,则可能先向右匀加速,加速至v1后随传送带一起向右匀速,此过程如图B所示,故B正确.若v1>v2,且P 受到的滑动摩擦力小于Q的重力,此时P一直向右减速,减速到零后反向加速.若v 2>v1,P受到的滑动摩擦力向左,开始时加速度a1=FT+μmgm,当减速至速度为v1时,摩擦力反向,若有F T>μmg,此后加速度a2=FT-μmgm,故C正确,A、D错误.答案BC二、倾斜传送带问题滑块在倾斜传送带上运动常见的四个情景情景一①可能一直加速②可能先加速后匀速情景二①可能一直加速②可能先加速后匀速③可能先以a1加速后以a2加速情景三①可能一直加速②可能先加速后匀速③可能一直匀速④可能先以a1加速后以a2加速情景四①可能一直加速②可能一直匀速③可能先减速后反向加速例题4 如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,在传送带顶端A处无初速度的释放一个质量为m=0.5 kg的物体,已知物体与传送带间的动摩擦因数μ=0.5,g取10 m/s2.求:(sin 37°=0.6,cos 37°=0.8)(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.解析(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mg(sin 37°-μcos 37°)=ma则a=g sin 37°-μg cos 37°=2 m/s2,根据l=12at2得t=4 s.(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a1,由牛顿第二定律得mg sin 37°+μmg cos 37°=ma1则有a1=mg sin 37°+μmg cos 37°m=10 m/s2.设当物体运动速度等于传送带转动速度时经历的时间为t1,位移为x1,则有t1=va1=1010s=1 s,x1=12a1t21=5 m<l=16 m.当物体运动速度等于传送带速度瞬间,有mg sin 37°>μmg cos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力——摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a2,则a2=mg sin 37°-μmg cos 37°m=2 m/s2x2=l-x1=11 m又因为x2=vt2+12a2t22,则有10t2+t22=11解得t2=1 s(t2=-11 s舍去)所以t总=t1+t2=2 s.答案(1)4 s (2)2 s例题5.如图所示,A、B两个皮带轮被紧绷的传送皮带包裹,传送皮带与水平面的夹角为θ,在电动机的带动下,可利用传送皮带传送货物.已知皮带轮与皮带之间无相对滑动,皮带轮不转动时,某物体从皮带顶端由静止开始下滑到皮带底端所用的时间是t,则( )A.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定大于tB.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于tC .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间可能等于tD .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t解析:选D.传送带不动物体下滑时,物体受摩擦力向上,故加速度a =g sin θ-μg cos θ; 当传送带向上运动时,摩擦力一定也是向上,而摩擦力的大小不变,故a 不变,所以物体运动到B 的时间不变,故A 、B 错误;当皮带向下运动时,物体受摩擦力开始是向下的,故加速度开始一定增大,位移不变,故由A 滑到B 的时间小于t ,故C 错误,D 正确.例题6.如图所示为上、下两端相距 L =5 m 、倾角α=30°、始终以v =3 m/s 的速率顺时针转动的传送带(传送带始终绷紧).将一物体放在传送带的上端由静止释放滑下,经过t =2 s 到达下端,重力加速度g 取10 m/s 2,求:(1)传送带与物体间的动摩擦因数多大?(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?解析:(1)物体在传送带上受力如图所示,物体沿传送带向下匀加速运动,设加速度为a .由题意得L =12at 2解得a =2.5 m/s 2 由牛顿第二定律得mg sin α-F f =ma 又F f =μmg cos α故μ=0.29.(2)如果传送带逆时针转动,要使物体从传送带上端由静止释放能最快地到达下端,则需要物体有沿传送带向下的最大加速度即所受摩擦力沿传送带向下,设此时传送带速度为v m,物体加速度为a′.由牛顿第二定律得mg sin α+F f=ma′又v2m=2La′故v m=2La′=8.66 m/s.答案:(1)0.29 (2)8.66 m/s例题7.(多选)如图所示是某工厂所采用的小型生产流水线示意图,机器生产出的物体源源不断地从出口处以水平速度v0滑向一粗糙的水平传送带,最后从传送带上落下装箱打包.假设传送带静止不动时,物体滑到传送带右端的速度为v,最后物体落在P处的箱包中.下列说法正确的是( )A.若传送带随皮带轮顺时针方向转动起来,且传送带速度小于v,物体仍落在P 点B.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v0,物体仍落在P点C.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v,物体仍落在P 点D.若由于操作不慎,传送带随皮带轮逆时针方向转动起来,物体仍落在P点解析:选AD.若传送带静止,物体滑到传送带右端的过程中,物体一直减速,其加速度a=μg,v2-v20=2aL,当传送带顺时针转且速度小于v时,物体仍一直减速,到达传送带右端速度仍为v,因而物体仍落在P点,A正确;当传送带顺时针转且速度大于v0时,物体应先加速,因而到达右端时速度一定大于v,应落在P点右侧,B 错误;当传送带顺时针转且速度大于v时,物体在传送带上应先减速,当速度达到传送带速度时便和传送带一起匀速运动,到达右端时速度大于v,应落在P点右侧,C 错误;当传送带逆时针转时,物体一直减速,到达右端时速度为v,仍落在P点,D 正确.。

运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

牛顿第二定律的运用之传送带问题一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。

【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求:(1)经过多长时间才与皮带保持相对静止?(2)传送带上留下一条多长的摩擦痕迹?【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动(2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律:皮箱加速度:a==m/s2=6m/s2由v=at 得t==s=0.1s(2)到相对静止时,传送带带的位移为s1=vt=0.06m皮箱的位移s2==0.03m摩擦痕迹长L=s1--s2=0.03m(10分)所以,(1)经0.1s行李与传送带相对静止(2)摩擦痕迹长0.0.03m二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。

此时物体可能经历两个过程——匀加速运动和匀速运动。

【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示:可知,物体所受合力F合=f-Gsinθ又因为f=μN=μmgcosθ所以根据牛顿第二定律可得:此时物体的加速度a===m/s2=1.2m/s2当物体速度增加到10m/s时产生的位移x===41.67m因为x<50m所以=8.33s所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动故匀速运动的位移为50m-x,所用时间所以物体运动的总时间t=t1+t2=8.33+0.83s=9.16s答:物体从A到B所需要的时间为9.16s.三、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的顶端,物体被向下传送。

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1. 在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为S o=lOm,传送带与行李箱间的动摩擦因数卩=0.2当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1) 行李箱开始运动时的加速度大小a;(2) 行李箱从A端传送到B端所用时间t;(3) 整个过程行李对传送带的摩擦力做功W。

【答案】⑴,(2)薜耳⑶="-纠【解析】【分析】行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动,根据牛顿第二定律及运动学基本公式即可解题行李箱开始运动时的加速度大小和行李箱从A端传送到B 端所用时间;根据做功公式求解整个过程行李对传送带的摩擦力做功;【详解】解:(1)行李在传送带上加速,设加速度大小为aI__7(2)行李在传送带上做匀加速直线运动,加速的时间为t1V 2灯== Is1所以匀加速运动的位移为:s\=尹甘=lrnSo-Si 10-1行李随传送带匀速前进的时间:(2 = ---------- = —-一=4.5$v 2行李箱从A传送到B所需时间::3 --气出⑶t1传送带的的位移为:怜一叽“ -根据牛顿第三定律可得传送带受到行李摩擦力为:『◎『整个过程行李对传送带的摩擦力做功:w =7比=-吓阿=-20/2. 如图甲所示,质量为m的A放在足够高的平台上,平台表面光滑•质量也为m的物块B放在水平地面上,物块B与劲度系数为k的轻质弹簧相连,弹簧与物块A用绕过定滑轮的轻绳相连,轻绳刚好绷紧•现给物块A施加水平向右的拉力F (未知),使物块A做初速度为零的匀加速直线运动,加速度为a,重力加速度为g,A、B均可视为质点.根据v 2 2ax 解得:v . 2ax 对物体A:F T ma ; 对物体B:T=mg , 解得 F=ma+mg ; (2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:F cosT | m C a ,其中T | kx mg ;竖直方向:F sin m C g ;联立解得m e3mg4g 3a3.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止 于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量 m1=0.98kg 的小木块.射钉枪以速度v °=ioom/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数 卩=0.05其它摩擦不计.若木板每次与 A 、B 相碰后速度立即减为 0,且与A 、B 不粘连,重力加 速度 g=10m/s 2.求:(1) 当物块B 刚好要离开地面时,拉力 F 的大小及物块 A 的速度大小分别为多少;(2)若将物块 A 换成物块C ,拉力F 的方向与水平方向成 37°角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块 C 的质量应满足什么条件? ( sin37°0.6,cos37° 0.8)【答案】(1) F ma mg;v 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时, B 受力分析有mg kx ,得:x2嘗(2) m C设弹簧的伸长量为mg k3mg 4g 3ax ,物块A 的速度大小为v ,对物块2amg k(3)木块最终停止时离 A 点的距离s.【答案】(1) v 2m/s (2) F N 12.5N (3) L 1.25m 【解析】(1) 设铁钉与木块的共同速度为 v ,取向左为正方向,根据动量守恒定律得:m °V 0 (m ° mjv解得:v 2叹;⑵木块滑上薄板后,木块的加速度 印 g 0.5,且方向向右设经过时间t ,木块与木板共同速度 v 运动 则:va 2t此时木块与木板一起运动的距离等于木板的长度.1 .2 1 2x vt a 1ta 2t L2 2故共速时,恰好在最左侧 B 点,此时木块的速度 v v a 1t 1^S 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2vF N mg m R代入相关数据解得:F N =12.5N. 由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;1 2⑶木块还能上升的高度为 h ,由机械能守恒有:(m ° mjv (m 0 m^gh2h 0.05m 0.4m木块不脱离圆弧轨道,返回时以 1m/s 的速度再由B 处滑上木板,设经过 t 1共速,此时木 板的加速度方向向右,大小仍为a 2,木块的加速度仍为 a 1,板产生的加速度a 2 mg M, 且方向向左则:v2 a1t1 a2t1,解得:t1 1s1 2 1 2此时x v t1a-i t-i a2t| 0.5m2 2v3v2 at10.5叹碰撞后,v薄板=0,木块以速度V3=0.5m/s的速度向右做减速运动v3设经过t2时间速度为0,则t2a;1s| 2x v3t2a2t2 0.25m2故△L=b △x' - x=1.25m即木块停止运动时离A点1.25m远.4. 如图,光滑固定斜面上有一楔形物体A。

