直读光谱仪原理

直读光谱仪原理
直读光谱仪原理

第一章直读光谱仪的概况

国内外光电直读光谱仪的发展

光谱起源于17世纪,1666年物理学家牛顿第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。到1802年英国化学家沃拉斯顿发现太阳光谱不是一道完美无缺的彩虹,而是被一些黑线所割裂。

1814年德国光学仪器专家夫琅和费研究太阳光谱中的黑斑的相对位置时.把那些主要黑线绘出光谱图。

1826年泰尔博特研究钠盐、钾盐在酒精灯上光谱时指出,发射光谱是化学分析的基础、钾盐的红色光谱和钠盐的黄色光谱都是这个元素的特性。

到1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上第一台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。

从1860年到1907年之间、用火焰和电火花放电发现碱金属元素铯Cs、1861年又发现铷Rb和铊Tl,1868年又发现铟In和氦He。1869年又发现氮N。1875~1907年又相继发现镓Ga,钾K,铥Tm,镨Pr,钋Pe,钐Sm,钇y,镥Lu等。

1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。凹面光栅实际上是光学仪器成象系统元件的合为一体的高效元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。

波耳的理论在光谱分析中起了作用,其对光谱的激发过程、光谱线强度等提出比较满意的解释。

从测定光谱线的绝对强度转到测量谱线的相对强度的应用,使光谱分析方法从定性分析发展到定量分析创造基础。从而使光谱分析方法逐渐走出实验室,在工业部门中应用了。

1928年以后,由于光谱分析成了工业的分析方法,光谱仪器得到迅速的发展,一方面改善激发光源的稳定性,另一方面提高光谱仪器本身性能。

最早的光源是火焰激发光谱;后来又发展应用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。工业生产的发晨,光谱学的进步,促使光学仪器进一步得到改善,而后者又反作用于前者,促进了光谱学的发展和工业生产的发展。

六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展。由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。

解放后,我国的光谱仪器工业从无到有,由小到大,得到飞跃的发展,且具有一定的规模,与世界先进技术竞争中求生存,社会商品竞赛中得到发展。

1958年开始试制光谱仪器,生产了我国第一台中型石英摄谱仪,大型摄谱仪,单色仪等。中科院光机所开始研究刻制光栅,59年上海光学仪器厂,63年北京光学仪器厂开始研究刻制光栅,63年研制光刻成功。1966—1968年北京光学仪器厂和上海光学仪器厂先后研制成功中型平面光栅摄谱仪和一米平面光栅摄谱仪及光电直读头。1971—1972年由北京第二光学仪器厂研究成功国内第一台WZG—200平面光栅光量计,结束了我国不能生产光电直读光谱仪的历史。

八十年代以来,我国铸造行业开始引进光电直读光谱仪作为熔炼过程中化学成份控制的分析手段,并逐步取代了我国传统的湿法化学分析法,至今已发展到中小企业也逐步采用光谱法配合作炉前分析。

国外引进的铸造生产线已配备了专用的光谱分析设备,作为成套设备进入中国,这是铸造行业对质量控制要求越来越严的发展的必然结果,也是光电光谱分析本身的优点决定了这一技术自1945年问世以来,历时五十六年而经久不衰之缘故。

众所周知,原子发射光谱分析所采用的原理是用电弧(或火花)的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征波长,用光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模/数转换,然后由计算机处理,并打印出各元素的百分含量。

从以上原理可以看出原子发射光谱分析,有其独特的、特别适合于配合炉前分析的优点,使其发展成为金属冶炼和铸造行业必不可少的分析手段,其特点如下:

一、炉中取的样品只要打磨掉表面氧化皮,固体样品即可放在样品台上激发,免去了化学分析钻

取试样的麻烦。对于铝及铜、锌等有色金属样品而言,可用小车床车去表面氧化皮即可。

二、从样品激发到计算机报出元素分析含量只需20-30秒钟,速度非常快,有利于缩短冶炼时间,

降低成本。特别是对那些容易烧损的元素,更便于控制其最后的成份。

三、样品中所有要分析的元素(几个甚至十几个)可以一次同时分析出来,对于牌号复杂的产品,

要求分析元素愈多愈合算,经济效益好。

四、分析精度非常高,可以有效控制产品的化学成份,保证它能符合国家标准的规格,甚至可将

合金成份控制到规格的中下限,以节省中间合金或铁合金的消耗。

五、分析数据可以从计算机打印出来或存入软盘中,作为永久性记录。

总之,从技术角度来看光电光谱分析,可以说至今还没有比它能更有效的用于炉前快速分析的仪器,具备了那么多的特点而能取代它。所以世界上冶炼、铸造以及其他金属加工企业均竞相采用这类仪器成为一种常规分析手段,从保证产品质量,从经济效益等方面,它是十分有利的分析工具。

九十年代以来,我国有一些知名企业,如:长春一汽、上海大众、无锡小天鹅等在引进国外铸造生产线时均带有德国OBLF光谱仪作为炉前分析的专用设备。

德国OBLF公司生产光谱仪在德国已有三十年历史,用户遍布世界各地。

仪器型号有:

适用于单基体分析系统的有OBLF GS-1000型(可分析氮元素),最多能设置32个分析通道。适用于多种基体的分析系统有OBLF QSN-750型(最多可设置60个分析通道)和QSG-750型(最多能设置60个分析通道),可分析氮,以及酸溶性及酸不溶性铝和硼等。

仪器特点:

考虑到铸造行业现场环境,作如下设计:

一、光学室具有防震装置,并有恒温装置。

光室温度为35℃±0.2℃,全部器件都密封在真空室内,以保证其长期稳定性。即使在较差的

作业环境中,仪器也能正常工作。所有通道长期稳定性的结果表明了八小时之内有300个测

量值(每十个取一平均值),则30个平均值中最高最低之值不超过原强度比值的2%。

二、1000型采用焦距为500mm的凹面光栅,750型采用焦距为750mm的凹面光栅

根据分析样品选样光栅刻线,保证有足够的分辨率以满足复杂合金钢的分析。

三、由于光谱仪处于日夜不停的工作状态,采用微机控制真空泵,既保证了足够的真空度亦保护

了真空泵,处于冷状态延长寿命,减少油蒸气。

四、提高分析灵敏度及精确度方面,在光路上采用直射式提高光强,并采用脉冲放电激发光源,

放电频率可达1000赫兹及单火花技术,可大大提高信噪比及激发的稳定性,从而有非常良好

的分析精度。

五、性能良好的光谱仪软件,使仪器全部自动化并可进行背景校正、干扰元素校正、基体校正等,

旨在保证分析的正确度。

OBLF光谱仪由于具备了以上各种特点,使得仪器完全能满足铸造行业炉前快速分析的要求,故现在在广大铸造、冶金、机械等行业广泛使用。。

第二章光谱分析基本原理

§2-1,光谱分析的种类和分析的内容

在日常生活中,可以见到各种不同的,如红、黄、兰、白色光。太阳光经三棱镜后,会产生红、橙、黄、绿、青、兰,紫排列的色带,还有人们肉眼所看不见的光如紫外线,红外线,γ射线等。

从光谱分析的观点重要的谱线波长是在100—12000*10-1nm之间,这个区间又分为几个光谱范围。

从广义讲,各种电磁辐射都属于光谱,一般按其波长可分为:

γ射线0.00005—0.14nm

x射线0.01—10nm

微波波谱0.3mm—lmm

而光谱区可分为:

真空紫外区10—200nm

近紫外区200~380nm

可见光谱区380—780nm

近红外光谱780nm一3μm

远红外光谱3—300μm

注:1米(m)=103毫米(mm)=106微米(μm)

光电直读光谱分析应用的元素波长,大部分在真空紫外区和近紫外区最多。

我们通常所讲到光谱仅指光学光谱而言,从物质(固、液、气)加热或用光或用电激发射光谱时得到三种类型的光谱。线光谱是由气体状态下的原子或离子经激发而得到的,通常呈现分立的线状所以称线光线,就其产生方式而言又可分为发射光谱(明线)和吸收光谱(暗线)两种,因此光谱分析又分为发射光谱分析和原子吸收光谱分析。如果是原子激发产生的光谱,称原子光谱,如果离子激发所产生的光谱称离子光谱。带状光谱是原子结合成分子中发出的或两个以上原子的集团发出的,通常呈带状分布,是分子光谱产生,如在光谱分析中采用炭电极,在高温时,炭与空气中氮化合生成氰带(CN)分子,当氰分子在电弧中激发时产生的光谱,称氰带。连续光谱是从白热的固体中发出的,是特定的状态下原子分子中发出来的,所以连续光谱是无限数的线光谱或带光谱集合体。

我们通常讲的光谱分析,一般是指“原子发射光谱分析”,光电光谱分析中元素波长都是元素的原子光谱和离子光谱。

现在光电光谱仪主要分为两大类。非真空型的光电光谱仪的工作波长范围在近紫外区和可见光区。真空光电光谱仪工作波长扩展到远真空紫外120.0nm,因而利用这个波段中氮、碳、磷、硫等谱线的灵敏度来分析钢中的重要元素。

§2—2 发射光谱分析的理论基础

§2—2—1 原子结构与原子中电子的性质

光谱分析主要是指定性分析和定量分析;分析时,必须要了解原子的结构和原子中电子的性质。实

验表明、任何元素的原子都包含着一个小的结构紧密的原子核,原子核由质子和中子组成,核外分布着电子,每个电子都带有负电荷,其电荷大小与质子所带的电荷相等而符号相反。中子是不带电的,在中性的原子内,质子的数目与电子数目相等,这个数目表征着每一元素的特征,通常称为原子序数。

正是由于电子在原子核周围分布不是随意的,而是有一定规律的,所以才显示了每个元素的不同化学性质和不同光谱,因而我们可以想象电子处于一定轨道上,同时电子在每一轨道(或状态上)所具有的能量不相同的,每个轨道可认为是相当于原子中的一个能级。波耳的原子模型图来解释原子核外的电子结构是比较简单明了的。

图中A、B分别表示氢原子和氦原子的波耳模型

事实上,电子具有波动性,这个性质使原子中电子轨道概念失去意义,代替这个概念的和更能反映原子图象的是量子力学的电子状态或者称波函数,在原子核周围的空间电子是按几率分布的,这种几率分布称为“电子云”依据量子力学理论计算得到的电子云密度与波耳氢原子第一轨道地方是相吻合的。

