排列组合练习题及答案

排列组合练习题及答案
排列组合练习题及答案

《排列组合》

一、排列与组合

1.从9人中选派2人参加某一活动,有多少种不同选法?

2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?

3.现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三

个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是

A.男同学2人,女同学6人

B. 男同学3人,女同学5人

C.男同学5人,女同学3人

D. 男同学6人,女同学2人

4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有

A.12个

B.13 个

C.14 个

D.15 个

5.用0,1,2,3,4,5这六个数字,

(1)可以组成多少个数字不重复的三位数?

(2)可以组成多少个数字允许重复的三位数?

(3)可以组成多少个数字不允许重复的三位数的奇数?

(4)可以组成多少个数字不重复的小于1000的自然数?

(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附

加条件

1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?

(2)甲乙必须站两端,丙站中间,有多少种不同排法?

2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?

3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数

A.3761

B.4175

C.5132

D.6157

惠来一中数学组方文湃 1

4.设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有

A.30种

B.31 种

C.32 种

D.36 种

5.从编号为1,2,,,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,

且它们的编号之和为奇数,其取法总数是

A.230种

B.236 种

C.455 种

D.2640 种

6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有

A.240种

B.180 种

C.120 种

D.60 种

7.用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列

起来,第71个数是。

三、间接与直接

1.有4名女同学,6名男同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不

同选法?

2. 6名男生4名女生排成一行,女生不全相邻的排法有多少种?

3. 已知集合A和B各12个元素,AB含有4个元素,试求同时满足下列两个条件的集合C的

个数:(1)C(AB)且C中含有三个元素;(2)CA,表示空集。

4.从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目

中文理科都有,则不同的选法的种数

A.60种

B.80 种

C.120 种

D.140 种

5.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种?

6.以正方体的8个顶点为顶点的四棱锥有多少个?

7.对正方体的8个顶点两两连线,其中能成异面直线的有多少对?

四、分类与分步

1.求下列集合的元素个数.

(1)M{(x,y)|x,yN,xy6};

(2)H{(x,y)|x,yN,1x4,1y5}.

惠来一中数学组方文湃 2

2. 一个文艺团队有9名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法?

3.已知直线

l1//l2

,在l1上取3个点,在l2上取4个点,每两个点连成直线,那么这些直线在l1和l

2之间的交点

(不包括l

1、l

2上的点)最多有 A.18个

B.20

C.24

D.36

4. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担 任英语翻译,2人担任日语翻译,选拔的方法有 种(用数字作答)。

5. 某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为

A.

C 320A 177

B.

A 8

20种

C.

C 118A 177

D.

A

18

18种

6. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不许放第一号瓶内,那么不同的放法共有

A.C 102A 4

8种

B.

C 19A 5

9种

C. C 18A 95

D. C 19A 5

8种

7. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有

A.

A 14A 5

5种

B.

A 23A 44A 5

5种

C.

A 14A 44A 5

5种

D.

A 22A 44A 5

5种

8. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是 A.122

B.132

C.264

9. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是 A.24

B.36

C.48

D.64

10. 在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种? 11. 如下图,共有多少个不同的三角形? 解:所有不同的三角形可分为三类:

惠来一中数学组 方文湃

3

第一类:其中有两条边是原五边形的边,这样的三角形共有5个

第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个

第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个

由分类计数原理得,不同的三角形共有5+20+10=35个.

12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放

映一场,共有种不同的放映方法(用数字作答)。

五、元素与位置——位置分析

1.7人争夺5项冠军,结果有多少种情况?

2.75600有多少个正约数?有多少个奇约数?

解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数. 由于75600=24×33×52×7

(1)75600的每个约数都可以写成2l3j5k7l

的形式,其中0 i 4,

0j3

,0k2,0l1

于是,要确定75600的一个约数,可分四步完成,即i,j,k,l分别在各自的范围内任取一个值,这样

i有5种取法,j有4种取法,k有3种取法,l有2种取法,根据分步计数原理得约数的个数为 5

×4×3×2=120个.