牛顿定律难点--传送带问题

牛顿定律难点--传送带问题

牛顿运动定律(三)姓名__________------传送带专题一、传送带的分类1.按放置方向分水平、倾斜两种;2.按转向分顺时针、逆时针转两种;二、水平传送带.当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力达到最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(摩擦力为零或为静摩擦力).Ⅰ、V0=0,传送带顺时针以V旋转例1、:如图所示为水平传送带装置,绷紧的皮带始终保持以υ=1m/s的速度移动,一质量m=0.5kg的物体(视为质点)。

从离皮带很近处轻轻落到一端A处。

若物体与皮带间的动摩擦因素µ=0.1。

AB两端间的距离为L=2.5m。

试求:物体从A运动到B的过程所需的时间为多少?例2、如图所示,一平直的传送带以速度V=2m/s匀速运动,传送带把A处的工件运送到B处,A、B相距L=10m.从A处把工件无初速地放到传送带上,经时间t=6s能传送到B处,欲用最短时间把工件从A处传到B处,求传送带的运行速度至少多大.≠0,传送带顺、逆转的情况:2、物体的初速度vAB37 °例3. 如图所示,一水平方向足够长的传送带以恒定的速度V=2m/s沿顺时针方向匀速转动,传送带传送带右端有一与传送带等高的光滑水平面,一物体以恒定的速率V’=4m/s 沿直线向左滑上传送带,求物体的最终速度多大?三、倾斜传送带.当传送带倾斜运动时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ的关系,从而正确判断物体的速度和传送带速度相等时物体运动的性质.Ⅰ、物休初速为V0=0,,传送带向上运动例4.一传送带装置示意如图,传送带与地面倾角为37 ° ,以4m/s的速度匀速运行,在传送带的低端A处无初速地放一个质量为0.5kg的物体,它与传送带间动摩擦因素μ=0.8,A、B间长度为25m,试回答下列问题:(1)说明物体的运动性质(相对地球)(2)物体从A到B的时间为多少?2、物休初速为V0=0,传送带向下运动例5、如图所示,传送带与地面倾角θ=37°,从A到B长度为16 m,传送带以v0=10 m/s的速率逆时针转动.在传送带上端A无初速地放一个质量为m=0.5 kg的物体,它与传送带间的动摩擦因数μ=0.5.求物体从A运动到B需要的时间.(sin37°=0.6,cos37°=0.8,取g=10 m/s2)课后练习1、错误!未找到引用源。

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。

高中物理牛顿定律应用-传送带问题(选择题+解答题)

高中物理牛顿定律应用-传送带问题(选择题+解答题)

高中物理牛顿定律应用-传送带问题(选择题+解答题)一.选择题(共13小题)1.如图所示,一水平方向足够长的传送带以恒定的速率v1沿顺时针方向转动,传送带右端有一个与传送带等高的光滑水平面.一物体以恒定速率v2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,速度为v2′,则下列说法中正确的是()A.只有v1=v2时,才有v2′=v1B.若v1>v2时,则v2′=v1C.若v1<v2时,则v2′=v1D.不管v2多大,总有v2′=v22.如图所示,一水平方向足够长的传送带以恒定的速率v1沿顺时针转动,传送带右侧有一与传送带等高的光滑水平面,一物块以初速度v2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,此时其速率为v3,则下列说法正确的是()A.若v1<v2,则v3=v1B.若v1>v2,则v3=v1C.只有v1=v2时,才有v3=v1D.不管v2多大,总有v3=v13.质量为m的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是()A.电动机多做的功为mv2B.传送带克服摩擦力做的功为mv2C.电动机增加的功率为2μmgvD.物体在传送带上的划痕长为4.如图所示,一水平方向足够长的传送带以恒定的速率v1沿顺时针转动,传送带右侧有一与传送带登高的光滑水平面,一物块以初速度v2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面、此时其速率为v3,则下列说法正确的是()A.只有v1=v2时,才有v3=v1B.若v1>v2,则v3>v2C.若v1<v2,则v3=v2D.不管v2多大,总有v3=v15.如图,水平传送带由电动机带动,始终保持以速度v匀速运动,质量为m的物体在水平传送带上由静止释放,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是()A.电动机多做的功为mv2B.物体在传送带上的划痕长C.传送带克服摩擦力做的功为mv2D.电动机增加的功率为μmgv6.如图所示,一水平传送带以速度v1向右匀速传动,某时刻有一物块以水平速度v2从右端滑上传送带,物块与传送带间的动摩擦因数为μ,则()A.如果物块能从左端离开传送带,它在传送带上运动的时间一定比传送带不转动时运动的时间长B.如果物块还从右端离开传送带,则整个过程中,传送带对物块所做的总功一定不会为正值C.如果物块还从右端离开传送带,则物块的速度为零时,传送带上产生的滑痕长度达到最长D.物块在离开传送带之前,一定不会做匀速直线运动7.如图所示,一水平方向足够长的传送带以恒定的速率v1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面.一物块以初速度v2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,此时其速率为v2′,则下列说法正确的是()A.只有v1=v2时,才有v2′=v1B.若v1<v2,则v2=v2′C.若v1<v2,则v2′=v1D.不管多大,总有v2′=v28.负重奔跑是体能训练的常用方式之一,如图所示的装置是运动员负重奔跑的跑步机.已知运动员质量为m1,绳拴在腰间沿水平方向跨过定滑轮(不计滑轮摩擦、质量)悬挂质量为m2的重物,人用力向后蹬,使传送带沿顺时针方向转动,下面说法正确的是()A.若m2静止不动,运动员对传送带的摩擦力大小为m1gB.若m2静止不动,传送带转动越快,运动员对传送带的摩擦力也越大C.若m2匀速上升时,上升速度越大,运动员对传送带的摩擦力也越大D.若m2匀加速上升时,m1越大,运动员对传送带的摩擦力也越大9.如图所示,传送带装置保持2m/s的速度顺时针转动,现将一质量m=0.5kg的物体从离皮带很近的a点,轻轻的放上,设物体与皮带间的摩擦因数μ=0.2,a、b间的距离L=4m,则物体从a点运动到b点所经历的时间为()A.2.5s B.3s C.2s D.1s10.如图所示,倾角为θ的传送带沿逆时针方向以加速度a加速转动时,小物体A与传送带相对静止.重力加速度为g.则()A.只有a>gsinθ,A才受沿传送带向上的静摩擦力作用B.只有a<gsinθ,A才受沿传送带向上的静摩擦力作用C.只有a=gsinθ,A才受沿传送带向上的静摩擦力作用D.无论a为多大,A都受沿传送带向上的静摩擦力作用11.质量为m的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是()A.电动机多做的功为mv2B.传送带克服摩擦力做的功为mv2C.电动机增加的功率为μmgvD.物体在传送带上的划痕长为12.如图,传送带不转动时,轻放的木块从顶端匀加速下滑到底端所需的时间为t0,传送带顺时针转动时,轻放的木块从顶端下滑到底端所需的时间为t,那么,t与t0的关系是()A.t一定等于t0B.t可能大于t0C.t可能小于t0D.t不可能等于t013.如图所示,物体由静止开始从传送带顶端下滑到底端.若传送带静止,所用的时间为t;若在物体下滑过程中,传送带开始顺时针转动,所用时间为t′.则t和t′的关系一定是()A.t′>t B.t′=t C.t′<t D.不能确定二.解答题(共22小题)14.如图甲所示,可视为质点的小物块B处于长度L=2m的长木板A的最右端,A、B的质量分别为m A=1kg与m B=2kg,A与地面间动摩擦因数μ1=0.2,初始时AB均静止。