电子在原于中几率分布

§2—2—2 光谱波长的产生

任何物质都是由元素组成的,而元素又都是由原子组成的,原子是由原子核和电子组成,每个电子都处在一定的能级上,具有一定的能量,在正常状态下,原子处在稳定状态,它的能量最低,这种状态称基态。当物质受到外界能量(电能和热能)的作用时,核外电子就跃迁到高能级,处于高能态(激发态)电子是不稳定的,激发态原子可存在的时间约10-8秒,它从高能态跃迁到基态,或较低能态时,把多余的能量以光的形式释放出来,原子能级跃迁图见图。

横坐标表示原子所处的能级;Eo为基态能级的能量,一般为零表示,释放出的能量ΔE与辐射出的光波长λ有如下关系。

ΔE=E h -E l =ch/λ

式中:ΔE 释放出的能量,

Eh 高能态的能量,

E1 低能态的能量, 图 能级跃迁

c 光速(3X10l0厘米/秒)

h 勃朗克常数

λ 辐射光的波长

图中纵坐标表示各能级所具有的能量,

因为每一种元素的基态是不相同的,激发态也是不一样的,所以发射的光子是不一致的,也就是波长不相同的。

依据波长入可以决定是那一种元素,这就是光谱的定性分析。另一方面谱线的强度是由发射该谱线的光子数目来决定的,光子数目多则强度大,反之则弱,而光子的数目又和处于基态的原子数目所决定,而基态原子数目又取决于某元素含量多少,这样,根据谱线强度就可以得到某元素的含量。

§2—2—3原子的激发

原子获得能量使处于基态的原子过渡到一个较高的能级称激发。可以引起激发的原因很多。以电弧或火花作为光源,主要是热激发。热激发是由于在高温下,蒸气云中的粒子(指原子,离子,电子)有较大运动速度,粒子之间产生碰撞,碰撞的结果,有能量的传递,碰撞可以是弹性的或非弹性的。非弹性碰撞导致激发。要产生激发必须要有足够的能量传递,这个能量称为激发电位。

现在进一步考虑不只一个原子而考虑蒸气云中许多这种元素的原子,讨论其中有多少个原子可以被激发到某一能级。如考虑的是中性原子,则有表示在不同能级上原子分配情况的波兹曼公式。

式中:

Ni 表示处于激发态的浓度。

No 表示处于基态的原子浓度(在不同T 时No 也不同)。

gi ,go 激发态,基态的统计权重。

Ei 表示激发态i 的激发电位。

K 波兹曼常数

T 激发温度

此式说明

(1)T 愈高,越容易将原子激发到高能级,Ni 越大。

(2)一般Ni /No 在1%左右被激发的机率不大。 也就是任何能级的分布对温度的变化都是灵敏的,在一个热光源中,

不同能级的分布如同波兹曼分

布一样。在低温下,低能谱线容易发射:在高温下,高能谱线容易发射。

对于离子的激发,也可以用同样的公式表示。离子是先已失去一个或二个电子的原子。

离子的激发是离子最外层的电子运动起变化,受激而发射光谱。

§2—2—4 光谱线的强度

激发态的原子最终是要回复到基态而发射光谱的,但回到基态的方式可以是多种多样,因

此发射光谱中有各种波长的谱线。参看下图6。

设某一原子被激发到i能级,能级之间的跃迁有各种可能性,可以是i1,im,io,lm,mo。当然按照量子力学有某些能级之间的跃迁是不允许的。但每一种允许的跃迁产生一种波长的谱线。

谱线的强度是由蒸气云中这一元素的许多原子被激发并产生同样的的跃迁而决定的,决定谱线强度(指总强度)的是im是任意跃迁。

I im=N i A im hv im

公式中:N i 表示被激发到i能级的原子浓度。

A im表示i能级及m能级之间的跃迁几率。

hv im 表示Ei—Em两能级之间能量之差。

v im表示发射谱线的频率。

将波兹曼公式代人上式,则

由此可以有以下结论和讨论:

1.激发到能级的激发电位愈高,在此状态的原子浓度愈低。1为中性原子线、2为离子线2.从不同高能级跃迁到基态,能级愈高,跃迁几率愈小。

3.各元素原子被激发所需最小的激发能称作共振电位。由此能级跃迁到基态发射的谱线称作共振线。由于激发到此状态的原子浓度大,跃迁几率亦大、共振线是最强的谱线、最灵敏线。

4.同一高能级跃迁到不同低能级而发射的一系列谱线具有均称性,即使光源有波动,相对

强度能保持一定。这样的谱线可作定量分析用均称线对。

5.考虑电离及激发两个方面,谱线强度和光源温度的关系一般如图曲线表示。曲线表明谱线强度不是温度愈高而愈大,而各有一最合适的温度。在此温度,谱线最强。

6.光电光谱分析是一种相对的方法,靠己知含量的标样与分析样品一起激发,光电光谱分析中也常用比较线,也就是用相对强度来分析样品中的元素。

§2—2—5 光谱线的宽度、自吸

1,谱线的轮廓和宽度

我们经常指某一谱线的波长是指它强度

最大值处的波长。实际上每一谱线不是严格

单色的,而是有一定强度分布,所以谱线有轮廓和宽度。谱线有自然宽,多普勒变宽,碰撞等原因,因而使谱线有一定的轮廓和宽度。某一波长是指它强度最大值处的波长。不同谱线的宽度不同,选用谱线做定量分析时要注意。

2.蒸气云有一定体积,在此体积内温度分布和原子浓度分布是不均匀的。

辐射由中心发出,通过边缘,被吸收,使温度减弱。这是由于原子在高温的蒸气中心被激发射某一波长的谱线,而在蒸气云边缘部分的低温状态下的同元素的原子即能吸收这一波长的辐射。在上图中叙述的Bio及Bie就是表示吸收的过程。

做光电光谱分析时,要注意分析线的自吸程度,如果分析线自吸性强,会使工作曲线的斜率降低,

不利分析的准确度。每个元素的共振线自吸最强,所以只有当分析元素含量很低,才采用共振线作分析

线。自吸最严重时,谱线形成自蚀(或称自返),此时原来的一条谱线轮廓中央强度降至零,因而一条谱线成为两条谱线的形状。自蚀线不能用作光谱的定量分析线。

§2—3 光电直读光谱分析谱线的选择

光电光谱分析选用的分析线,必需符合下列要求。

1.直读光谱分析时,一般都采用内标法。因内标法进行分析时常采用多条分析线和一条内标线组成,常用试料中的基体元素为内标元素。组成的线对要求均称,就是当激发光源有波动时,两条线对的谱线强度虽有变化,但强度比或相对强度能保持不变。

如R表示强度比即R=I1/I0

I1为分析线的强度,I o为内标线强度,表明I1和I o同时变,而R则不受影响。R与含量C之间有线性关系。

在光电直读光谱分析时,有很多分析通道,要安装许多内标通道有困难,因此采用一个内标线。但有人认为再要提高光电光谱分析的准确度还得采用不同的内标线,这还有待于光电转换元件的小型化来解决。

光电法时,有时还用内标线来控制曝光量,称为自动曝光,也就是样品在曝光时,分析线和内标分别向各自积分电容充电,当内标线的积分电容器充电达到某一预定的电压时,自动截止曝光。此时分析线的积分电容器充电达到的电压即代表分析线的强度I,并且亦即代表分析线的强度比R(因为R=I1/I o,而此时I o保持常数)这个强度I或强度比R就由测光读数所表示。

现在一般采用计时曝光法较为普遍。

2.分析线和内标线之间要求均称性。也就是要求它们的电离电位及激发电位都很接近为最好。

以原子线为例:

当E=E2时,则T有变动,指数项等于1,R不受温度T的改变的影响。离子线亦同样。以上(1)(2)所述要查找光谱谱线表和有关文献资料。

3.选择分析线时,要注意其他元素的干扰,要尽量不受其他元素的重叠干扰。

4.选择分析线时,要有足够的浓度灵敏度,也就是说,当试料中浓度稍有一点微小改变,谱线强度也有明显的表示出来。同时要求分析线的含量范围要大,有利于分析工作。

5.分析线、内标线的强度(数字电压值,计数值)的零值含量,宜在分析含量范围的中间。

第三章,激发光源

§3—1概论

激发光源是光电直读光谱仪系统中重要的组成部分,它担负着包括物质的蒸发,解离和原子化以及激发等几个主要过程,实际上衡量分析方法好坏的几个主要技术指标,如光谱分析的检出限、精密度和准确度等,在很大程度上取决于激发光源。

激发光源都具有两个作用过程。这个作用就是蒸发样品及激发原子产生光谱。这两种作用同时进行,共同决定光谱线的强度。试料中元素蒸发离解,将涉及试样成分的物理及化学性质。把蒸发出来的元素原子激发,自然和光源发生器的性质有关,更确切地说与发生器的电学特性有密切关系、所以可以说激发光源决定了光谱分析方法,因此对光源现状的了解,是光谱工作者需要的。

由于光谱分析的样品种类繁多,试样形状不同,元素激发难易不同等,想用一种激发光源能够满足不同任务的各种分析是非常困难的。因此各种类型的光源都有其特点和应用范围,要根据不同的分析目

的选择不同类型的光源。

从定量分析的观点来考虑,对光源的要求如下:

1.分析灵敏度高,并能分析痕量、微量元素分析,灵敏度可达ppm或ppb数量级。

2.浓度灵敏度高,即当分析元素含量C有小的变化时,相应的分析线强度2变化要大,即dI/dc 要大。

3.在激发过程中,光源应有良好的稳定性和再现性,这是保证分析准确度的基本要求。

4.基体效应小,试料中基体含量变化时,分析元素的结果不受基体变化的影响。第三元素的影响,组织结构的影响,试样形状和质量的影响要小。

5.予燃时间,曝光时间(积分)要短,可提高分析效率和分析速度。

6.仪器结构简单、体积小,操作容易、安全可靠。

由于电直读光谱分析,用光电转换测量代替了感光板测量;测光误差≤0.2%是非常小,而光源误差在1%左右,在总的光谱分析误差中起显著作用,所以用光电直读光谱分析时,采用性能良好的激发光源具有十分重要的意义。