(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成3j5k7l的形式,同上奇约数的个数为

4×3×2=24个.

3.2名医生和4名护士被分配到两所学校为学生体检,每校分配1名医生和2名护士,不同分配方法有多少种?4.有四位同学参加三项不同的比赛,

(1)每位同学必须参加一项竞赛,有多少种不同的结果?

(2)每项竞赛只许一位学生参加,有多少种不同的结果?

解:(1)每位学生有三种选择,四位学生共有参赛方法:333381种;

惠来一中数学组方文湃 4

(2)每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464种.

六、染色问题

1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为()

A.180

B.160

C.96

D.60

①④

③④

①②②

图一图二图三若变为图二,图三呢?(240种,5×4×4×4=320种)

2.某班宣传小组一期国庆专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A、B、C、D(如图)每一

B A

C D

部分只写一种颜色,相邻两块颜色不同,

则不同颜色粉笔书写的方法共有种(用具体数字作答)。

七、消序

1.有4名男生,3名女生。现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法?

2.书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法?

八、分组分配

1.某校高中一年级有6个班,分派3名教师任教,每名教师任教二个班,不同的安排方法有多少种?

2.高三级8个班,分派4名数学老师任教,每位教师任教2个班,则不同安排方法有多少种?

3.6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种?

4.8项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有种惠来一中数学组方文湃 5

5..六人住A、B、C三间房,每房最多住三人,

(1)每间住两人,有种不同的住法,

(2)一间住三人,一间住二人,一间住一人,有种不同的住宿方案。

6.8人住ABC三个房间,每间最多住3人,有多少种不同住宿方案?

7.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法?

7.把标有a,b,c,d,,的8件不同纪念品平均赠给甲、乙两位同学,其中a、b不赠给同一

个人,则不同的赠送方法有种(用数字作答)。

九、捆绑

1.A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?

2.有8本不同的书,其中科技书3本,文艺书2本,其它书3本,将这些书竖排在书架上,

则科技书连在一起,文艺书也连在一起的不同排法种数与这8本书的不同排法之比为

A.1:14

B.1:28

C.1:140

D.1:336

十、插空

1.要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?

2、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()

A.2880

B.1152

C.48

D.144

3.要排一个有5个歌唱节目和3个舞蹈节目的演出节目单,如果舞蹈节目不相邻,则有多少种不同排法?

4.5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法?

5..把5本不同的书排列在书架的同一层上,其中某3本书要排在中间位置,有多少种不同排法?

6.1到7七个自然数组成一个没有重复数字的七位数,其中偶数不相邻的个数有个.

7.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?

8.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?

9.排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?

惠来一中数学组方文湃 6

10. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?

11. 某城市修建的一条道路上有12只路灯,为了节省用电而又不影响正常的照明,可以熄灭 其中三只灯,但不能熄灭两端的灯,也不能熄灭相邻的两只灯,那么熄灯的方法共有 种 A.C38 B. A38 C. C39 D.

A39

12. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必需有6只灯是关的,且相邻的灯不能同时被关掉,两端的灯必需点亮的要求进行设计,那么不同的点亮方式是 A.28种

B.84

C.180

D.360

13. 一排长椅上共有10个座位,现有4人就座,恰有五个连续空位的坐法种数

。(用数字作答)

十一、隔板法

1.不定方程

x 1x 2x

3

x47

的正整数解的组数是

,非负整数解的组数是 。

2. 某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有

A.84种

B.120种

C.63 种

D.301种

3. 要从7所学校选出 10人参加素质教育研讨班,每所学校至少参加

1人,则这10个名额共 有

种分配方法。

4. 有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有 A.9种

B.12

C.15

D.18

5. 将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种?

6. 某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至

少有1人参加的选法有多少种? 十二、对应的思想

1. 在100名选手之间进行单循环淘汰赛(即一场比赛失败要退出比赛),最后产生一名冠军,问要举行几

场?

十三、找规律

惠来一中数学组 方文湃

7

1.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种?