高中物理 练习 牛顿运动定律的应用之传送带问题 新人教版必修1

高中物理 练习 牛顿运动定律的应用之传送带问题 新人教版必修1

自助6 牛顿运动定律的应用之传送带问题例1.在光滑的水平面上,足够长的木板质量M=8kg,由静止开始在水平拉力F=8N 作用下向右运动,如图所示,当速度达到1.5m/s 时,将质量为m=2kg 的物体轻轻的放在木板的右端,已知木板与物体之间的动摩擦因数μ=0.2,问:物体放到木板上以后,经多长时间物体与木板相对静止,在这段时间里,物体相对木板滑动的距离多长。

答案:解:放上木块后,木块做加速运动,由牛顿第二定律得:μmg=ma 1 a 1=2m/s 2 ①做加速运动木板 F-μmg=Ma 2 a 2 =0.5m/s2 ②经时间t 两物体相对静止 a 1 t =V + a 2t t=1s ③木块向前位移 s 1=a 1t 2 /2 s 1=1m, ④木板向前位移 S 2=Vt+ a 2t 2 /2 S 2=1.75m ⑤物体相对木板滑动的距离S= S 2-- S 1=0.75m ⑥规范解题:学案重现:.如图所示,水平传送带以2m/s 的速度匀速运动,传送带两端A 、B 间的距离为20m ,将一质量为2kg 的木块无初速度的放在A 端,已知木块与传送带间的动摩擦因数为0.2。

求木块从A 端运动到B 端所用的时间。

(g=10m/s 2)解:对木块水平方向应用牛顿第二定律μmg=ma ①a=2m/s 2木块加速时间t 1 , 加速位移s 1V=at 1 t 1=1s ②S 1=at 2/2 =1m ③ 此后木块与传送带保持相对静止匀速运动, 匀速运动为t 2S 2=S-S 1=19m ④t 2= S 2/V =9.5s ⑤木块从A 端运动到B 端所用的时间t t= t 1+ t 2=10.5s ⑥练习:1.在民航和火车站可以看到用于对行李进行安全检查的水平传送带。

当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动。

随后它们保持相对静止,行李随传送带一起前进。

设传送带匀速前进的速度为0.25m/s ,把质量为5kg 的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6m/s 2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下一段多长的摩擦痕迹?A B F2. 如图所示的传送皮带,其水平部分AB 长BC 与水平面夹角,长度,一小物体P 与传送带的动摩擦因数,皮带沿A 至B 方向运行,速率为,若把物体P 放在A 点处,它将被传送带送到C 点,且物体P 不脱离皮带,求物体从A 点被传送到C 点所用的时间。

6传送带问题

6传送带问题

桐乡市高级中学2018学年第一学期高一物理(创新班)一课一练(6)完成时间建议:45分钟θ A B 必修I 第四章牛顿运动定律专题(传送带问题)班级: 学号: 姓名:( )1、如图所示,质量为m 的物体用细绳拴住放在水平粗糙传送带上,物体距传送带左端距离为L ,稳定时绳与水平方向的夹角为θ,当传送带分别以v 1、v 2的速度做逆时针转动时(v 1<v 2),绳中的拉力分别为F 1、F 2;若剪断细绳时,物体到达左端的时间分别为t 1、t 2,则下列说法正确的是A .F 1<F 2B .F 1=F 2C .t 1大于t 2D .t 1可能等于t 2( )2、如图,A 、B 两个皮带轮被紧绷的传送皮带包裹,传送皮带与水平面的夹角为θ,在电动机的带动下,可利用传送皮带传送货物。

已知皮带轮与皮带之间无相对滑动,皮带轮不转动时,某物体从皮带顶端由静止开始下滑到皮带底端所用的时间是t ,则A .当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定大于tB .当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t C .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间可能等于tD .当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t( )3、如图所示,一粗糙的水平传送带以恒定的速度v 1沿顺时针方向运动,传送带的左、右两端皆有一与传送带等高的光滑水平面,一物体以恒定的速度v 2沿水平面分别从左、右两端滑上传送带,下列说法正确的是A .物体从右端滑到左端所须的时间一定大于物体从左端滑到右端的时间B .若v 2<v 1,物体从左端滑上传送带必然先做加速运动,再做匀速运动C .若v 2<v 1,物体从右端滑上传送带,则物体可能到达左端D .若v 2<v 1,物体从右端滑上传送带又回到右端.在此过程中物体先做减速运动,再做加速运动( )4、一块物体m 从某曲面上的Q 点自由滑下,通过一粗糙的静止传送带后,落到地面P 点,如图3-5所示,若传送带的皮带轮沿逆时针方向转动起来,使传送带也随之运动,再把该物体放到Q 点自由滑下,那么 A .它仍落在P 点B .它将落在P 点左边C .它将落在P 点右边D .无法判断落点,因为它可能落不到地面上来 5、如图,有一水平传送带以2m/s 的速度匀速运动,现将一物体轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.5,已知传送带左、右端间的距离为10m ,求传送带将该物体传送到传送带的右端所需时间。

人教版必修一 牛顿定律应用专题 4 深度剖析传送带问题(学案含答案)

人教版必修一 牛顿定律应用专题 4 深度剖析传送带问题(学案含答案)

二、重难点提示重点:学会使用牛顿第二定律解决传送带问题。

难点:倾斜传送带上物体的运动情况分析。

传送带问题是以真实物理现象为依据的问题,它既能训练学生的科学思维,又能联系科学、生产和生活实际,因而,这种类型问题具有生命力,当然也就是高考命题所关注的问题。

1. 传送带分类:水平、倾斜两种;按转向分类:顺时针、逆时针转两种。

2. 受力和运动分析:受力分析中的摩擦力突变——发生在v物与v带相同的时刻运动分析中的速度变化——相对运动方向和对地速度变化分析关键:①判断v物、v带的大小与方向;②判断mg sinθ与 f 的大小与方向。

【要点诠释】例题1 如图所示,一平直的传送带以速度v =2m/s匀速运动,传送带把A 处的工件运送到B 处,A 、B 相距L =10m 。

若从A 处把工件无初速地放到传送带上,经过时间t =6s 能传送到B 处。

现要用最短的时间把工件从A 处传送到B 处,求传送带的运行速度至少多大。

思路分析:由题意可知:t >vL,所以工件在6s 内先匀加速运动,后匀速运动,故有S 1=2vt 1、S 2=vt 2,且t 1+t 2=t 、S 1+S 2=L 联立求解得t 1=2s ;v =a t 1,a =1m/s 2。

若要用最短时间把工件传送到B 处,工件加速度仍为a ,设传送带速度为v ′,工件先加速后匀速,同上,L =21t v '+v ′t 2;又t 1=a v ',t 2=t -t 1,联立求解得L =a22v '+v ′(t -a v ');因此得a v v L t 2'+'=,从式子看出常量=='⨯'a L a v v L 22,时即aL v av v L 22=''=',其t 有最小值,因而s m aL v v /202=='=,通过解答可知工件一直加速到B所用时间最短,故可用ax v v t 2202=-一步解出,00=v ,t v m L x s m a ,10,/12===即为传送带运行最小速度,得s m v t /20=。

3牛顿运动定律综合应用二(传送带问题)(原卷版)

3牛顿运动定律综合应用二(传送带问题)(原卷版)

三、牛顿运动定律综合应用二(传送带问题)1.(2021·兰州市模拟)如图所示,有一水平传送带匀速向左运动,某时刻将一质量为m 的小煤块(可视为质点)放到长为L 的传送带的中点。

它与传送带间的动摩擦因数为μ,求:(1)小煤块刚开始运动时受到的摩擦力的大小和方向;(2)要使小煤块留在传送带上的印记长度不超过L 2,传送带的速度v 应满足的条件。

2.如图所示,水平传送带以速度v 1=2 m/s 匀速向左运动,小物块P 、Q 由通过定滑轮且不可伸长的轻绳相连,m P =2 kg 、m Q =1 kg ,已知某时刻P 在传送带右端具有向左的速度v 2=4 m/s ,小物块P 与传送带之间的动摩擦因数μ=0.1,P 与定滑轮间的轻绳始终保持水平.不计定滑轮质量和摩擦,小物块P 与传送带之间的最大静摩擦力等于滑动摩擦力,传送带、轻绳足够长,取g =10 m/s 2,求:(1)小物块P 在传送带上向左运动的最大距离x ;(2)小物块P 离开传送带时的速度大小v .3、如图所示为水平传送装置,轴间距离AB 长l =8.3 m ,质量为M =1 kg 的木块随传送带一起以v 1=2 m/s 的速度向左匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因数μ=0.5.当木块运动至最左端A 点时,一颗质量为m =20 g 的子弹以v 0=300 m/s 、水平向右的速度正对射入木块并穿出,穿出速度v =50 m/s ,以后每隔1 s 就有一颗子弹射向木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g 取10 m/s 2.求:(1)在被第二颗子弹击中前,木块向右运动离A 点的最大距离.(2)木块在传送带上最多能被多少颗子弹击中?4、(2021年辽宁省普通高中学业水平选择性考试)13.(11分)机场地勤工作人员利用初速度从飞机上卸行李。