激发光源是采用上下两个电极的方法,通上电流,电极之间就形成一个光源。在这光源中,电极之间空气(或其他气体)一般处于大气压力。因此放电是在充有气体的电极之间发生,是依靠电极间流过电流使气体发光,是建立在气体放电的基础上。如低压火花和控波型光源是在电容电场作用下,采用控制气氛中放电,辉光光源是在直流电场作用下,稀薄控制气氛中放电。等离子体光源是在射频电磁场作用下控制气氛中放电,应该指出的是气体通过电流时,电极之间的电压和电流的关系不遵守欧姆定律的。

§3—2 光源的作用

光源的作用,将待测元素变成气体状态,而后激发成光谱,根据该元素谱线强度转换成光电流,由计算机控制的测光系统按谱线的强度换算成元素的含量。

光源作用的这种动态过程,就是将样品由固态变成气态,其中一部份元素激发而发射光谱,而这些气态的样品又不断地向四周扩散,分析间隙的气态样品也在不断更新,要求达到一个动态平衡,当光源激发一定时间后,蒸气云中待测元素浓度增大,只有蒸气云中浓度大,才能得到大的光电信号,为保证足够大的光电流,必须使单位时间内进入蒸气云中样品量的蒸发速度快,要求扩散慢,确保样品停留在蒸气云中的时间长。

§3—2—2 样品中元素的蒸发过程

分析元素的谱线是由原子或离子发射而产生的,而原子是由分子离解产生的,而分子离解成原子最好离解完全。

以xy表示分子,能否由xy中离解为原子xy决定于①光源的激发温度②xy离解能大小,这种离解是可逆的。

分子不能完全离解为原子的,影响蒸发出来的元素浓度,将影响分析的准确度和灵敏度。

样品中的不同元素(或者元素的不同化合物)挥发性质不同,元素的熔点不同,蒸气压不同;影响它们从样品中蒸发出来的先后次序,影响分析灵敏度。例如钢铁试样在空气中激发时,钢铁中不同元素对氧的亲和力是不一样,应考虑元素从样品中向激发表面的扩散问题,元素不同时,扩散速度不同;使样品中元素被激发而产生的谱线强度不能立刻趋于稳定。为了探求稳定的元素谱线强度,必须采用一定的予燃时间,在予燃以后开始积分。用试验方法得到谱线强度与时间t的曲线,我们称之谓予燃曲线。

影响予燃曲线的因素有很多。,如与物质的导热性质有关,容易导热的物质与不易导热的物质,予燃时间是不一致。与光源类型有关与激发条件有关,在激发过程与蒸气物质逐渐凝附于对电极,直至电极物质在凝附与蒸发的速度中达到平衡有关。

试料中由于第三元素的存在,影响予燃曲线的迁移,由于第三元素的存在,产生内部结晶构造的差异,引起元素的蒸发过程。

由于第三元素影响的规律尚未彻底了解,因而对从事实际光谱分析来说,必须严格保持激发条件一致,如试料中化学成分,金相组织,形状等,在钢铁厂炉前快速分析时常用同钢种,近似化学成分的控制标钢来减少和消除这种影响。

必须指出,实际工作中的低合金钢,高速工具钢,不锈钢,铸铁,有色金属,合金中的予燃曲线是不相同的。即使在同一合金中,不同元素的予燃时间也不一样,所以必须从实验中得到。

§3—2—3 电离和离子辐射

如果赋予原子以足够大的能量,便可以从原子上夺走一个或几个电子的原子叫离子,而从原子中夺走电子的过程便叫电离。如果原子失去一个电子称一次电离,失去二个电子称二次电离。依次类推。

如果赋于原子能量大于它的电离所需的能量,则夺走的电子就获得附加的能量,和中性原子一样,离子也能因激发而发光;离子发光的机理与中性原子发光机理相类似。

同一元素的离子光谱和中性原子光谱是不相同的。在光电直读光谱分析中可以使用原子线,也可使用离子线。

§3—3 控制气氛和电侵蚀

光电直读光谱分析时,电极架激发区域充氩气,使样品在控制气氛下激发。在使用氩控制气氛以后,试样的激发在惰性气体保护下进行,可以减少合金元素对氧亲和力作用的影响;同时还可以驱尽试样激发时释放出的氧、氮和水分子气体,使光谱线强度更加稳定。另外在氩气的气氛下激发,电离比较容易。对提高离子线的强度更加有利。

在氩气氛中激发和在空气中激发不同,激发时生成激发斑点不同,产生两种不同的放电即凝聚放电和扩散放电。形式不同,分析准确度不同。

两种放电形式,由下表可知,凝聚放电最好的。

这两种放电在间隙中释放出的能量相同、凝聚放电形式的样品蒸发较烈,放电集中在样品的较小面积上,而扩散放电形式样品的蒸发不烈。凝聚放电在阴极处的放电电流密度大。以上两种放电所得分析结果差别很大。

氩气的纯度和流量、光源的参数,钢中一些元素的含量高低都是产生不同放电形式的原因。样品表面有气孔、夹杂、油污、残余水份都会引起扩散放电。氩气纯度不够或未经氩气净化处理引起的扩散放电。浇铸状态的钢样比锻轧状态的钢样更易引起扩散放电。样品中如含有易氧化的元素如硅、铝、碳、铬等含量高时生成稳定化合物,往往导致扩散放电。引起扩散放电的原因是由于含有一定数量的氧。

光电直读光谱分析,用的是低压火花,放电是单向的。由于单向,上下电极有极性,采用样品接负,辅助电极接正,这样对样品激发,具有电侵蚀作用。所谓侵蚀,指金属样品在光源的作用下,其表面物质的损失、样品侵蚀厉害,则进入分析间隙的物质量多。

物质的侵蚀取决于放电电流密度和放电时间的长短。在单向放电下,阴极上的电侵蚀要比阳极上快许多倍。我们利用这电侵蚀现象使分析样品有较大的蒸发速度进入分析间隙。而使辅助电极在激发过程中很少消耗,这种单向电侵蚀的产生主要是在脉冲放电作用下,离子轰击样品所致。

§3—4 光电直读光谱分析常用的几种激发光源

§3—4—1 低压火花的基本电路

低压火花和高压火花一样,基本电路是由电容C,电感L,电阻R和分析间隙G组成,也就是在线路中电容器上充电,通过线路中的电感和电阻放电而在分析间隙处产生火花。见图

R 2=4L/C 得临界阻尼放电

R 2<4L/C 得振荡放电

以上说明低压火花参数改变,产生不同性质的放电,有不同的峰值电流和放电持续时间,这两种主要因素决定激发光源的性能。

对于振荡放电减少R ,缩短放电时间,放电性质时间趋向火花;对于阻尼放电,增大R ,增长放电时间,降低峰电流,放电性质趋于电弧

60年代低压火花采用50周波,分析时间长,分析再现性也较差。现在采用单向交变放电电路。单向交变放电是以阻塞二极管代替电路中原来的电阻,能精确控制放电的终点。如图

这种光源的特点可以①防止第二个半周产生振荡形式,使放电即是交流的又是单向的。②单向交变di /dt 很大,每个火花的放电终点是固定的,因而精度高。由于电路中去掉电阻,使光源的散热量大大减少。③可减少标准化的次数和更换对电极清理火花室的次数当频率增加到500周时,为保证放电稳定和有效的“消电离”,一般在高频放电中,必须增 加氩气冲洗的流量

§3—4—2 电控波高压火花

电控波光源基本特征是在高压火花电路中,由二极管极管将高频率振荡的电流加以整流、使之产生单向交变放电。

般火花放电波形

控波光源放电波形

控波光源的基本原理由电源电压220伏供给一个可调变压器,

调压到140伏,经升压后达到16000伏。SG 是保护间隙。经过桥

式全波整流,正端接充氢闸流管的板极,负端接R :。经过R1向

电容器C 充电,D1和D2是高压整流二极管,控制波形就是由电

感Ll 和L2及Dl 和D2组成的电路来完成的。当触发脉冲(400伏)

加在闸流管的控制栅极上,闸流管触发,桥式整流器正端接地,

电容器C 通过L1和L2在分析间隙AG 放电。放电频率是由触发

脉冲的频率决定的,每周1—8次,这是一种信噪比低,再现性好,基体效应小的光源。

§3—4—3 1CP 等离子光源

等离子光源和光电直读的分光,测光部份联用就组成ICP —AES 。ICP 光源在高频电磁场作用下,在线圈内的环状涡流区有很高温度(可达10000K 或更高)。在中间通道2中通过样品的溶液受热而原子化。原子在等离子体中温度很高停留时间长(取决于载气流速),一般为几毫秒。在惰性气氛中激发,光谱背景小。样品气溶胶集中在中间通道细小区城。自吸收小,组分影响小。测定的浓度线性范围广(一般达4—6个数量级),谱线强度大,尤其是离子谱线(比正常条件下的离子线强度要高出1—3个数量级。ICP 可测元素非常多,检出限在ppb 级,测定精度达1%以内。由于样品通过等离体中心,分析物质受激发温度较高,得到高效的激发,所以ICP 的分析相对地不受基体干扰的影响。ICP 的种类多,一般用的最多是电感耦合等离子体,ICP 的特点是可以把各式样品制成溶液样品,需要的标准样品可以人工合成配制,为了提高分析灵敏度,分析样品可以采用化学法进行分离,浓缩,萃取等方法。因而广泛应用于冶金化工、地质、医学等领域。

ICP 通常有以下几部分组成: 1.雾化器:分析的液体样品,首先把液体样品进行雾化,在等离子体早期研究常采用气动和超声零化器。液体样品通过一个纤维的毛细管柱被吸人,然后溶液与氩气流汇合,形成一种雾状体(或气溶胶),进入扩散室,在那里的大滴溶液凝聚作为废液排出,细雾一被喷人等离子流。

炬管:等离子体流本身是由射频发生器和感应圈组成,用电磁方法产生高频(27.14MHZ,3kw),装载等离子体的部件由被一个水冷的感应圈包围的等离子矩管(石英管组成),由射频发出的功率输送到感应圈,Ar气通过炬管并被感应线圈所产生的磁场离子化。一旦等离子体的自由电子达到足够密度,那么电磁场感应产生的涡流电流,使在围绕等离子流外围的水平环形闭合回路流动,感应线圈相当于一个三匝的初级线圈,等离子体相当一个一匝次级线圈。