解:分类标准一,固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数

有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法,小加数为10时,大加

数为11,12,,,20共10种取法;小加数为11时,大加数有9种取法,小加数取19时,大加数有1种取法.由分类计

数原理,得不同取法共有1+2+,+9+10+9+,+2+1=100种.

分类标准二:固定和的值.有和为21,22,, ,39这几类,依次有取法10,9,9,8,8, , ,2,2,1,1 种. 由分类计数原理得不同取法共有10+9+9+, +2+2+1+1=100种.

2.从1到100的自然数中,每次取出不同的两个数,使它们的和大于一百,则不同的取法有

A.50种

B.100 种

C.1275 种

D.2500 种

十四、实验——写出所有的排列或组合

1.将数字1,2,3,4填入标号1,2,3,4的四个方格中,每个格填一个,则每一个方格的标号与所

填的数字均不同的填法有种.

A.6

B.9

C.11

D.23

解:列表排出所有的分配方案,共有3+3+3=9种,或33119种.

未归类几道题

1.从数字0,1,3,5,7中取出不同的三位数作系数,可以组成多少个不同的一元二次方程ax+bx+c=0?

其中有实根的方程有多少个?

变式:若直线Ax+By+C=0的系数A、B可以从0,1,2,3,6,7这六个数字中取不同的数值,则这些方程所表

示的直线条数是(A)

A.18

B.20

C.12

D.22

2.在100件产品中,有98件合格品,2件不合格品.从这100件产品中任意抽出3件

(1)一共有多少种不同的抽法?

(2)抽出的3件中恰好有一件是不合格品的抽法有多少种?

(3)抽出的3件中至少有一件是不合格品的抽法有多少种?

3.10双互不相同的鞋子混装在一只口袋中,从中任意抽取4只,试求各有多少种情况出现如下结果

(1)4只鞋子没有成双;(2)4 只鞋子恰好成双;

惠来一中数学组方文湃8

(3) 4只鞋子有2只成双,另2只不成双 4.f 是集合M={a,b,c,d} 到N{0,1,2}的映射,且f(a)+f(b)+f(c)+f(d)=4,

则不同的映射有多少

个?

解:根据a,b,c,d

对应的象为2的个数分类,可分为三类:

第一类,没有一个元素的象为 2,其和又为4,则集合M 所有元素的象都为

1,这样的映射只有

1 个

第二类,有一个元素的象为2,其和又为4,则其余3个元素的象为0,1,1,这样的映射有C41C31C22个 第三类,有两个元素的象为2,其和又为4,则其余2个元素的象必为0,这样的映射有C42C22个

根据加法原理共有 1+C41C31C22+C42C22=19个

5. 四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的方法共有多少种?

6. 由12个人组成的课外文娱小组,其中5个人只会跳舞,5个人只会唱歌,2个人既会跳舞又会唱歌,若从中

选出4个会跳舞和4个会唱歌的人去排演节目,共有多少种不同选法?

排列、组合练习题参考答案

:

1.C 9

2 362. A 92

72

3. 解析:设男生有n 人,则女生有(8-n )人,由题意得

C n 2C 81n A 33nn1

(8n)690

2

nn1(8n)30

用选支验证选(B )

4.分类:①恰有两个杯盖和茶杯的编号相同的盖法有

C 52

220种;

3

②恰有三个杯盖和茶杯的编号相同的盖法有 C5

10

种;

③无恰有四个杯盖和茶杯的编号相同的盖法, 只有五个杯盖和茶杯的编号完全相同的盖法

1种。

故选(B )31种。

惠来一中数学组 方文湃

9

1 4

3 2

5.

分类:①1奇4偶:

C 6C 5

30

②3奇2偶:C 6C 5200

选(A )

6.分步:C 61C 5

222

240

选(A )

3

3

7.

间接法:

C

10C

6

或分类:

C14C 62

+C 42C 16+C 43

B A

4

8

8 8.间接法:

A 1010

A 44

A 77

3

3

9.