如图所示,以恒定速率v1=0.6m/s 运行的传送带与水平面间的夹角α=37°,转轴间距L=3.95m 。

牛顿第二定律应用-传送带问题(附答案)

牛顿第二定律应用-传送带问题(附答案)

例1、水平传送带被广泛地应用于车站、码头,工厂、车间。

如图所示为水平传送带装置示意图,绷紧的传送带AB 始终保持v 0=2 m/s 的恒定速率运行,一质量为m 的工件无初速度地放在A 处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦因数为μ=0.2 ,AB 的之间距离为L =10m ,g 取10m/s 2.求工件从A 处运动到B 处所用的时间.例1解析:设工件做加速运动的加速度为a ,加速的时间为t 1 ,加速运动的位移为l ,根据牛顿第二定律,有:μmg=ma 代入数据可得:a =2 m/s 2工件加速运动的时间t 1=a v 0 代入数据可得: t 1=1s此过程工件发生的位移l =12at 12 代入数据可得:l =1m 由于l <L ,所以工件没有滑离传送带设工件随传送带匀速运动的时间为t 2 ,则t 2=v l L 代入数据可得:t 2=4.5s 所以工件从A 处运动到B 处的总时间t =t 1+t 2=5.5 s例2、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角θ=30°。

现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处。

已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数为μ=32,取g =10 m/s 2。

(1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间。

例2解析:工件受到沿传送带向上的摩擦力作用,摩擦力为动力由牛顿第二定律得:μmg cos θ-mg sin θ=ma代入数值得:a =2.5 m/s 2则其速度达到传送带速度时发生的位移为x 1=v 22a =222×2.5m =0.8 m <4 m 可见工件先匀加速运动0.8 m ,然后匀速运动3.2 m(2)匀加速时,由x 1=v 2t 1得t 1=0.8 s 匀速上升时t 2=x 2v =3.22s =1.6 s 所以工件从P 点运动到Q 点所用的时间为t =t 1+t 2=2.4 s 。

高中物理牛顿运动定律的技巧及练习题及练习题(含答案)及解析

高中物理牛顿运动定律的技巧及练习题及练习题(含答案)及解析

高中物理牛顿运动定律的技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求:(1)刚放上传送带时物块的加速度;(2)传送带将该物体传送到传送带的右端所需时间.【答案】(1)24/a g m s μ==(2)1t s =【解析】【分析】先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间.【详解】(1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得: mg ma μ=代入数据得:24/a g m s μ==(2)设物体加速到与传送带共速时运动的位移为0s根据运动学公式可得:202as v =运动的位移: 20842v s m a==> 则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有212l at = 解得 1t s =【点睛】物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力.2.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小.【答案】①0.07m ②35m/s 2 14N【解析】【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x .对物体C ,有:0mg kx =解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =-解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-=解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++解得:F =14N所以物体B 对地面的压力大小为14N3.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N;(3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆=【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+ 解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5ma g s μ==,且方向向右 板产生的加速度220.5mgm a s M μ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -= 此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--= 故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-= 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-= 代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;(3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1,则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-= 碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-= 故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.4.质量m=2kg的物块自斜面底端A以初速度v0=16m/s沿足够长的固定斜面向上滑行,经时间t=2s速度减为零.已知斜面的倾角θ=37°,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8.试求:(1)物块上滑过程中加速度大小;(2)物块滑动过程摩擦力大小;(3)物块下滑所用时间.【答案】(1)8m/s2;(2)4N;(3)s【解析】【详解】(1)上滑时,加速度大小(2)上滑时,由牛顿第二定律,得:解得(3)位移下滑时,由牛顿第二定律,得解得由,解得=s5.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB相切于A点,B为圆弧轨道的最高点,圆弧轨道半径R=1m,细杆与水平面之间的夹角θ=37°.一个m=2kg的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s后小球刚好到达A点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N.已知g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)小球在A点时的速度大小;(2)小球运动到B 点时对轨道作用力的大小及方向.【答案】(1)8m/s (2)12N【解析】【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:cos sin (sin cos )F mg F mg ma θθμθθ--+=代入数据得:24m/s a =小球在A 点时的速度8m/s A v at ==(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:2211sin37(1cos37)22B A FR mgR mv mv -︒-+︒=- 解得:2m/s B v = 小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2N B v mg F m R-= 解得:F N =12N ,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.6.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′,对物块受力分析:1mg ma μ=对木板:2F mg Ma μ+=由运动公式:021v v a t =-''11v a t ''= 解得:113t s = 2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+=解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ= 由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭''解得233t s = 故经过时间12310.91t t t s +=+=≈ 物块滑落.7.如图所示,一段平直的马路上,一辆校车从一个红绿灯口由静止开始做匀加速直线运动,经36 m 速度达到43.2 km/h ;随后保持这一速度做匀速直线运动,经过20 s ,行驶到下一个路口时,司机发现前方信号灯为红灯便立即刹车,校车匀减速直线行驶36 m 后恰好停止.(1)求校车匀加速运动的加速度大小a 1;(2)若校车总质量为4 500 kg ,求校车刹车时所受的阻力大小;(3)若校车内坐有一质量为30 kg 的学生,求该学生在校车加速过程中座椅对学生的作用力F 的大小.(取g =10 m/s 2,结果可用根式表示)【答案】(1)22/m s (2)9000N (3)26N【解析】【分析】(1)根据匀加速运动的速度位移关系可求加速度;(2)根据匀减速运动的速度位移关系可求加速度;根据牛顿第二定律可求阻力;(3)座椅对学生的作用力的水平分力等于mg ,F 的竖直分力的竖直分力等于重力,水平分力提供加速度.根据力的合成可求.【详解】(1)由匀加速直线运动公式可知v 2=2a 1x 1,得加速度a 1=2 m/s 2(2)由匀减速直线运动公式得:0-v 2=-2a 2x 3解得a 2=2 m/s 2F 阻=Ma 2=9000 N.(3)匀加速运动过程中,座椅对学生的作用力为F ,F 的竖直分力等于mg ,F 的水平分力由牛顿第二定律可得F 水平=ma 1F ()()221mg ma +得F =26 N.8.如图所示,某货场而将质量为m 1="100" kg 的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶端无初速滑下,轨道半径R="1.8" m .地面上紧靠轨道次排放两声完全相同的木板A 、B ,长度均为l=2m ,质量均为m 2="100" kg ,木板上表面与轨道末端相切.货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ=0.2.(最大静摩擦力与滑动摩擦力大小相等,取g="10" m/s 2)(1)求货物到达圆轨道末端时对轨道的压力.(2)若货物滑上木板4时,木板不动,而滑上木板B 时,木板B 开始滑动,求μ1应满足的条件.(3)若μ1=0.5,求货物滑到木板A 末端时的速度和在木板A 上运动的时间.【答案】(1)3000N F N =(2)0.4<μ1<0.6(3)t =0.4s【解析】【分析】【详解】(1)设货物滑到圆轨道末端是的速度为V 0,对货物的下滑过程中根据机械能守恒定律得, 21012mgR m v = ① 设货物在轨道末端所受支持力的大小为F N , 根据牛顿第二定律得2011N v F m g m R-= ② 联立以上两式代入数据得3000N F N = ③根据牛顿第三定律,货物到达圆轨道末端时对轨道的压力大小为3000N ,方向竖直向下.(2)若滑上木板A 时,木板不动,由受力分析得μ1m 1g ⩽μ2(m 1+2m 2)g ④若滑上木板B 时,木板B 开始滑动,由受力分析得μ1m 1g >μ2(m 1+m 2)g ⑤联立④⑤式代入数据得0.4<μ1⩽0.6 ⑥. (3)当μ1=0.5时,由⑥式可知,货物在木板A 上滑动时,木板不动.设货物在木板A 上做减速运动时的加速度大小为a 1,由牛顿第二定律得μ1m 1g ⩽m 1a 1 ⑦ 设货物滑到木板A 末端是的速度为V 1,由运动学公式得V 12−V 02=−2a 1L ⑧联立①⑦⑧式代入数据得V 1=4m /s ⑨设在木板A 上运动的时间为t ,由运动学公式得V 1=V 0−a 1t ⑩联立①⑦⑨⑩式代入数据得t =0.4s9.如图甲,圆圈内放大的集成块可以同时自动测量沿手机短边(x 轴)、长边(y 轴)和垂直面板方向(z 轴)的加速度,相当于在三个方向上各有一个如图乙所示的一维加速度计,图中固定在力传感器上的质量块的质量为 m .下面仅研究 x 轴处于水平方向和 y 轴处于竖直方向的加速度情况.(1)沿 x 轴方向,若用 F 表示力传感器垂直接触面对质量块的作用力,取+x 轴方向为加速度正方向, 导出手机在水平方向的加速度 x a 的表达式;(2)沿 y 轴方向,若用 F 表示力传感器垂直接触面对质量块的作用力,取+y 轴方向为加速度正方向, 导出手机在竖直方向的加速度 y a 的表达式;(3)当手机由竖屏变横屏时,为让手机感知到这种变化,需要通过电信号分别将(1)和(2)中导出的 加速度进行输出,但应统一输出项 a 出,请分别写出水平和竖直方向上输出项 a 出的表达式;(4)当手机由竖屏变横屏时,显示的视频画面会随之由窄变宽,请解释其中的原理.【答案】(1)x F a m =(2)y F mg a m -=(3)=x x F a a m =出=y y F a a g m=+出(4)当手机竖屏播放视频时,=0x x F a a m ==出 、 =y y F a a g g m 出=+=将手机转为横屏时,加速度计测得水平、竖直两个方向加速度的值发生交换; 智能手机据此做出判断, 将视频画面由窄变宽.【解析】【分析】【详解】(1)质量块在+x 轴方向只受力传感器垂直接触面对它的作用力 F ,由牛顿第二定律得:x F a m=(2)质量块在+y 轴方向受重力(mg )、力传感器垂直接触面对它的作用力 F 两个力的作用,由牛顿第二定律得:y F mg a m -= (3)应统一设置水平和竖直方向上通过力传感器电信号输出的加速度的表达式为:a 出 在水平方向的加速度的输出表达式:=x x F a a m=出 在竖直方向的加速度的输出表达式:=y y F a a g m =+出 (4)当手机竖屏播放视频时,=0x x F a a m ==出 、 =y y F a a g g m出=+=将手机转为横屏时,加速度计测得水平、竖直两个方向加速度的值发生交换; 智能手机据此做出判断, 将视频画面由窄变宽.10.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m=1 kg 的无人机,其动力系统所能提供的最大升力F=16 N ,无人机上升过程中最大速度为6m/s .若无人机从地面以最大升力竖直起飞,打到最大速度所用时间为3s ,假设无人机竖直飞行时所受阻力大小不变.(g 取10 m /s )2.求:(1)无人机以最大升力起飞的加速度;(2)无人机在竖直上升过程中所受阻力F f 的大小;(3)无人机从地面起飞竖直上升至离地面h=30m 的高空所需的最短时间.【答案】(1)22/m s (2)4f N = (3)6.5s【解析】(1)根据题意可得26/02/3v m s a m s t s∆-===∆ (2)由牛顿第二定律F f mg ma --= 得4f N = (3)竖直向上加速阶段21112x at =,19x m = 匀速阶段12 3.5h x t s v-== 故12 6.5t t t s =+=。