等离子炬管是由一个石英三重管,中管外径16毫米与外管内径18毫米为熔接式,内管喷口直径为1.5毫为与中管磨口相接。

在产生离子化作用以后,一个火焰的等离子体在炬管顶部附近形成。样品被吸人离子流。等离子体的温度接近10000K,激发的谱线由一个较大孔径的聚光镜、把光进入分光仪内。

由于进入等离子体中分析元素的轴向分布与径向分布不同,所以选择等离子体观测高度是非常重要的。轴向分布,从工作线圈上方10毫米开始测量,选信噪比最大处。径向分布,以最大信/噪比的轴向距离处,约5毫米半径范围。

§3—4—4 辉光光源

辉光放电是根据气体放电的优安特性曲线形成的A区。即反常辉光放电区。在反常放电区随着电流的增加必然在伴随着电流密度的提高。因此要求更多的阴极发射,因此阴极的电压降开始增加,最后阴极开始电子热发断进入电弧区,这个正的特性曲线区域就称为反常辉光放电区。格里姆辉光放电就是利用反常辉光放电区放电特性。在正常放电区,物质从阴极释放出来是微不足道的,以至只能看到气体的光谱。辉光放电一般在较高的电压300V~300V,电流10mA一300mA,压力为a/托一20托的条件下进行。

阴极溅射现象和溅射率

要使元素发射光谱,首先使被测元素在放电空间形成原子状态或蒸发产生蒸气云。在格里姆放电中采用溅射现象,把元素的原子从阴极中溅射出来,形成原子蒸气状态。

放电时溅射率(试样量)与格里姆的几何结构,放电气体的压力,电学参数和试样的种类有关,设试样在辉光放电中的溅射率q是以每秒钟溅射的微克数Ps/秒表示的,每单位电流强度的溅射率称为简化溅射率Q

Q=μg/s

对于许多元素来说(Cu,Zn,W,Ni,灿,Ta,Mo)的简化溅射率和电压成正比元素谱线的积

分电压值与含量C之间的关系:

第四章反射式衍射光栅的色散原理

分光计是用来把光源激发出来的复合光展开成光谱的一种仪器,这种仪器的主要作用使复合光色散。使之成为各种不同波长的光叫做光的色散或叫分光。有棱镜和光栅二种,以棱镜为色散元件做成的分光仪,有水晶、玻璃、萤石等多种分光仪。以光栅为色散元件的分光仪又有平面衍射光栅或凹面衍射光栅分光仪之分。由于光栅刻划技术和复制技术进一步的提高,光栅已广泛应用于光电直读光谱仪中。光栅与棱镜比较具有一系列优点。首先棱镜的工作光谱区受到材料透过率的限制;在小于120nm真空紫外区和大于50微米的远红外区是不能采用的,而光栅不受材料透过率的限制,它可以在整个光谱区中应用。

光栅的角色率几乎与波长无关,光栅角色散在第一级光谱中比棱镜大,不过在紫外250nm时石英角色散比光栅角色率大。光栅的分辨率比棱镜大;由于光栅具有上述优点将更进一步得到应用。

§4—1 衍射光栅的制造

一般说来,任何一种具有空间周期性的衍屏的光学元件都可以称为光栅,如果在一块镀铝的光学玻璃毛胚上刻划一系列等宽,等距而平行的狭缝就是透射光栅。如在一块镀铝的光学玻璃毛胚上刻出一系列剖面结构象锯齿形状,等距而平行的刻线这就是一块反射光栅。

现代光栅是一系列刻划在铝膜上的平行性很好的划痕的总和,为了加强铝膜与玻璃板的结构的结合力,在它们之间镀一层铬膜或钛膜。在光学光谱区采用光栅刻划密度为0. 5—2400条/毫米。目前大量采用的600条/毫米,1200条/毫米,2400条/毫米。

为了保持划痕间距d无变化,因此对衍射光栅的刻划条件要求很严。经验证明,对光栅刻划室的温

度要求保持0.01—0.0313变化范围,光栅刻划机工作

台的水平振动不超过1—3微米,光栅刻划室应该清洁,要

避免通风带来的灰尘,光栅刻划室的相对湿度不应超过60—70%。光栅毛胚大多应有学玻璃和熔融石英研磨制成,结构如图。

毛胚应该加工得很好,其表面形状和局部误差要

求甚严。任何表面误差将使衍射光束的波前发生变形,

从而影响成象质量和强度分布。

为了提高真空紫外区反射率,铝膜上还镀上一层

氟化镁。

制造光栅的方法有机械刻划,光电刻划,复制方

法和全息照相刻划四种。

机械刻划是古老方法,但可靠,间隙刻划技术比

较成熟。但要刻划一块100X100mm的光栅(刻划机的刻划速度为15—25条/分)计算须要4个昼夜。因此要求机器、环境在长时间内保持精确恒定不变。

光电刻划就是利用光电控制的方法可以在某种程

度上排除光栅刻划过程中机械变动和环境条件改变所

产生的各种刻划误差。它一方面提高了光栅刻划质量,

另方面也能在一定程度上简化机械结构、降低个别零

件的精度和对周围环境的要求。

光栅复制

光栅刻划时间长和效率低,因此成本很高,不能满

足光谱仪器的需求。目前复制法有二种:一次复制法就是真空镀膜法。二次复制法是明胶复制法。一次

复制法是一次制成,而二次复制法是先复制母光栅的划痕,然后用该划痕印划在毛胚的明胶上。

二次复制的工艺比较烦琐,但需要设备和条件都比较简单,明胶法复制光栅质量是比母光栅差些。

右图是一次复制法的工艺过程图,

1和2是母光栅的基板和铝膜,涂上一层薄

的硅油d的清洁的母光栅水平地置于真空

镀膜机中,镀一层1.5微米的铝膜。铝膜

和硅油之间是便于使光栅分离。在铝膜3

上再涂一层粘结剂4使铝膜能与复制光栅

的基板5牢固地结合,粘结剂用环氧树脂

加咪唑(1:10) Array还有刻制光栅的方法叫全息照相刻划

法,其原理如下:二束相干光重叠会产生干

涉条纹,其间距为。

D=λ/2sinα

其中入为光束波长,α为两束光干涉前

的夹角。如图示激光的射出的相干光束,通过发散物镜O和针孔S,再经抛物镜P反射后落人两块平面

反射镜P1和P2。由于平面镜P1和P2的反射使已分离的两束光成交于E面,其交角为2α。这两束光

是相干的所以在正面产生干涉条纹,条纹的间距d。

若在面上放置一块予先涂上抗光蚀层的毛胚,则在蚀层获得干涉条纹的空间潜象,经显影后则在毛胚上获得干涉条纹的立体象(全息象),这就是透射衍射光栅。镀反射膜后可成为反射式衍射光栅。光栅的质量与膜层厚度同光栅常数之比例有关,与光栅毛胚的法线和两相干光束干涉前夹角的等分线是否一致有关,并与显影和曝光时间有关。

全息照相刻制具有以下优点

①改变激光器的波长,可以制造整个光谱区所需要的光栅。②全息照相刻划原则上无尺寸限制可制大光栅。③可制造平面和凹面光栅。④生产效率高、成本低,促使全息照相刻划光栅获得迅速的发展。2

§4—2 光栅方程

光栅能分光,是由于光栅上每个刻槽产生衍射的结果。由于光的衍射使光经过光栅后不同波长的光沿不同方向衍射出去。每个刻槽衍射的光彼此之间是互相干涉的。波长不同的光干涉的极大值出现的方向不同,因而复合光经过光栅后使色散而成光谱。这里,我们不对光栅每个刻槽的衍射和各刻槽之间多光束的干涉作详细地讨论,只给出光栅衍射后波长和衍射角的关系。

相邻两刻槽间距离为d,设入射光线与光栅法线成α角入射,此时不同波长的光衍射方向是不同的,如波长为入的光将与法线成β角的方向衍射。两相邻刻槽的衍射光①和②,在到光栅前,光线②多走光程为dsinα,而经光栅衍射后光线①又比光线②多走dsinβ,故衍射光①和②经光栅衍射后光程差为d(sin α—sinβ)。衍射光产生干涉,按干涉原理,当光程差为波长的整倍数时,起到了增强和迭加作用。因此,对于波长为入的光,其衍射方向应满足下列方程。

d(sinα—sinβ)=mλ(m为正整数)

显然,如果衍射光线和入射光线同在法线一侧,则光程差为:

d(sinα+sinβ)=mλ由此得到下列公式:

d(sinα±sinβ)=mλ

式中:

d相邻两刻线间的距离,称光栅常数。

α入射角,即入射光束和光栅法线夹角。

β衍射角,即衍射光束和光栅法线夹角。

如α与β都在光栅法线同一侧,方程取“+”号。

如α与β都在光栅法线异侧时,方程取“—”号

λ衍射光的波长:

m干涉级或称光谱级。

这个公式称光栅方程,这对平面,凹面,反射和透射光栅都是适用。当给定光栅的入射角确定时,便可以计算不同波长衍射方向。

对于给定d和α值,计算不同波长光的β值时,如β为负值,即表示入射光和衍射光在法线的异侧;如β为正值,即表入射光和衍射光在法线的同侧。

光栅方程公式对每个不同的m值有相应的光

谱,这称光谱的级。当m取0,1,2…时,分别为

0级,1级,2级光谱。相应于各m的负值,有各

负级光谱。所谓0级光谱,就是光栅不起色散作用,

只起镜面反射形成的入射狭缝的像。

应当看到这样一个事实,当光栅常数d和入射

角给定时,对于不同波长的光会被衍射到不同的β

角方向,这就是光栅的分光作用,这些被分光后的

光束经聚焦后就成为按波长排列的狭缝象一光谱

线。应当看到,一级光谱中波长为λ的谱线和波长为λ/2的二级谱线,波长为λ/3的三级谱线一重迭在一起,这是光栅光谱的一个特点。

§4—3 光栅的色散

光栅的角色率是指它对不同波长的光彼此衍射的角度间隙的大小,这是作为色散元件光栅的重要参量。我们把光栅方程的d和α看作常量,对β和λ求微分可得到:

这就是表示光栅的角色散率的公式,其单位是弧度/nm。

由上式可以看出,光栅的角色散率随不同的衍射角β而变化。但当衍射光在光栅的法线方向,则β=0,COSβ=1。如取正一级光谱,则角色散率就是以弧度/nm为单位光栅常数的倒数。尽管角色散率是光栅的重要参数,但通常并不标出,只标出光栅每毫米宽度中的刻线数。

减少d值,就可以提高分光仪的角色率。但是,

光栅的刻线密度有一定的限制。对于给定的光栅,如

果我们利用级数高的光谱,也可提高色散率。如二级

光谱的角色散率是一级光谱的两倍。

通常不用角色散来标志分光仪的性能,而用线色

散率或线色散率的倒数来标志其性能。

线色散率是标志不同波长的谱线在分光仪焦面

上分开的线距离的大小,它的单位是mm/nm,线色

散率和角色散率的关系为:(只有当焦面垂直于仪器

的光轴时,此式能成立)。

其中f是分光仪的成象焦距。由此可见,要增大分光仪的线色散率,须提高光栅的角色散率或者增长分光仪的焦距。

习惯上分光仪的色散能力总是以线色散率的倒数来表示。即用nm/mm来表示。因此,这个数字愈小,表示分光仪的色散能力愈大。

§4—4 光栅的分辨本领

光栅的分辨本领指的它能分开相邻谱线的能力。当然光栅分辨本领同它的角色散率有关。但并不是一回事,两者有不同的概念。如果波长λ+Δλ的谱线刚好能与波长λ谱线分开,在这个光谱区域的分辨本领的定义用R=λ/dλ来表示,称之为理论分辨率。如图所示:

分辨率可分为理论分辨率及实际分辨率。理论分辨率比实际分辨率大。理论分辨率的数等于mN。用下式表示

式中:m为光栅级次

N为光栅的总线槽数。数值上等于光栅的有效长度L(毫米)和线槽密度N(线/毫米)的乘积,因此上式可写为:

R理论=m2N=m2L2n

由此可知,影响理论分辨率的因素是光谱级次,光栅有效长度,光栅的线槽密度以及光的入射角和衍射角。R随这些因素增大而增大。

实际分辨率还要考虑到其他因素,例如光学系统的象散,仪器狭缝的实际宽度及色散能力,接受器的分辨能力等,因此R实际要比R理论小。

实际分辨率的表示方法,指出该仪器可以分辨开那些谱线组中的邻近线,这时可以选择谱线组中相距最近的两条谱线的平均波长入与其波长差Δ入之比来表

示。

§4—5 光栅的集光本领

集光本领取决于光栅刻划面积的大小,因为光强正比于

仪器相对孔径的平方值,故衡量集

光本领只需比较相对孔径值的大小,而相对孔径D/f上

的D值是指光栅刻划面积的等效直径

值,即

式中:h 光栅高度,

B 光栅宽度,

α入射角。

§4—6 凹面光栅

凹面光栅与平面光栅的区别在于毛胚为凹球面反射镜刻成光栅的,在光电直读光谱仪中,凹面光栅本身既是色散元件,又是聚焦元件,由于凹面光栅分光仪的色差小,透镜吸收小,反射损失率小,所以能用到远紫外光谱区。

凹面光栅所产生的光谱完全符合光栅方程:

d(sinα±sinβ)=mλ

其中α:入射角

β:衍射角

m:光谱级数

d:光栅常数

入:衍射波长

α和β在法线同侧时取十号,异侧时取—号,d是指球面上弦等分的刻线槽距。罗兰(RowLand)于1882年发现凹面光栅所产生的光谱线的焦点可由下式表示:

式中:α入射角

β衍射角

ρ凹面光栅的曲率半径。

S 入缝到光栅中心的距离。

S’光栅面中心到谱线位置的距离。

罗兰发现,当其中一个解为:

s =ρcosα

s’=ρcosβ

时,入射狭缝s,谱线s,及光栅面中心G

在一个图上,该园称为罗兰圆。圆的直径即为凹面光栅

的曲率半径Po必须注意,光栅在G点是与园相切的,并不与它相重合,光栅的半径不是园的半径,而是它的直径,同时,该园是垂直于光栅刻线方向的。

§4—7 光栅的闪耀

光栅的闪耀涉及能量分配问题。由于光栅的分光作用和棱镜不同,同时产生着许多级的光谱,这样就使得光栅分光时能量分配十分分散,每级光谱能量很弱,尤其是零级光谱占去很大部分。但它是不产生色散的,不能利用的。

光栅分光后,在每一级光谱中间的能量分配取决于光栅刻槽的微观形状,因此在反射光栅中,可以控制刻槽平面和光栅平面之间的夹角,使每个刻槽平面就好象一面镜子把光能高度集中到一个方向去,这种方法叫闪耀。

如果入射光沿N,方向入射,显然沿N’方向衍射的波长的光能量最强,因为这个方向正好是每个小刻槽面象镜子一样反射光方向。我们定义这个衍射方向的波长,即从光栅上衍射的方向恰好的槽面反射光的方向的那个波长为闪耀波长。因此,沿N,方向入射,闪耀波长就是沿N,方向衍射的波长应满足方程

§4—8 光栅的鬼线

一块理想的光栅刻线应该是等距离的。但实际是难以做到的。总是存在一些误差。这种刻线的误差,在光栅仪器中产生的光谱中以鬼线和伴线的形式表现出来。也就是说在不应该有谱线的位置上出现“伪线”

1.罗兰鬼线

当刻线间隔有周期性误差时,所出现的伪线称为罗兰鬼线。这些鬼线离母线很近,在母线两边对称出现。

2.赖曼鬼线

如果光栅刻线误差是两种周期误差迭加起来的复合误差,则所产生的伪线为离母线很远的“赖曼鬼线”。这种鬼线与母线的距离为母线波长的简单的整数分数倍。

3.伴线:

如果光栅上某一局部地方有少数几条间隔不正确的刻线,则在光谱中产生伴线,或称卫线。伴线一般离母线极近。有时分不开。

§4—9 氩气火花架和供氩系统

在激发光谱时,需要在氩气气氛中进行,因此对火花架是有要求的。在予冲洗过程中,要把激发室内空气排尽。在予燃和积分时间内,要把蒸发出来的金属蒸气通过出口通道排出仪器外,要获得稳定的光谱线强度和耗氩量最省。因此要求供氩系统能够提供稳定的氩气压力和流量。要减少空气对氩气管道和金属蒸气对透镜的污染。

电极架为封闭式。主要由一个铝合金样品台和一个高压陶瓷套装零件粘合成火花台。上面有金属盖板承受样品,陶瓷套内装置对电极,陶瓷套便成为两个放电电极的绝缘体。为保证操作安全,样品接负极,它与地等电位,而对电极接正极。火花台通过一个绝缘板与金属支架和分光室连接,火花台与分光室间装有一聚光镜,成为分光室与电极架的分界,既增强对入射狭缝的照明,又阻止空气,氩气泄漏到分光室。聚光镜可以抽出便于清洗。

氩气火花能够防止试样表面的氧化,提高谱线与背景强度之比,稳定火花放电状态等作用。氩气不仅能保证激发谱线不受氧气的吸收,而且它在某种程度上参加放电作用。氩的原子量比占空气78%的氮气的原子量大,所以它在冲击时给予激发试样粒子的能量也是较大的,直接增加谱线强度。

氩气火花的稳定性是有条件的,它与氩气流量、压力的稳定性有关,同时也受到Ar纯度的影响。氩气稳定性时激发呈浓缩放电,否则呈扩散放电。

氩气的流量和压力决定Ar气对放电表面的冲击力,必须适当。若冲击能力低,即不足以将试样激

发过程中产生的氧和它形成氧化物冲掉,则这些氧化物必定凝集在样品表面及电极上,抑制试样的继续蒸发,这种现象靠中心区愈严重。只有当氩气的冲击能力足以洗除氧和电极上的凝集物,同时又不至于使火花产生跳动时,才是最佳状态。

氩气不纯,含有过量氧含量,凝集在电极上的氧化物多,谱线强度降低,使氩火花放电不稳定。水蒸汽和C02一样,在高温下可能分解出氧气。因此水蒸汽和C02均不允许含量过大。碳过多,对含碳量较少的试样的分析精度有直接影响。

为了提高氩火花的稳定性,必须对氩气进行净化处理。可以在供氩管道上加上一个盛分子筛的容器,用以吸附氩气中的水分及复杂气体,使氩气干燥和净化。分子筛吸附的物质可以用加热的办法去除。去除吸附物后的分子筛又恢复了吸附能力,还可以重复循环使用。也可以用条状的氢氧化钾去掉氩气中的二氧化碳,也可以用镁炉(在管道容器中装入金属镁屑),炉子温度400—600C,氩气通过镁炉后可以除去氧。经过净化装置处理后的氩气,就能满足分析要求了。

为了避免空气对氩气管道的污染而降低氩气纯度,因此,平时不做分析时,常规光谱仪氩气管道中也保持0.5—1升/分钟的氩气流量,称之谓静态氩冲洗火花室。因此操作者要注意找一块样品始终盖住极板孔,进行分析需换磨样品时,要求操作迅速,以免尽量减少空气进入火花室。

氩气系统由氩气控制电路、电磁阀,气流控制阀等组成,气流量的分配根据激发过程的需要,由程序设定,各阀门已由制造厂设定,用户不需要单独调整,只需提供0.3MPa的气源即可。

氩气进入火花室有一条通道,从聚光镜前面下方进入火花室,这样就比较彻底地冲净光线通过处空间的空气,又可以阻止激发时产生的粉尘对聚光镜的污染。

氩气流量分配为:①惰性流量(待机状态)为0.5升/分,此时电磁阀门关闭,氩气经过固定气流控制阀保持其恒定值。OBLF公司的光谱仪在常规分析状态下,静态氩流量为零。②大流量冲洗,目的是冲击更换样品时带进的空气。此时电磁阀全开,保持流量为5—6升/分。③激发状态。中间路电磁阀关闭,另一路与常流量合成3—5升/分流量,维持正常激发。当激发停止,两阀关闭,又进入待机状态。

§4—10 人射狭缝,出射狭缝

入射狭缝在光电直读光谱仪中作用很大,从成象关系上来看,光谱线是入射狭缝的单色象,从光能传递的关系上看来,入射狭缝是限制光能量的有效光栏。入射狭缝的质量与谱线质量有直接的关系。因此对狭缝刀口的几何形状必须符合设计标准。电直读光谱仪的入射狭缝宽度为20±5μm。其平行性有一定要求,狭缝宽度必须有相应的读数机构。入射狭缝可以在罗兰圆的切线方向上作往复运动,实现谱线对出射狭缝相对位置的扫描。