间接法:

C

20C

8

2 2

10.对应:一交点对应

l1

、l2上各两点:

C3C418

个选(A )

11. 分类:①英语翻译从单会英语中选派:

C 53C 42

60

②英语翻译选派中一人既会英语又会日语: C 52C 32

30

填90

懂日语

分步:A 22A 44A 5

5

懂英语

1

12.

5

6

选(D )

13. 元素与位置:以冠军为位置,选人:7777775

14.

75600 24 33 52

7①5

4 3 2 120;②4 3 2 24

15. 分步:5

4

3

3

180

填180

A 99 7 8 9

A 93

A 6

6

16.消序:=504或分步插空:789=504或惠来一中数学组方文湃10

C62C42C22A33

17.先分组后分配:A33或位置分析:C62C42C22

3 2 1 3

18.先分组后分配:

C6C3C1A3

3 1 2 2

19.位置分析:

C8C5C4C2

3 2 1 3

20.(1)仿17题;(2)先分组后分配:C6C3C1A3

C83C53C223

21.先分组后分配:

A22A3

或分类,先确定住两人的房间——位置分析:C3

1C82C63C33

2 3 2 1 1 重复题目: 先分组后分配:C4A3或分类——位置分析:3C4C2C1

A55A33A22 1

22.捆绑:

A8828

选(B)

4 3 3 4 2 3 3

23. 插空:A4A524. 插空:A425. 插空:A4A526. 插空:A3C4

27.插空: A33A4328.(A) C83

C96C9398 7 84

29.隔板法: 3 2 1 选(A)

30.1先在编号为2、3的2个盒子分别放入1个小球、2个小球;

2对余下7个小球用隔板法C6215。选(C)

31.对应的思想:100名选手之间进行单循环淘汰赛,最后产生一名冠军,要环淘99名选手,每淘汰1名选手,对应一场比赛。故要举行99场比赛。

惠来一中数学组方文湃11

32.[ 解法一]:找规律:固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,

大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法,小加数为10时,大加数为11,12,,,20共10种取法;小加数为11时,大加数有9种取法,小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+,+9+10+9+,+2+1=100种.

[法二]:固定和的值.有和为21,22,,,39这几类,依次有取法10,9,9,8,8,,,2,2,1,1种.由分类计数原理得不同取法共有10+9+9+,+2+2+1+1=100种.

以上两种方法是两种不同的分类。

33.解:列表排出所有的分配方案,共有3+3+3=9种,或33119种.

34.(1)C10424

(2)

C102

(3)

C101C9222

35.解:根据a,b,c,d对应的象为2的个数分类,可分为三类:

第一类,没有一个元素的象为2,其和又为4,则集合M所有元素的象都为1,这样的映射只有

1个

第二类,有一个元素的象为2,其和又为4,则其余3个元素的象为0,1,1,这样的映射有C14C13C22=12个

第三类,有两个元素的象为2,其和又为4,则其余2个元素的象必为0,这样的映射有C42C22=6 个

根据加法原理共有1+ C41C31C22+C42C22=1+12+6=19个

惠来一中数学组方文湃12

排列组合典型例题

— 典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 9A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一 个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439=+=??+A A A A 个. 典型例题二 例2 三个女生和五个男生排成一排 — (1)如果女生必须全排在一起,可有多少种不同的排法 (2)如果女生必须全分开,可有多少种不同的排法 (3)如果两端都不能排女生,可有多少种不同的排法 (4)如果两端不能都排女生,可有多少种不同的排法 解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有6 6A 种不同排法.对于其中的每一种排法, 三个女生之间又都有33A 对种不同的排法,因此共有43203366=?A A 种不同的排法. (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有5 5A 种不同排法,对于其中任意一种排法,从上述六个位 置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=?A A 种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有6 6A 种排法,所以共有 144006625=?A A 种不同的排法. (4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受 条件限制了,这样可有7715A A ?种不同的排法;如果首位排女生,有13A 种排法,这时末位就 只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有6 6A 种不同的排法, 这样可有661513A A A ??种不同排法.因此共有360006615137715=??+?A A A A A 种不同的排法.