【提分必做】高中物理 专题11 牛顿运动定律的应用之传送带模型学案 新人教版必修1

【提分必做】高中物理 专题11 牛顿运动定律的应用之传送带模型学案 新人教版必修1

专题11 牛顿运动定律的应用之传送带模型水平传送带问题求解的关键在于对物体所受的摩擦力进行正确的分析判断。

物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。

【例1】如图所示,水平长传送带始终以v匀速运动,现将一质量为m的物体轻放于A端,物体与传送带之间的动摩擦因数为μ,AB长为L,L足够长。

问:(1)物体从A到B做什么运动?(2)当物体的速度达到传送带速度v时,物体的位移多大?传送带的位移多大?(3)物体从A到B运动的时间为多少?(4)什么条件下物体从A到B所用时间最短?【答案】(1)先匀加速,后匀速(2)v22μgv2μg(3)Lv+v2μg(4)v≥2μgL【解析】(1)物体先做匀加速直线运动,当速度与传送带速度相同时,做匀速直线运动。

(2)由v=at和a=μg,解得t=vμg(4)当物体从A到B一直做匀加速直线运动时,所用时间最短,所以要求传送带的速度满足v≥2μgL。

倾斜传送带问题求解的关键在于分析清楚物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。

当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。

【例2】如图所示,传送带与地面夹角θ=37°,AB长度为16 m,传送带以10 m/s的速率逆时针转动。

在传送带上端A无初速度地放一个质量为0.5 kg的物体,它与传送带之间的动摩擦因数为0.5。

求物体从A运动到B所需时间是多少?(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)【答案】 2 s【解析】 物体放在传送带上后,开始阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F f ,物体受力情况如图甲所示。