由于受到外界机械振动,室内温度的影响,使元素谱线偏离出射狭缝。这时就可对内标线进行扫描,可调节入射狭缝的测微鼓轮,使各个元素分析线都进入出射狭缝内。

出射狭缝安装在罗兰圆轨道上,它的宽度为50/μm和75/μm两种,它的位置在未确定之前是可以任意移动的。仪器出厂前已将它和所选用的分析线对准了,并且牢固地紧固在罗兰圆轨道上,一般情况下不用进行调整。对应每个出射狭缝装置一个光电倍增管,将光强信号转换成电流信号。

§4—11 照明系统

光电直读光谱仪照明系统不要求沿谱线高度强度分布的均匀性,它要求照明系统能尽量将大部分光能量稳定地聚集于分光系统之中。一般采用单透镜聚光照明系统。

§4—12 真空直读光谱仪

真空直读光谱仪的结构要比非真空直读光谱光复杂,各种光学元件置于真空分光室中这种壳体必须保证在真空度的作用下不变形,相对位置不发生变化;尤其是分光室的结构必须考虑受力均匀,变形小。

对于真空度为10—3mm/Hg,要有专用真空泵设备;为了防止油蒸汽污染分光仪的内部,影响光学零件的透过率,真空泵设在分光仪的底部。采用防震措施,使整个分光仪的光路不受震动的影响。真空室内与真空外部接触的运动零件(如描迹狭缝,石英窗,透镜)要尽量减少,并需要密封材料,以免在

抽真空时发生漏气,影响真空度。

真空光电直读光谱仪主要是用来研究真空紫外光谱区入<190nm的原子光谱,对钢铁分析来讲,主要是解决碳、硫、磷、砷、硼等元素分析。由于空气严重影响远紫外光谱的吸收,所以必须把分光室内抽成真空。

由于空气成分主要是由氮、氧、水蒸汽和各种惰性气体组成,其中以前三者含量最高,空气对远紫外光谱的吸收是很强烈的,尤其以氧气的吸收最为严重。

氧气在远紫外光谱区存在着两个吸收区,第一个吸收区是从195nm开始直到176nm左右。在160—130nm的光谱区氧气基本上是透明的。第二个吸收区是110—130nm或者更短波长,该吸收区的吸收峰处在145nm附近。在吸收峰附近,14微米厚的氧气层在常温常压下能吸收进入其中的一半辐射强度。

氮气的吸收区是从145nm开始,直到99nm,随后吸收变小,氮气在>145nm的远紫外光谱区是透明的。

水蒸汽具有两上吸收区,一个是从178nm开始,另一个是从134nm开始。水蒸气的吸收比氧气弱很多。

惰性气体的吸收是比较小的,可以忽略不计。根据以上讨

论。可以认为空气对远紫外光谱和吸收主要取决于氧气,因此

工作光谱区域大于160nm的分光室必须保持真空度10-3—

10-2mm/Hg。

真空直渎光谱仪的分光系统置于无氧的空间中为此配备

了抽气系统,抽气系统由高速泵组成。

为了防止抽至低真空时,光电倍增管的管帽间产生辉光放

电而烧毁仪器,在分光室上装有保护器,当真空度小于

-0.03Mpa时光电倍增管负高压自动切断,。

§4—13 光学系统

光电直读光谱仪的光学系统由聚光镜,入射狭缝,凹面光

栅、出射狭缝和光电倍增管组成如图分光室置于机内的局

部恒温环境之中,以保证光学系统的稳定性。

聚光镜安装在一个聚光镜架上,其把分光室和电极架分开。样品激发后发出的混合光通过聚光镜聚光(兼有密闭分光室的作用)照明人缝,主要是增强照明狭缝的作用。

出射狭缝安装在罗兰圆上,凹面光栅是分光系统的心脏部分。主要作用是分光和成象,它的定位精度十分重要,因此将其置于一个刚性,强度十分可靠的底座上,仪器出厂前已作了准确的调整,并采用可靠的连接方式,即使用很大震动也不会改变其位置。故仪器的操作者不用作任何调整,并且不准用任何物品碰触光栅的刻制表面。即使光栅发生了位置移动,操作者也不要自己调整,只能由生产厂有经验的人员用专门的仪器重新定位。

第五章光电光谱的测光原理

§5—1 光电倍增管

§5—1—1 光电倍增管的基本特性

测量光谱线的光电元件主要是光电倍增管,作为光能转变为电能的光电元件在测定光谱线强度时的基本特性。

1.光特性:光特性是指光电流与射入光阴极的光束强度成直线关系:但由于存在着各种二次光电效应等使光电流与光束强度的比例受到影响。在实际工作中希望直线变化的范围大一些。

2.光谱特性:光电元件的光谱特性是光电流与入射光束波长的关系。光谱特性是很复杂的决定于

光阴极的材质。在可见和紫外区应用光电倍增管。

3.伏安特性:是指光电流与供电电压的关系。

4.频率特性,是指光电流与入射光束强度变化频率的关系。实际上二次光电现象一般均使光电元件具有一定的惯性。

5.温度特性:随着温度的升高发生不同的变化这就是光电元件的温度特性。温度升高,使光电流增大,而且使光电元件的光谱特性发生变化,但当

增至一定值时光电元件的光电性质将发生急剧变

化。

6.光电元件随着其工作时间长短的变化称老

化,也决定光电元件的使用寿命。

一般我们对光电元件的灵敏度概念:光谱灵敏

度和积分灵敏度二种:光谱灵敏度指各不同波长的

入射光束产生不同光谱灵敏度,以毫安瓦表示。积分灵敏度指光电元件对射入的所有光束的灵敏度,以毫安/流明表示。

§5—1—2 光电倍增管的工作原理

光电倍增管是基于电子二次发射原理之上的它的积分灵敏度比光电管大多了,从而减小了放大器的线路。其工作原理如下:

射人光阴极K上的光束,促使电子由光阴极发出,轰击发射极d1, d2, d3…,…直至集电极A发射出光电流Io,各个发射极受到电子轰出以后,放出更多的电子且继续轰发下一个发射极、发射极之间存在着一定的电压。

电压的稳定性对它的放

大系数影响很大,电源

电压变化1%,则放电

系数变化n%,n为光电

倍增管的极数,即发射

极的数量。为此,对直

读光谱分析而言电源稳定性是非常重要的。

结论:发射极的二次放大系数与其加上的电压成正比。光电倍增管主要质量指标是放大倍数。包括:放大系数的直线性,工作稳定性,结构尺寸等质量指标

光电直读光谱分析中使用的光电倍增管是多样的,一般使用侧窗式。紫外区尽量使用侧窗式,要求外形尺寸要小。可缩小整个光电光谱仪的体积。

§5—1—3 光电倍增管的光接线线路和供电

光电倍增管供电线路见图。各电极之间用分压电阻并联。

§5—1—4 光电倍增管的信号与噪声比

对光电管和光电倍增管而言,噪声源主要是散粒效应和热效应。光阴极在不同的时间发射出的电子

数是不同的,因而引起光电流的起伏,这种物理现象称散粒效应。在室温下电子在导体中仍然保持热运

光谱仪使用步骤

一 机器启动 光谱仪启动时注意事项: (1)光谱仪两次开机之间至少应相隔20min ,以防频繁启动烧毁内部元器件 (2)光谱仪背面有5个开关,开机时按照编号1~5依次按下,两开关按下之间应相隔20s 左右。关机时,按照编号5~1依次按下。 图 光谱仪开关 (3)打开氩气阀,使气压保持在0.2~0.4MPa 之间 (4)维持瓶内气压在2~3MPa 以上,若气压低于该值,则应更换新的氩气 二 登陆 1、开机 开机用户名:arlservice 密码:369852147 2、进入OXSAS 系统 账号:(1)!SERVICE! 密码:ENGINEER (2)!MANAGER ! 密码:无 (3)!USER ! 密码:无 通常使用“MANAGER ”权限即可 3、检查仪器状态 快捷键F7进入仪器状态检查界面: Electronic HUPS Mains Vacuum Water 权限:由高到低

VACUUM:真空度 SPTEMP:真空室温度 MAINS:电源电压 NEG-LKV:-1000V电源 POS.5V:+5V电源 POS.12V:+12V电源 NEG.12V:-12V电源 POS.24V:+24V电源 NEG.100V:-100V电压 三数据备份及数据恢复 数据备份及恢复分为软件内部操作、软件外部操作。 1、数据备份 (1)软件内部备份:操作页面中选择“脱机模式”,待页面变灰后点击“备份数据”按钮,输入相应的文件名(例如:20101019OXSAS_DB.BAK)以防止将先前数据覆盖,然后点击备份即可。 (2)软件外部备份:退出OXSAS操作系统,进入其相应的数据备份及恢复程序“OXSAS Full Backup Restore”,然后选择“备份数据库”按钮下的“备份”选项即可(系统自动选择路径并生成相应文件名)。 2、数据恢复 (1)软件内部恢复:操作页面中选择“脱机模式”,待页面变灰后点击“恢复数据库”按钮,选择之前备份的数据库,恢复即可。 (2)软件外部恢复:退出OXSAS操作系统,进入其相应的数据备份及恢复程序 “OXSAS Full Backup Restore”,然后点击“恢复数据库”按钮,选择相应数据库,点击“RESTORE”即可。