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法 (2)如果女生必须全分开,可有多少种不同的排法 (3)如果两端都不能排女生,可有多少种不同的排法 (4)如果两端不能都排女生,可有多少种不同的排法 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种 (2)歌唱节目与舞蹈节目间隔排列的方法有多少种 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术

共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法 例7 7名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法 (2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必

须在后排,有多少种不同的排法 (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法 例8计算下列各题: (1) 2 15 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

集合---排列组合

职 高 数 学 单 元 测 试 集合---排列组合 (时间:100分钟,满分100分) 姓名________成绩__________ 一.填空:(每空2分,共38分) 1.从1,2,3,4,5中任选两数组成加法式子,共可组成______个不同的加法式子, 若组成无重复数字的二位数,则可组成_______个不同的二位数. 2.计算:0!+5!- C 62+P 62=____ 3.四人排成一列,甲只能站右边第一个位置,则有 种不同站法. 4.1,2,3,4,5中任取2数,可以组成______个两位偶数,如果数字可以重复, 则可组成________个两位偶数. 5.-8和-2的等比中项为________,等差中项为_______ 6.等比数列{a n }中S n =2n+1-2,则此数列的公比q=_________ 7.数列{a n }为等差数列,a n =2-3n 则S 10=__________ 8.集合A={0,1,2,3}的所有真子集有_______个. 9.已知aa 13. 6名护士,3名医生分派到三所不同的学校为学生体检,每校两名护士和一名 医生,则有 种不同的分派方法。 14.已知函数 x a y log 3=的图象过点)9 1 3(,,则a= 二.选择填空题:(每小题3分,共30分) 15.从甲地到乙地,一天中有两班火车,五班汽车开出,则在一天中不同的乘车方 法有 种 A 25 B 52 C 10 D 7 16.某地有4个不同的邮筒,现将三封信投放到邮筒中,则不同的投法有 种 A 34 B 43 C P 43 D C 43 17.4×5×6×……×(n-1)×n ×(n+1)= A C n+1n-3 B (n+1)!-3! C P n+1n-2 D P n+1n-3 18.已知C 202x-7=C 20x ,则x= A 9 B 7 C 9或7 D 5或9 19.三数m-1,2m ,4成等差,则m= A 0 B 1 C 2 D 3 20.等差数列{a n }中,a 3+a 7=20,则S 9= A 9 B 20 C 90 D 180 21.等比数列:-1,2.......的第8项为 A 256 B -256 C -128 D 128 22.已知等差数列-1,1……则此数列的S 10= A 70 B 80 C 90 D 100 23.函数13sin()25 y x π =--周期和最大值分别为 A 2,3π B ,3π C 4,3π D 3 2,2 π 24.已知平面上有八个点,其中有四点在同一直线上,此外再无三点共线情形,则 此八点可组成 个三角形。 A 50 B 52 C 54 D 56 三.解答题(25、26、27小题每小题6分,28、29小题,每小题7分,共32分) 25.计算:C 63 +C 62 -P 52 +2-1 +lg2-lg20+cos600

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

排列组合问题经典题型#精选.

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

排列组合公式(全)教程文件

排列组合公式(全)

排列组合公式 排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用

(1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9!

排列与组合的综合应用.

高三数学(理一轮复习—— 10.3排列与组合的综合应用 教学目标:1. 进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解 法,提高分析问题和解决问题的能力,学会分类讨论的思想. 2. 使学生掌握解决排列、组合问题的一些常用方法。 教学重点:排列组合综合题的解法。教学过程: 一.主要知识: 解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系, 还要考虑“是有序”的还是“无序的” ,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法: 1.特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。 2.科学分类法:对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行 3.分配、分组(堆问题的解法: 4. 插空法 :解决一些不相邻问题时, 可以先排一些元素然后插入其余元素, 使问题得以解决。 5.捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个” 6.排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法 . 7.剪截法(隔板法 :n 个相同小球放入m(m≤ n 个盒子里 , 要求每个盒子里至少有一个小球