物体由静止加速,由牛顿第二定律有mg sin θ+μmg cos θ=ma 1,得a 1=10×(0.6+0.5×0.8) m/s 2=10 m/s 2。

传送带练习题参考答案

传送带练习题参考答案

传送带练习题参考答案1、【答案】(1)旅行包在传送带上从A端运动到B端所用的时间t为3s;(2)旅行包在传送带上相对滑动时留下的痕迹的长度s为1m【解析】考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.专题:牛顿运动定律综合专题.分析:(1)旅行包无初速度地轻放在传送带的左端,在传送带上先做匀加速直线运动,达到传送带速度后做匀速直线运动,根据牛顿第二定律结合运动学公式求出运动的总时间.(2)求出该时间内物体的位移,由平均速度公式求出传送带的位移,最后求出痕迹的长度.解答:解:(1)设旅行包在传送带上匀加速运动t1后达到与传送带共速,发生的位移为x,由牛顿第二定律得:f=ma…①f=μmg…②v=at1…③…④解得:x=1m<5m,所以物体先做匀加速直线运动,后做匀速直线运动.设匀速直线运动时间t2,则:L﹣x=vt2…⑤t=t1+t2…⑥联立解得:t=3s…⑦(2)旅行包相对滑动过程传送带位移为:x'=vt1…⑧旅行包相对滑动时留下的痕迹的长度:s=x'﹣x…⑨联立解得:s=1m2、【答案】物块从滑上传送带到滑下传送带所用的时间4.5s【解析】考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.专题:牛顿运动定律综合专题.分析:物体滑上传送带后先做匀减速直线运动到零,然后返回做匀加速直线运动达到5m/s做匀速直线运动,根据牛顿第二定律结合运动学公式求出运动的总时间.解答:解:物块滑上传送带时,受到向右的滑动摩擦力,向左做匀减速运动,由牛顿第二定律得:μmg=ma,加速度:a=μg=0.5×10=5m/s2,由匀变速运动的速度位移公式可得,物块速度变为零时的位移:s==10m,物体向左运动的时间t左==2s;物块速度变为零后,反向向右做初速度为零的匀加速运动,加速度a=5m/s2,物块速度等于传送带速度v=5m/s时,物块的位移s1==2.5m<s=10m,t1==1s,运动时间然后物块与传送带一起向右做匀速直线运动,物块做匀速直线运动的时间:t 2==1.5s ,物块从滑上传送带到滑下传送带所用的时间:t=t 左+t 1+t 2=4.5s答:物块从滑上传送带到滑下传送带所用的时间4.5s点评: 解决本题的关键理清物体全过程的运动情况,结合牛顿第二定律和运动学公式求解.3、【答案】(1)1m/s 2;(2)3s (3)s m /22 【解析】 试题分析:(1)物体在匀加速过程中,由牛顿第二定律:ma mg =μ,解得2m/s 1==g a μ(2)当物块和传送带共速时,经历的时间:s av t 21== 物体的位移:m m t v x 2222211=⨯== 在以后的运动中,到达右端所用的时间:s s v x L t 122412=-=-=共用时间:t=t 1+t 2=3s(3)若传送带以v=4m/s 速度逆时针匀速运动,则物体一直减速运动,加速度为2m/s 1==g a μ,为使物体仍能到达B 端,则aL v 22=,解得m /s 22m /s 4122=⨯⨯==aL v 考点:牛顿第二定律的应用;匀变速直线运动的规律.4、【答案】(1)物块相对地面向左运动的最大距离为4.5m ;(2)物块从B 点冲上传送带到再次回到B 点所用的时间3.125s【解析】考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.版权所有专题:牛顿运动定律综合专题.分析:(1)当物块相对地面的速度为零时,相对地面向左运动有最大距离;(2)物块经历向左减速、向右加速、向右匀速三个过程,时间之和就是总时间. 解答:解:(1)设物块与传送带间摩擦力大小为f 、向左运动最大距离s 1时速度变为0 f=μmg﹣fs 1=0﹣解得:s 1=4.5m(2)设小物块经时间t 1速度减为0,然后反向加速,设加速度大小为a ,经时间t 2与传送带速度相等:v1﹣at1=0由牛顿第二定律得:a=解得:t1=1.5sv0=at2解得:t2=1s设反向加速时,物块的位移为s2,则有:s2===2m物块与传送带同速后,将做匀速直线运动,设经时间t3再次回到B点,则有:s1﹣s2=v0t3解得:所以物块从B点冲上传送带到再次回到B点所用的时间 t=t1+t2+t3=3.125s答:(1)物块相对地面向左运动的最大距离为4.5m;(2)物块从B点冲上传送带到再次回到B点所用的时间3.125s.点评:本题关键是明确滑块的受力情况和运动情况,然后分阶段根据牛顿第二定律列式求解加速度,再根据运动学公式列式求解,运算较麻烦,但过程较明朗.5、【答案】(1)求工件从A点由静止下滑到离开传送带C点所用的时间为4.4s;(2)假设传送带是白色的,工件为一煤块,则工件从B滑到C的过程中,在传送带上留下黑色痕迹的长度为1m.【解析】考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.专题:牛顿运动定律综合专题.分析:(1)从A到B是匀加速直线运动,根据牛顿第二定律求解加速度,根据运动学公式求解时间和末速度;B到C过程是先加速后匀速的过程,根据牛顿第二粒求解加速度,根据运动学公式求解时间;(2)根据运动学公式求解相对位移即可.解答:解析:(1)匀加速下滑时:mgsinθ=ma1﹣﹣﹣﹣﹣﹣①﹣﹣﹣﹣﹣﹣②得:v1==2m/s﹣﹣﹣﹣﹣﹣③从A﹣B用时t1:v1=at1得:t1=0.4s﹣﹣﹣﹣﹣﹣④从B﹣C先匀加速后匀速:加速时:μmg=ma2得:﹣﹣﹣﹣﹣﹣⑤匀加速时间t2:v0=v1+a2t2得:t2=10s﹣﹣﹣﹣﹣﹣⑥在t2内:=3m﹣﹣﹣﹣﹣﹣⑦匀速时:L﹣x1=v0t3得:t3=3s﹣﹣﹣﹣﹣﹣⑧从A﹣C总时间:t=t1+t2+t3=4.4s﹣﹣﹣﹣﹣﹣⑨(2)在t2内,传送带位移为:x2=v0t2=4m﹣﹣﹣﹣﹣﹣⑩黑色痕迹长度:S=x2﹣x1=1m答:(1)求工件从A点由静止下滑到离开传送带C点所用的时间为4.4s;(2)假设传送带是白色的,工件为一煤块,则工件从B滑到C的过程中,在传送带上留下黑色痕迹的长度为1m.点评:解决本题的关键是理清物块在传送带上的运动规律,结合牛顿第二定律和运动学公式进行求解.6、解:(1)物体在水平传送带AB上的加速度a1=μg=5 m/s2物体在水平传送带上先做匀减速直线运动,减速的时间t1==0.4s位移X1==4.4m当与传送带共速后开始做匀速直线运动,匀速的时间t2==0.6s所以,物体从A点到达B点的时间t=t1+t2=1s(2)物体在斜面BC上向上运动时的加速度a2=gsinθ+μgcosθ=10 m/s2从经过B点到在斜面上速度减为零经历的时间t3==1s位移X2==5m之后,物体沿斜面下滑,加速度a3=gsinθ﹣μgcosθ=2 m/s2再经历时间t4=t﹣t3=1s到达C点,物体下滑的位移X3=a3t42=1m所以,BC的长度X BC=X2﹣X3=4m(3)物体要到达斜面的顶端,则物体在B点的最小速度v B由v B2=2a2L得 v B=14m/s物体在水平传送带AB上一直做匀减速直线运动,由v A2﹣v B2=2a1d得物体的最小初速度v A=17.3m/s答:(1)物体从A点到达B点的时间为1s;(2)BC的距离为4m;(3)为了将物体送上斜面的顶端,要在A端给物体一个向右的水平初速度,则这个初速度的最小值为17.3m/s.点评:此题文字较多,首先要有耐心读题.对于传送带问题,关键是分析物体的运动情况,本题要边计算边分析,不能只定性分析.7、【答案】AC【解析】试题分析:物块P受向右的摩擦力和向左的细绳的拉力,当向右的摩擦力小于向左的细绳的拉力时,物块向右做减速运动,减速到零后反向加速,选项A正确,D错误;若P 受到的摩擦力大于Q的重力,故P先加速后匀速,也有可能一直加速运动,故B错误,C正确.考点:牛顿第二定律.8、【答案】(1)若传送带顺时针转动,物体由A滑到B的时间为4s.(2)若传送带逆时针转动,物体从A到B需要的时间为2s.【解析】考点:牛顿第二定律;匀变速直线运动的位移与时间的关系.专题:牛顿运动定律综合专题.分析:(1)隔离法选取小物块为研究对象进行受力分析,然后由牛顿第二定律求小物块的加速度,然后由运动学公式求解.(2)物体在传送带上受到重力、支持力和摩擦力作用先做初速度为0的匀加速直线运动,当速度和传送带速度一样时进行判断物体跟随传送带匀速还是单独做匀变速直线运动,根据总位移为16m,可以求出整个运动过程的时间t.解答:解:(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,由牛顿第二定律得:mg(sin 37°﹣μcos 37°)=ma,代入数据得:a=2m/s2,由匀变速运动的位移公式得:代入数据得:t=4 s.(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a1,由牛顿第二定律得:mgsin 37°+μmgcos 37°=ma1,代入数据得:a1=10 m/s2,设当物体运动速度等于传送带转动速度时经历的时间为t1,位移为x1,则有:当物体运动速度等于传送带速度瞬间,有mgsin 37°>μmgcos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力﹣﹣摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a 2,由牛顿第二定律得:代入数据得:a 2=2 m/s 2,位移:x 2=l ﹣x 1=16﹣5=11m ,又因为x 2=vt 2+则有:10t 2+=11,解得:t 2=1 s (t 2=﹣11 s 舍去)所以有:t 总=t 1+t 2=2 s .答:(1)若传送带顺时针转动,物体由A 滑到B 的时间为4s .(2)若传送带逆时针转动,物体从A 到B 需要的时间为2s .点评: 解决本题的关键理清物体的运动规律,知道物体运动,明确速度和加速度的变化,结合牛顿第二定律和运动学公式进行求解.从此题看出出,皮带传送物体所受摩擦力可能发生突变,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻.9、【答案】 ⑴合F =20N ;⑵μ=0.5;⑶【解析】考点:本题主要考查了牛顿第二定律的应用和对v-t 图象的理解与应用问题。

(完整版)高中物理传送带问题(有答案).docx

(完整版)高中物理传送带问题(有答案).docx

传送带问题例1:一水平传送带长度为 20m,以 2m/s 的速度做匀速运动,已知某物体与传送带间动摩擦因数为 0.1 ,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少?解 : 物体加速度a=μ g=1m/s2,经 t1=v/a =2s 与传送带相对静止,所发生的位移S1=1/2 at12=2m, 然后和传送带一起匀速运动经t2=l-s1/v =9s ,所以共需时间t=t1+t2=11s练习:在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少?(S1=1/2 vt1=2m, S2=vt1=4m,s=s2-s1=2m )例 2:如图 2—1 所示,传送带与地面成夹角θ =37°,以 10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量 m=0.5 ㎏的物体,它与传送带间的动摩擦因数μ =0.5 ,已知传送带从 A→ B 的长度 L=16m,则物体从 A 到 B 需要的时间为多少?【解析】物体放上传送带以后,开始一段时间,其运动加速度a mg sin mg cos10m/s 2。

m这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时间和位移分别为:v 10s 1s,2t 1s15m< 16ma102a以后物体受到的摩擦力变为沿传送带向上,其加速度大小为(因为mgsin θ>μ mgcosθ)。

a 2mg sinmg cos2m/s 2 。

m设物体完成剩余的位移s 2 所用的时间为 t 2 ,则 s 20t 21a 2 t 2 2 , 11m= 10t 2 t 22 ,2解得: t 2 1 s,或 t 22 11 s(舍去 ) , 所以: t 总 1s 1 s 2 s 。

1例 3:如图 2—2 所示,传送带与地面成夹角θ =30°,以 10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5 ㎏的物体, 它与传送带间的动摩擦因数μ=0.6 ,已知传送带从 A → B 的长度 L=16m ,则物体从 A 到 B 需要的时间为多少?【解析】 物体放上传送带以后,开始一段时间,其运动加速度amgsinmg cos8.46m/s 2 。