光谱仪原理

光谱仪原理 光谱仪是将复杂的光分解成光谱线的科学仪器,一般主要由棱镜或衍射光栅等构成。光谱仪可以检测物体表面所反射的光,通过光谱仪对光信息的抓取、以照相底片显影,或通过电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。光谱仪不仅可以测量可见光,还可以检测肉眼不可见的光谱,比如利用光谱仪将阳光分解,并按波长排列,可以看到可见光只占了光谱的很小的一个范围,其余都是肉眼不可见的光谱,如红外线、微波、紫外线、X射线等等。 总体来说,光谱仪是利用光学原理,对物质的组成成分和结构进行检测,分析和处理的科学设备,具有分析精度高、测量范围大、速度快和样品用量少等优点。因此,其广泛应用于冶金、地质、石油化工、医药卫生、环境保护等部门,也是军事侦察、宇宙探索、资源和水文勘测所必不可少的仪器。 根据现代光谱仪的工作原理,可以将光谱仪分为两大类,即经典光谱仪和新型光谱仪。经典光谱仪是依据空间色散原理来工作,而新型光谱仪则是依据调制原理,因此经典光谱仪都是狭缝光谱仪器,而调制光谱仪则由圆孔进光,它是非空间分光的。下面简单介绍一下经典光谱仪的原理。 由于光谱仪要测量所研究光(即所研究物质的反射、吸收、散射或受激发的荧光等)的光谱特性,如波长、强度等,所以,光谱仪应具有以下功能:一、分光:按一定波长或波数把被研究光在一定空间内分开;二、感光:按照光信号强度,将其转化成相应的电信号,从而测量出各个波长的光的强度,以及光强度随着波长变化的规律;三、绘谱线图:记录保存分开的光波及其强度按波长或波数的发布规律或显示出对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。下面是经典光谱仪的一张结构示意图: 一、光源和照明系统。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光谱仪研究对象就是光源;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)照射在研究物质上,光谱仪测量研究物质所反射的光,因此为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要专门设计照明系统。 二、分光系统。分光系统是任何光谱仪的核心部分,一般由准直系统、色散

光谱仪操作规程

光谱仪操作规程 一、实验室条件: 1、实验室要求温度控制在16--30摄氏度之间;开启设备 之前应首先将实验室温度升起。 2、实验室相对湿度要求控制在30—70%。 3、实验室应保持清洁,无灰尘、震动。 4、试样要求厚度超过1mm,覆盖面积控制在15-50mm,测 试面必须光滑。用40-80目砂轮或铣床制作,制作后不能用手或水清理,可以用钢丝刷进行清理。 二、开关机、操作注意事项:(操作必须顺序进行) 1、先检查各部位是否正常: (1)、检查循环水位是否正常,控制在总高度的1/3处,最高不超过总高度4/5. (2)、检查真空泵油位是否正常。 (3)、检查氩气是否充足。 2、开机: (1)、打开稳压器电源开关 (2)、打开光谱仪主电源开关即MAINS 16A.(1#) (3)、打开真空泵电源开关即VACUUMPUMP(2) (4)、打开水泵电源开关即 WATERPUMP(3) (5)、打开电子板电源开关即ELECTRONICS(4) (6)、打开负高压电源开关即HVPS(5)

(7)、打开电脑,用户名输入ARL回车进入,选择程序进入即可,再点登陆用户名输入U(一般操作)或M(管理员,可以更改程序)回车进入;查看设备状态,看数据是否控制在范围内。(所有数据必须没有大于或小于号)一般开机后4至5小时后才能使用。 (8)、打开氩气,压力表控制在0.35MPA,如果氩气净化机需再生时将压力表调至0.5MPA。(现在的表指针+0.35)先用净化机的II塔(按净化机的指示旋转手柄到指定位置) 3、关机: (1)、正常关机按开机的反顺序操作,必须按步骤关机。(2)、遇到突然停电时应先关闭光谱仪主电源开关,防止突然来电损坏设备。(禁忌设备用电急停急送) 4、程序操作: (1)、每天第一次应先做标准样测试:先登录程序OX SAS,选择管理员用户名进入界面。点‘测量类型标准样’点‘任务’再点‘TS’,点‘方法’再点‘FELAST’,‘类型标准’点方法中以创建的方法,再创建名称即可。将标准样放于‘激发台’开始打样,连续打三点点击完成。(如45#、35#类型标准样)看测试的数据相对数据小于5%即可。 (2)、点‘定量分析’开始对工作中试样进行打样,打样后点击完成。 三、维护与保养:

光电直读光谱仪原理与结构图

光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。 一、原理简介: 直读光谱仪采用原子发射光谱学的分析原理,样品经过电弧或火花放电激发成原子蒸汽,蒸汽中原子或离子被激发后产生发射光谱,发射光谱经光导纤维进入光谱仪分光室色散成各光谱波段,根据每个元素发射波长范围,通过光电管测量每个元素的最佳谱线,每种元素发射光谱谱线强度正比于样品中该元素含量,通过内部预制校正曲线可以测定含量,直接以百分比浓度显示。 主要领域几乎涵盖所有金属行业。 目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即: 1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。 2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。 3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。控制整个仪器正常运作

4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。 二、光电直读光谱仪4个模块的种类和特点: 1、激发系统: (1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响 (2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定 (3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力 (4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。 5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。把各元素的激发状态按照试验情况进行分类讨论) 2、光学系统: (1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。 (2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高分辨率,同时又用二次色散解决了光谱的级次重叠问题):体积小,分辨率高,一般采集接固体成像系统。 3、测控系统: (一)测量系统:

火花直读光谱仪的误差分析和应用技巧

火花直读光谱仪的误差分析和应用技巧 摘要:本文重点介绍了火花直读光谱仪的工作原理,分析了各种误差产生的原因,提出了消除各种误差的相应方法,阐述了火花直读光谱仪使用时的注意事项,为广大使用者提供了火花直读光谱仪的误差分析和应用技巧。 关键词:火花直读光谱仪;误差分析;应用技巧 由于科学技术的发展,工业企业对材料化学成分的控制要求越来越高,而传统化学分析方法速度慢,分析范围小,极大地制约了工业企业的发展,而火花直读光谱仪具有速度快、准确度高、操作简单、分析范围广等优点,是化学分析方法无法比拟的,可以实现及时准确分析,在满足生产要求的同时保证产品质量。因此,逐渐受到广大用户的欢迎。火花直读光谱仪的测量误差受很多因素的影响,下面简单介绍其工作原理和应用技巧,并对测量误差进行详细分析,以使广大使用者更好、更准确地使用火花直读光谱仪。 一、工作原理 火花直读光谱仪采用的是原子发射光谱分析法,工作原理是用电火花的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征谱线,每种元素的发射光谱谱线强度正比于样品中该元素的含量,用光栅分光后,成为按波长排列的光谱,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模数转换,然后由计算机处理,并打印出各元素的百分含量。 二、误差分析 火花直读光谱仪虽然本身测量准确度很高,但测定试样中元素含量时,所得结果与真实含量通常不一致,存在一定误差,并且受许多因素的影响,下面就误差的种类、来源和避免误差的技巧进行分析。根据误差的性质及产生原因,误差可分为系统误差、偶然误差、过失误差和其他误差等。 1.系统误差的来源及消除方法 (1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误差。 (2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别,从而产生系统误差。 (3)浇注状态的钢样与经过退火、淬火、回火、热轧、锻压状态的钢样金属组织结构不相同时,测出的数据会有所差别。 (4)未知元素谱线的重叠干扰。如熔炼过程中加入脱氧剂、除硫磷剂时,

光谱仪的工作原理

光谱仪的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

光谱仪的工作原理元素的原子在激发光源的作用下发射谱线,谱线经光栅分光后形成光谱,每种元素都有自己的特征谱线,谱线的强度可以代表试样中元素的含量,用光电检测器将谱线的辐射能转换成电能。检测输出的信号,经加工处理,在读出装置上显示出来。然后根据相应的标准物质制作的分析曲线,得出分析试样中待测元素的含量。 表面轮廓仪介绍 表面轮廓仪 - 简介 表面轮廓仪LK-200M型表面轮廓仪采用广精精密最新的基于windows版本的测量软件,具有强大卓越的数据处理分析功能。测量时,零件装夹位置即使任意放置,也能得到满意的测量结果;即使需要测量长度为220mm的工件,测量软件也能保证其1μm的采样步长。 LK-200H型表面轮廓仪采用耐用可靠的16位A/D功能板,其极高的分辨率量程比(1/65536),用户即使需要大量程测量,仍能保持极高的测量精度。 LK-200M型表面轮廓仪采用工控计算机处理测量数据及仪器控制操作。其高质量、高可靠性及突出的防尘、防振、防油、防静电能力使广精精密用户将使用维护成本降至最低。 表面轮廓仪 - 原理 表面轮廓仪LK-200M型表面轮廓仪采用直角坐标法,传感器移动式。直线运动导轨采用高精度气浮导轨,作为测量基准; 电器部分由高级计算机组成;测量软件采用基于中文版Windows操作系统平台的系统测量软件,完成数据采集、处理及测量数据管理等工作。 表面轮廓仪 - 功能 角度处理:两直线夹角、直线与Y轴夹角、直线与X轴夹角 点线处理:两直线交点、交点到直线距离、交点到交点距离、交点到圆心距离、交点到点距离 圆处理:圆心距离、圆心到直线的距离、交点到圆心的距离、直线到切点的距离线处理:直线度、凸度、LG凸度、对数曲线 表面轮廓仪 - 技术规格 表面轮廓仪测量长度:≤200mm

各种光谱仪的区别及应用

各种光谱仪的区别及应用 ICP光谱仪, 火花直读光谱仪, 光电直读光谱仪, 原子发射光谱仪, 原子吸收光谱仪, 手持式光谱仪, 便携式光谱仪, 能量色散光谱仪, 真空直读光谱仪? 随着ICP-AES的流行使很多实验室面临着再增购一台ICP-AE S,还是停留在原来使用AAS上的抉择。现在一个新技术ICP-MS 又出现了,虽然价格较高,但ICP-MS具有ICP-AES的优点及比石墨炉原子吸收(GF-AAS)更低的检出限的优势。因此,如何根据分析任务来判断其适用性呢? ICP-MS是一个以质谱仪作为检测器的等离子体,ICP-AES和I CP-MS的进样部分及等离子体是极其相似的。ICP-AES测量的是光学光谱(120nm~800nm),ICP-MS测量的是离子质谱,提供在3~250amu范围内每一个原子质量单位(amu)的信息。还可测量同位素测定。尤其是其检出限给人极深刻的印象,其溶液的检出限大部份