的放法等价于 n 个相同小球串成一串从间隙里选 m-1个结点剪成 m 段 (插入 m -1块隔板 , 有 11 --m n C 种方法 . 8. 错位法:编号为 1至 n 的 n 个小球放入编号为 1到 n的 n 个盒子里 , 每个盒子放一个小球 . 要求小球与盒子的编号都不同 , 这种排列称为错位排列 . 特别当 n=2,3,4,5时的错位数各为 1,2,9,44.2个、 3个、 4个元素的错位排列容易计算。关于 5个元素的错位排 列的计算,可以用剔除法转化为 2个、 3个、 4个元素的错位排列的问题: ① 5个元素的全排列为:5 5120A =; ②剔除恰好有 5对球盒同号 1种、恰好有 3对球盒同号 (2个错位的 351C ?种、恰好有 2对球盒同号 (3个错位的 252C ?种、恰好有 1对球盒同号 (4个错位的 1 59C ?种。 ∴ 120-1-351C ?-252C ?-1 59C ?=44. 用此法可以逐步计算:6个、 7个、 8个、……元素的错位排列问题。 二.典例分析 【题型一】“分配” 、“分组”问题 例 1.将 6本不同的书按下列分法,各有多少种不同的分法? ⑴分给学生甲 3 本,学生乙 2本,学生丙 1本;

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

排列组合典型题解

排列组合典型题解“十法” 一、特殊元素(位置)——“优先法” 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 例1、6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 解法1:(元素分析法): 解法2:(位置分析法): 例2、用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有() A.24 B.30 C.40 D.60 例3、在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有_____个. 例4、将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有种? 练习:(1)0,1,2,3,4,5这六个数字可组成多少个无重复数字的五位数? (2)0,1,2,3,4,5可组成多少个无重复数字的五位奇数? (3)五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有种。 二、相邻问题——“捆绑法” 对于要求某几个元素必须排在一起的问题,可用“捆绑法”:可先将相邻的元素“捆绑”在一起,看作一个“大”的元(组),与其它元素排列,然后再对相邻的元素(组)内部进行排列。 例5、7人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法? 例6、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 练习:求不同的排法种数: (1)6男2女排成一排,2女相邻; (2)4男4女排成一排,同性者相邻; 三、不相邻问题——“插空法” 元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。 例7、7人排成一排,甲、乙、丙3人互不相邻有多少种排法? 引申: (1)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法? (2)三个男生,四个女生排成一排,男生之间、女生之间不相邻,有几种不同排法?

排列 组合 定义 公式 原理

排列组合公式 久了不用竟然忘了 排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式

3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9! 集合B为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3! 这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3! 这就是我们用以前的方法求出的P(9,6) 例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法? 设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。这时集合C的元素与B的子集存在一一对应关系,则 S(B)=S(C)*6! S(C)=9!/3!/6! 这就是我们用以前的方法求出的C(9,6) 以上都是简单的例子,似乎不用弄得这么复杂。但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1, 2,3,4,5)的元素个数相等,所以我们才说物品共有5个。我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。 例3:9个人坐成一圈,问不同坐法有多少种?

组合的综合应用

组合的综合应用 探究点1 有限制条件的组合问题 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (1)至少有一名队长当选. (2)至多有两名女生当选. (3)既要有队长,又要有女生当选. 【解】 (1)至少有一名队长含有两种情况:有一名队长和两名队长,故共有C12·C411+C22·C311=825种.或采用排除法有C513-C511=825种. (2)至多有两名女生含有三种情况:有两名女生、只有一名女生、没有女生,故共有C25·C38+C15·C48+C58=966种. (3)分两种情况: 第一类:女队长当选,有C412种; 第二类:女队长不当选, 有C14·C37+C24·C27+C34·C17+C44种. 故共有C412+C14·C37+C24·C27+C34·C17+C44=790种. [变问法]在本例条件下,至多有1名队长被选上的方法有多少种? 解:分两类情况: 第一类:没有队长被选上,从除去两名队长之外的11名学生中选取5人有C511=462种选法.第二类:一名队长被选上,分女队长被选上和男队长被选上,不同的选法有:C411+C411=660种选法. 所以至多1名队长被选上的方法有462+660=1 122 种. 有限制条件的组合问题分类 有限制条件的抽(选)取问题,主要有两类: 一是“含”与“不含”问题,其解法常用直接分步法,即“含”的先取出,“不含”的可把所指元素去掉再取,分步计数; 二是“至多”“至少”问题,其解法常有两种解决思路:一是直接分类法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重不漏. 1.若从1,2,3,…,9这9个整数中取4个不同的数,使其和为奇数,则不同的取法共有( ) A.60种B.63种