高中物理必修一牛顿运动定律——传送带问题

高中物理必修一牛顿运动定律——传送带问题

高中物理必修一牛顿运动定律——传送带问题1.如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1,不计空气阻力,动摩擦因数一定,关于物块离开传送带的速率v和位置,下面可能的是()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v12.如图所示为粮袋的传送装置,已知A、B两端间的距离为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是()A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度v做匀速运动C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动D.不论μ大小如何,粮袋从A端到B端一直做匀加速运动,且加速度a≥g sin θ3.(多选)如图所示,绷紧的长为6 m的水平传送带,沿顺时针方向以恒定速率v1=2 m/s运行.一小物块从与传送带等高的光滑水平台面滑上传送带,其速度大小为v2=5 m/s.若小物块与传送带间的动摩擦因数μ=0.2,重力加速度g=10 m/s2,下列说法中正确的是()A.小物块在传送带上先向左做匀减速直线运动,然后向右做匀加速直线运动B.若传送带的速度为5 m/s,小物块将从传送带左端滑出C.若小物块的速度为4 m/s,小物块将以2 m/s的速度从传送带右端滑出D.若小物块的速度为1 m/s,小物块将以2 m/s的速度从传送带右端滑出4.在民航和火车站可以看到用于对行李进行安全检查的水平传送带.当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动.随后它们保持相对静止,行李随传送带一起前进.设传送带匀速前进的速度为0.25 m/s,把质量为5 kg的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6 m/s2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下的摩擦痕迹约为()A.5 mm B.6 mmC.7 mm D.10 mm5.如图所示,传送带带面AB与水平面间夹角为α=37°,物块与传送带之间动摩擦因数为0.5,传送带保持匀速运转.现将物块由静止放到传送带中部,A、B间距离足够大(即物块可与带面等速,且物块与带面等速时,物块尚未到达A或B).下列关于物块在带面AB上的运动情况的分析正确的是()A.若传送带沿顺时针方向匀速运转,物块沿传送带向上加速滑动B.若传送带沿顺时针方向匀速运转,物块沿传送带向下加速滑动C.若传送带沿逆时针方向匀速运转,物块加速度的大小先为10 m/s2,后为0D.若传送带沿逆时针方向匀速运转,物块加速度的大小先为10 m/s2,后为2 m/s26.如图所示,三角形传送带以1 m/s的速度逆时针匀速转动,两边倾斜的传送带长都是2 m,且与水平方向的夹角均为37°.现有两个小物块A、B从传送带顶端都以1 m/s的初速度沿传送带下滑,两物块与传送带间的动摩擦因数都是0.5,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.下列判断正确的是()A.物块A、B同时到达传送带底端B.物块B到达传送带底端的速度为3 m/sC.物块A下滑过程中相对传送带的路程为3 m D.物块B下滑过程中相对传送带的路程为3 m7.如图所示,水平传送带以恒定速度v向右运动。

高中物理【传送带问题】(含经典习题)

高中物理【传送带问题】(含经典习题)

牛顿第二定律的应用---传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。

难点疑点:传送带与物体运动的牵制。

牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。

分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。

一、水平放置运行的传送带1.如图所示,物体A从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A滑至传送带最右端的速度为v1,需时间t1,若传送带逆时针转动,A滑至传送带最右端的速度为v2,需时间t2,则()A.1212,v v t t><B.1212,v v t t<<C.1212,v v t t>>D.1212,v v t t==2.如图7所示,一水平方向足够长的传送带以恒定的速度v1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v2′,则下列说法正确的是:()A.只有v1= v2时,才有v2′= v1B.若v1 >v2时, 则v2′= v2C.若v1 <v2时, 则v2′= v2D.不管v2多大,v2′= v2.3.物块从光滑斜面上的P点自由滑下通过粗糙的静止水平传送带后落到地面上的Q点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P点自由滑下,则()A.物块有可能落不到地面B.物块将仍落在Q点C.物块将会落在Q点的左边D.物块将会落在Q点的右边PQ4.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A、B始终保持v=1m/s的恒定速率运行;一质量为m=4kg的行李无初速地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处.求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.二、倾斜放置运行的传送带5.如图所示,传送带与地面倾角θ=37°,从AB长度为16m,传送带以10m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5.(sin37°=0.6,cos37°=0.8)求:物体从A运动到B需时间是多少?(思考:物体从A运动到B在传送带上滑过的痕迹长?)6.如图所示,传送带两轮A、B的距离L=11 m,皮带以恒定速度v=2 m/s运动,现将一质量为m的物块无初速度地放在A端,若物体与传送带间的动摩擦因数为μ=0.8,传送带的倾角为α=37°,那么物块m从A端运到B端所需的时间是多少?(g取10 m/s2,cos37°=0.8)三、组合类的传送带7.如图所示的传送皮带,其水平部分AB长s AB=2m,BC与水平面夹角θ=37°,长度s BC=4m,一小物体P与传送带的动摩擦因数 =0.25,皮带沿A至B方向运行,速率为v=2m/s,若把物体P放在A点处,它将被传送带送到C点,且物体P不脱离皮带,求物体从A点被传送到C点所用的时间.(sin37°=0.6,g=l0m/s2)牛顿第二定律的应用----传送带问题参考答案一、水平放置运行的传送带1.D 提示:物体从滑槽滑至末端时,速度是一定的.若传送带不动,物体受摩擦力方向水平向左,做匀减速直线运动.若传送带逆时针转动,物体受摩擦力方向水平向左,做匀减速直线运动.两次在传送带都做匀减速运动,对地位移相同,加速度相同,所以末速度相同,时间相同,故D .2.B3.B 提示:传送带静止时,物块能通过传送带落到地面上,说明滑块在传送带上一直做匀减速运动.当传送带逆时针转动,物块在传送带上运动的加速度不变,由2202t v v as =+可知,滑块滑离传送带时的速度v t 不变,而下落高度决定了平抛运动的时间t 不变,因此,平抛的水平位移不变,即落点仍在Q 点.4.【答案】(1)4N ,a =lm/s 2;(2)1s ;(3)2m/s解析:(1)滑动摩擦力F =μmg① 以题给数值代入,得F =4N② 由牛顿第二定律得F =ma ③代入数值,得a =lm/s 2 ④(2)设行李做匀加速运动的时间为t ,行李加速运动的末速度v=1m /s .则 v =at ⑤代入数值,得t =1s⑥(3)行李从A 匀加速运动到B 时,传送时间最短.则2min 12l at = ⑦代入数值,得min 2s t =⑧ 传送带对应的运行速率V min =at min ⑨代人数据解得V min =2m/s⑩ 二、倾斜放置运行的传送带5.【答案】2s解析:物体的运动分为两个过程,一个过程在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动情况,其中速度相同点是一个转折点,此后的运动情况要看mgsinθ与所受的最大静摩擦力,若μ<tanθ,则继续向下加速.若μ≥tanθ,则将随传送带一起匀速运动,分析清楚了受力情况与运动情况,再利用相应规律求解即可.本题中最大静摩擦力等于滑动摩擦力大小.物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F ,物体受力情况如图所示.物体由静止加速,由牛顿第二定律得a 1=10×(0.6+0.5×0.8)m/s 2=10m/s 2物体加速至与传送带速度相等需要的时间1110s=1s 10v t a ==, t 1时间内位移21115m 2s a t ==.由于μ<tanθ,物体在重力情况下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F .此时物体受力情况如图所示,由牛顿第二定律得:222sin cos ,2m/s mg mg ma a θμθ-==.设后一阶段物体滑至底端所用的时间为t 2,由 222212L s vt a t -=+,解得t 2=1s ,t 2=-11s (舍去).所以物体由A→B 的时间t=t 1+t 2=2s .6.解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动 由牛顿第二定律得μmg cos37°-mg sin37°=ma则a =μg cos37°-g sin37°=0.4 m/s 2物体加速至2 m/s 所需位移s 0=v 22a =222×0.4m =5 m<L 经分析可知物体先加速5 m再匀速运动s =L -s 0=6 m.匀加速运动时间t 1=v a =20.4s =5 s. 匀速运动的时间t 2=s v =62s =3 s. 则总时间t =t 1+t 2=(5+3) s =8 s.答案:8 s三、组合类的传送带7.【答案】2.4s解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律11111,,N F ma F F mg v a t μμ====, 得P 匀加速运动的时间110.8s v v t a gμ===. 22111112110.8m,22AB s a t gt s s vt μ===-=, 匀速运动时间120.6s AB s s t v-==. P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=0.6mg ;滑动摩擦力沿斜面向上,其大小为μmg cos37°=0.2mg .可见其加速下滑.由牛顿第二定律233cos37cos37,0.44m/s mg mg ma a g μ︒-︒===,233312BC s vt a t =+,解得t 3=1s (另解32s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=2.4s .。

新教材高中物理第四章牛顿运动定律专题练传送带问题含解析粤教版必修第一册

新教材高中物理第四章牛顿运动定律专题练传送带问题含解析粤教版必修第一册

传送带问题一、选择题1.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查。

其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行。

旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2。

若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处 B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处【解析】选B 、D 。

行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。

加速度为a =μg=1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v 2 t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2L a=2×21s =2 s ,D 正确。

2.如图所示,水平方向的传送带,顺时针转动,传送带速度大小v =2 m/s 不变,两端A 、B 间距离为3 m 。

一物块从B 端以初速度v 0=4 m/s 滑上传送带,物块与传送带间的动摩擦因数μ=0.4,g 取10 m/s 2。

物块从滑上传送带至离开传送带的过程中,选项图中速度随时间变化的关系正确的是( )【解析】选B 。

物块刚滑上传送带时,速度方向向左,由于物块与传送带间的摩擦力作用,使得物块做匀减速运动,加速度大小为a =μg=4 m/s 2,当物块的速度减小到0时,物块前进的距离为s =0-v 20 -2a =0-42-2×4m =2 m ,其值小于AB 的长3 m ,故物块减速到0后仍在传送带上,所以它会随传送带向右运动,其加速度的大小与减速时是相等的,其速度与传送带的速度相等时物块向右滑行的距离为s′=v 2-02a =22-02×4 m =0.5 m ,其值小于物块向左前进的距离,说明物块仍在传送带上,以后物块相对于传送带静止,其速度大小等于传送带的速度大小,选项B 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿运动定律的应用——传送带问题
一、分类
1、按放置方向分为水平、倾斜和组合
2、按转向分为顺时针、逆时针
3、按运动状态分为匀速、变速 二、解法
(一)受力分析
注意物体和传送带共速时,滑动摩擦力的突变——消失、静摩擦力、反方向的滑动摩擦力。

(1)水平传送带:①匀速运动时,共速后滑动摩擦力突变为0;②有加速度a 时,共速时,需比较μg 和a ,若μg<a ,各自匀变速相对运动;若μg ≥a ,一起以a 做匀变速运动,滑动摩擦力突变为静摩擦力
(2)倾斜传送带:匀速运动时,共速后需比较mgsin θ和μmgcos θ,若μ≥tan θ,一起匀速,滑动摩擦力突变为静摩擦力;若μ<tan θ,物块做匀变速运动 (二)运动分析
1、判断传动带是否足够长,物体能否和传送带共速
2、共速后,物块与传送带保持相对静止还是相对运动 注意:(1)区分物体的对地位移和相对于传送带的位移(2)可以通过绘制v-t 图像解决问题
(3)划痕:为物体与传送带的相对位移。

当存在两次划痕时,如果物块相对传送带的运动方向不变,痕迹长度为两次划痕之和;如果物块相对传送带的运动方向改变,痕迹长度为两次划痕中较长的长度 三、模型
(一)水平传送带
(1)物块与传送带同向
(2)物块与传送带反向
一直受向右的f=一直受向右的向右的f=μmg ,
习题:
1、如图物块的初速度为v1=8m/s,动摩擦因数为0.2,且
①当传送带顺时针转动,速度为v2=12m/s,且长度L=9.0m,求物块在传送带上的滑行时间和划痕;
②当传送带顺时针转动,速度为v2=10m/s,且长度L=12.0m,求物块在传送带上的滑行时间和划痕;
拓展:若传送带的长度L=12.0m,为使物块到达右端用时最短,传送带的速度至少为多少?
③当传送带顺时针转动,速度为v2=6m/s;且长度L=12.0m,求物块在传送带上的滑行时间和划痕;
④如果传送带顺时针转动,速度为v2=2m/s,长度为L=12.0m,求物块在传送带上的滑行时间和划痕;
⑤如果传送带逆时针转动,速度为v2=2m/s;长度为L=12.0m,求物块在传送带上的滑行时间和划痕;
⑥如果传送带逆时针转动,速度为v2=2m/s;长度为L=18.0m,求物块在传送带上的滑行时间和划痕;
⑦如果传送带逆时针转动,速度为v2=12m/s;长度为L=18.0m,求物块在传送带上的滑行时间和划痕;
⑧当传送带顺时针转动,速度为v2=10m/s,L=31.0m,当物块与传送带共速时,传送带突然以加速度a=1m/s2匀加速,求物块在传送带上的滑行时间和划痕;
⑨当传送带顺时针转动,速度为v2=10m/s,L=20.0m,当物块与传送带共速时,传送带突然以加速度a=4m/s2匀加速,求物块在传送带上的滑行时间和划痕;
⑩当传送带顺时针转动,速度为v2=10m/s,L=25.0m,当物块与传送带共速时,传送带突然以加速度a=4m/s2匀减速,求物块在传送带上的滑行时间和划痕;
2、(多选)如图所示,水平传送带A 、B 两端相距s=3.5m ,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A 端的瞬时速度A v =4m/s ,到达B 端的瞬时速度设为B v .下列说法中正确的是( ) A .若传送带不动, B v =3m/s
B .若传送带逆时针匀速转动, B v 一定小于3m/s
C .若传送带顺时针匀速转动, B v 一定不小于3m/s
D .若传送带顺时针匀速转动, B v 一定等于3m/s (二)倾斜传送带 1、从底端上滑
(1)若v 1=0 传送带顺时针转动
只有θμtan >,物块才能向上运动。

物块以θθμsin cos g g a -=
传送带足够长,共速后匀速到上端 (2)v 1≠0且v 1与v 2同向
①v 1<v 2
A.当θμtan >,以θθμsin cos
g g a -=后匀速到上端。

B.当θμtan <,以θμθcos sin g g a -=匀减速,若传送带不够长,减速到上端;若传送带足够长,减速到0再向下以θμθcos sin g g a -=匀加速对称回到下端 C 当θμtan =匀速到上端 ②v 1>v 2
以θμθcos sin g g a +=匀减速,若传送带不够长,减速到上端;若传送带足够长,匀减到共速后,当
θμtan ≥匀速到上端,当θμtan <共速后再θμθcos sin g g a -=0再向下以θμθcos sin g g a -=匀加到下端 (3)v 1≠0且v 1与v 2反向
以θμθcos sin g g a +=匀减,若传送带不够长,减速到上端;若传送带足够长,当当v 1>v 2共速后,如果θμtan ≥,再匀速到下端,如果θμtan <,以μθsin g g a -=2、从顶端下滑(可类比于从底端上滑分类讨论) (1)v 1与v 2同向 ①v 1<v 2
以θθμsin cos g g a +=匀加速,若传送带不够长,加速到下端;若传送带足够长,共速后,当tan ≥匀
速到下端,当θμtan <以θμθcos sin g g a -=匀加到下端。

②v 1>v 2
A.当θμtan >,以θθμsin cos g g a -=匀速到下端。

B.当θμtan <,以θμθcos sin g g a -=加速到底端 C 当θμtan =,匀速到底端 (2)v 1与v 2反向
A.当θμtan >以θθμsin cos g g a -=减速,若传送带不够长,减速到下端;若传送带足够长,当v 1<v 2
对称回到上端,当v 1>v 2共速后匀速到上端
B.当θμtan <,以θμθcos sin g g a -=加速到底端 C 当θμtan =,匀速到底端
3、如图所示,倾角为37°,长为l =16m 的传送带,转动速度为v =10m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5kg 的物体.已知sin 37°=0.6,cos 37°=0.8.g =10m/s 2.求: (1)传送带顺时针转动时,求物体从顶端A 滑到底端B 的时间和划痕 (2)传送带逆时针转动时,求物体从顶端A 滑到底端B 的时间和划痕
4(多选).如图所示,粗糙的传送带与水平方向夹角为θ,当传送带静止时,在传送带上端轻放一小物块,物块下滑到底端时间为T,则下列说法正确的是()
A.当传送带顺时针转动时,物块下滑的时间一定大于T
B.当传送带顺时针转动时,物块下滑的时间一定等于T
C.当传送带逆时针转动时,物块下滑的时间可能等于T
D.当传送带逆时针转动时,物块下滑的时间一定小于T
(三)组合传送带
5、如图所示,一传送带AB段的倾角为37°,BC段弯曲成圆弧形,CD段水平,A、B之间的距离为12.8m,BC段长度可忽略;传送带始终以v=4m/s的速度逆时针方向运行.现将一质量为m=1kg的工件无初速度放到A 端,若工件与传送带之间的动摩擦因数为μ=0.5,在BC段运动时,工件速率保持不变,工件到达D点时速度刚好减小到与传送带相同.取g=10m/s2,sin37°=0.6,
cos37°=0.8.求:
(1)工件刚放到A端时的加速度大小和方向;
(2)工件从A到D所需的时间;
6、如图所示,倾角θ=300的光滑斜面的下端有一水平传送带,斜面和传送带相接处有一小段光滑圆弧.物体经过A点时,无论是从斜面到传送带还是从传送带到斜面,其速率都不发生变化。

传送带以v=6m/s的速度顺时针转动,一个质量为2kg的物体(可视为质点)从h=3.2m高处由静止开始沿斜面下滑,物体与传送带间的动摩擦因数μ=0.5,传送带左右两端A、B间的距离L AB=10m,重力加速度g=10m/s2、求:
(1)物体由静止沿斜面下滑到斜面末端需要多长时间?
(2)物体在传送带上距B点的最小距离是多少?
(3)物体随传送带向右运动后,沿斜面上滑的最大高度h′为多少?。

相关文档
最新文档