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 9A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一 个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得: )(283914A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 281515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0 在内),百位,十位从余下的八个数字中任意选两个作排列,有 281414A A A ??个 ∴ 没有重复数字的四位偶数有 2296281414281515=??+??A A A A A A 个. 解法4:将没有重复数字的四位数字划分为两类:四位奇数和四位偶数. 没有重复数字的四位数有39410A A -个. 其中四位奇数有)(283915A A A -个

排列组合问题经典题型

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.D C B A ,,,五人并排站成一排,如果B A ,必须相邻且B 在A 的右边,则不同的排法有多少种? 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个 元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是多少种? 3.定序问题等机会法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(B A ,可以不相邻)那么不同的排法有多少种? 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继 续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字 均不相同的填法有多少种? 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同 的选法种数有多少种? (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有多少种? 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法有多少种? 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有多少种? (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺 序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ?=+-? 例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的 参赛方案? 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列与组合综合用题

排列与组合的综合应用题(2) 授课教师:黄冈中学高级教师汤彩仙 一、知识概述 例1、有13名医生,其中女医生6人.现从中抽调5名医生组成医疗小组前往灾区,若医疗小组至少有2名男医生,设不同的选派方法种数为P,则下列等式: ①②;③;④; 其中能成为P 的算式有________.(填序号) 答案:②③ 例2、袋中有3个不同的红球,4个不同的黄球,每次从中取出一球,直到把3个红球都取出为止,共有多少种不同的取法? 解:++++=4110(种). 例3、某停车场有连成一排的9个停车位,现有5辆不同型号的车需要停放,按下列要求各有多少种停法?(1)5辆车停放的位置连在一起; (2)有且仅有两车连在一起; (3)为方便车辆进出,要求任何3辆车不能在一起. 解:(1)(种).

(2)(种). (3)要求任何3辆车不能连在一起,可以分成①5辆车均不相邻,②有且仅有两辆车相邻,③有2组2辆车相邻,三种情况. 有. 例4、设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内: (1)只有一个盒子空着,共有多少种投放方法? (2)没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法? (3)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?解:(1). (2). (3)(种). 法二:恰有两个球的编号与盒子编号是相同时,投法数为种; 恰有三个球的编号与盒子编号是相同时,投法数为种; 恰有五个球的编号与盒子编号是相同时,投法数为1种; 故至少有两个球的编号与盒子编号是相同的投法数为

例5、某学习小组有8名同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有一人参加,共有180种不同的选法,那么该小组中男女同学分别有多少人? 解:设有男生x人,女生8-x人,(x∈N+,且2≤x≤7). 则有,即x(x-1)(8-x)=60. ∴x=6或x=5. ∴男生6人,女生2人或男生5人,女生3人. 例6、一栋7层的楼房备有电梯,现有A,B,C,D,E五人从一楼进电梯上楼,求:(1)有且仅有一人要上7楼,且A不在2楼下电梯的所有可能情况种数. (2)在(1)的条件下,一层只能下1个人,共有多少种情况? 解:(1)分A上不上7楼两类A上7楼,有54种;A不上7楼,有4×4×53种.共有54+4×4×53=2625种. (2)(种). 例7、某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有__________种.(以数字作答) 解:(种).

相关文档
最新文档