为ppt级,石墨炉AAS的检出限为亚ppb级,ICP-AES大部份元素的检出限为1~10ppb,一些元素也可得到亚ppb级的检出限。但由于ICP-MS的耐盐量较差,ICP-MS的检出限实际上会变差多达50倍,一些轻元素(如S、Ca、Fe、K、Se)在ICP-MS中有严重的干扰,其实际检出限也很差。下面列出这几种方法的检出限的比较:这几种分析技术的分析性能可以从下面几个方面进行比较: ★★容易使用程度★★ 在日常工作中,从自动化来讲,ICP-AES是最成熟的,可由技术不熟练的人员来应用ICP-AES专家制定的方法进行工作。ICP-MS 的操作直到现在仍较为复杂,尽管近年来在计算机控制和智能化软件方面有很大的进步,但在常规分析前仍需由技术人员进行精密调整,ICP-MS的方法研究也是很复杂及耗时的工作。GF-AAS的常规工作虽然是比较容易的,但制定方法仍需要相当熟练的技术。 ★★分析试液中的总固体溶解量(TDS)★★ 在常规工作中,ICP-AES可分析10%TDS的溶液,甚至可以高至30%的盐溶液。在短时期内ICP-MS可分析0.5%的溶液,但在大多情况下采用不大于0.2%TDS的溶液为佳。当原始样品是固体时,与ICP-AES,GP-AAS相比,ICP-MS需要更高的稀释倍数,折算到原始固体样品中的检出限就显示不出很大的优势了。 ★★线性动态范围(LDR)★★ ICP-MS具有超过105的LDR,各种方法可使其LDR开展至1 08。但不管如何,对ICP-MS来说:高基体浓度会使分析出现问题,

光谱仪的原理、功能以及分类【详尽版】

光谱仪的原理光谱仪的主要功能以及具体的分类 内容来源网络,由SIMM深圳机械展整理 更多相关展示,就在深圳机械展! 光谱仪器是进行光谱研究和物质结构分析,利用光学色散原理及现代先进电子技术设计的光电仪器,光谱仪的主要功能是什么,在它工作原理的基础上怎么对其进行分类的,本文将详细的为大家介绍。 光谱仪的主要功能 它的基本作用是测量被研究光(所研究物质反射、吸收、散射或受激发的荧光等)的光谱特性,包括波长、强度等谱线特征。因此,光谱仪器应具有以下功能: (1)分光:把被研究光按一定波长或波数的发布规律在一定空间内分开。 (2)感光:将光信号转换成易于测量的电信号,相应测量出各波长光的强度,得到光能量按波长的发布规律。 (3)绘谱线图:把分开的光波及其强度按波长或波数的发布规律记录保存或显示对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分组成:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。 主要分类 根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的光谱仪;另一类是基于调制原理分光的新型光谱仪。本设计是一套利用光栅分光的光谱仪,其基本结构如

图。 光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要设计照明系统。 分光系统是任何光谱仪的核心部分,它一般是由准直系统、色散系统、成像系统三部分组成,作用是将照射来的光在一定空间内按照一定波长规律分开。如图2-1所示,准直系统一般由入射狭缝和准直物镜组成,入射狭缝位于准直物镜的焦平面上。光源和照明系统发出的光通过狭缝照射到准直物镜,变成平行光束投射到色散系统上。色散系统的作用是将入射的单束复合光分解为多束单色光。多束单色光经过成像物镜按照波长的顺序成像在透镜焦平面上;这样,单束的复合光经过分光系统后变成了多束单色光的像。目前主要的色散系统主要有物质色散(如棱镜)、多缝衍射(如光栅)和多光束干涉(如干涉仪)。 探测接收系统的作用是将成像系统焦平面上接收的光谱能量转换成易于测量的电信号,并测

光谱仪的操作规程(通用版)

光谱仪的操作规程(通用版) The safety operation procedure is a very detailed operation description of the work content in the form of work flow, and each action is described in words. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0916

光谱仪的操作规程(通用版) 1准备 1.1检查实验间的工作环境是否满足要求,温度:22士 2.8℃,湿度≤60%; 1.2气的纯度是否小于99.996%,检查氩气的流量是否小于 30psi; 1.3样品的制备:保证样品表面清洁无油污,无氧化皮,表面均匀没有沙眼。 2操作 2.1在电压稳定的情况下,打开系统电源,打开真空泵开关,要求真空泵空转五分钟后,打开真空阀,稳定一段时间要求真空度达到1μ之内; 2.2在真空度达到要求的情况下,打开高压和低压电源,检查氩

气流量达到要求后,打开激发电源; 2.3打开微机,进入BAIRD操作系统; 2.4汞灯的校准:打开汞灯开关,调节旋转数字指示器的旋钮,按照计算机屏幕指令操作,并在仪器运转记录本上记录俩个半峰值的读数,将指示器最终调至计算机求出的答案为止,锁紧旋钮; 2.5清洗循环系统:取一空样在试样台上,激发数次,待各数值达到稳定。注意在装夹试样的时候,要将弹簧负载紧固轴轻轻的压到样品表面,不要突然松手,以免压碎台板,并注意氮化硼原盘固定在原来的位置; 2.6标准化:放好样品后,进行全体元素的标准化。依照电脑中的提示,依次对各块标钢进行激发,得到一组数据,通过和标钢原有数据的对比,计算机自动得到一个修正系数。修正系数不小于 3.0时,可以进行试样分析,否则,要对不满足要求的元素进行元素的标准化,使该元素的修正系数达到规定要求; 2.7在进行了标准化后,进行试样的分析。一个样品测量多次,计算机自动给出平均值。通过打印机得到试验数据。试验数据记录

光电直读光谱仪原理

光电直读光谱仪原理、简介分类、维护及故障排除: 一、原理简介: 光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。 目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即: 1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。 2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。 3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。控制整个仪器正常运作 4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。 二、光电直读光谱仪4个模块的种类和特点: 1、激发系统: (1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响 (2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定 (3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力 (4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。 (5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。把各元素的激发状态按照试验情况进行分类讨论) 2、光学系统: (1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。 (2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高

实验室常用光谱仪及其它们各自的原理

实验室常用光谱仪及其它们各自的原理 光谱仪,又称分光仪。以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 下面就介绍几种实验室常用的光谱仪的工作原理,它们分别是:荧光直读光谱仪、红外光谱仪、直读光谱仪、成像光谱仪。 荧光直读光谱仪的原理: 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态 跃迁到能量低的状态.这个过程称为发射过程.发射过程既可以是非辐射跃迁,也可以是辐射跃迁. 当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子.它的能量是特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X 射线荧光,其能量等于两能级之间的能量差.因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系. K层电子被逐出后,其空穴可以被外层中任一电子所填充,ad4yjmk从而可产生一系列的谱线,称为K系谱线: 由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线同样,L层电子被逐出可以产生L系辐射.如果入射的X 射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα 射线,同样还可以产生Kβ射线,L系射线等. 莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础.此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析. 红外光谱仪的原理: 红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。

光谱仪操作注意事项

光谱操作注意事项 一些问题 Raw intensity(绝对光强) →Intensity Ratio(光强度比) →Standardized intensity ratio(标准化强度比) →Interference Corre.intensity ratio(内部干扰校后的标准强度比) →Concentration Ratio(含量比) →Matrix Corrected Concen. (通道含量) →Concentration(光谱实测含量) →Typical Corrected Concentration(类型标准化后含量) ① I.R.=(R.I/FeR.I)×Typical intensity Fe factor=(H N-L N)/(H A-L A) H N是高点希望值,L N是低点希望值, H A是高点实测值,L A是低点实测值 ②标准化(F7)S.I.R=factor×I.R.+offset ③内部干扰校正 ④曲线 ⑤含量(通道)=参比含量×通道含量比 ⑥通道含量范围(在Element parameter中的“Line switch”中) ⑦类型标准化(F8)T.C.C.=factor×Concen.+offset factor=化学值/实测值,offset=化学值-实测值 SATEUS=SAFT TEST of Usefulness(用于prespark) SETEME=Security Test of Measurement(用于积分阶段) SEREPS=Self Regulated Prespark time(用于prespark)

一、注意事项 1.当样品有砂眼或裂纹,没有分析位置时,不允许激发; 2.当Ar气不好或点不好时,不允许出分析结果; 3.清理火花台时,要关光源,压样品夹子要垂直; 4.如果遇到激发时声音很大,应该按“F3”停止,不允许直接抬 样品夹,否则烧EK9008板,不允许样品在激发中跑掉。 5.如果遇到突然断电时,应先关总电源,再将其它电源关闭,等 到来电后,先开总电源,再开stand by,再开source(光源)后,开计算机。 6.必须注意绝对不能做错标准化样品,否则,后果十分严重; 7.样品表面不能粘污,不能有水、油等。 8.由于Ar气中水含量较高,在做标准化样品或控样时,一定要 激发三点以上再平均。 9.如果仪器有两小时没有分析样品,在开始分析之前,应用 CTRL+F进行Ar预冲洗,此时不能激发。 二、常见错误信息 1.“No dongle available!”硬件加密码无效,一般是由于EPSON打印机正在打印,激发工作,由于加密狗与打印信号线连在一起而无法接通。 2.“clamp up”夹子抬起,一般是由于样品上表面不导电(比如:有漆有锈)清理干净即可。 3.“Door open”前面板门打开,一般由于火花台罩没有接触良好。

光谱仪原理

光纤光谱仪的原理及基础知识 2014-05-25 光谱学是测量紫外、可见、近红外和红外波段光强度的一种技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度检测或电磁辐射分析等。 上海辰昶仪器设备有限公司是国内领先的光纤光谱仪的生产厂商,以“光谱引领生活”为理念,致力于为国内广大用户提供符合国情的一揽子光谱系统解决方案! 光谱仪器一般都包括入射狭缝、准直镜、色散元件(光栅或棱镜)、聚焦光学系统和探测器。而在单色仪中通常还包括出射狭缝,让整个光谱中一个很窄的部分照射到单象元探测器上。单色仪中的入射和出射狭缝往往位置固定而宽度可调,可以通过旋转光栅来对整个光谱进行扫描。 在九十年代,微电子领域中的多象元光学探测器迅猛发展,如CCD 阵列、光电二极管(PD )阵列等,使生产低成本扫描仪和CCD 相机成为可能。光纤光谱仪使用了同样的CCD 和光电二极管阵列(PDA )探测器,可以对整个光谱进行快速扫描而不必移动光栅。 由于光通信技术对光纤的需求大大增长,从而开发了低损耗的石英光纤。该光纤同样可以用于测量光纤,把被测样品产生的信号光传导到光谱仪的光学平台中。由于光纤的耦合非常容易,所以可以很方便地搭建起由光源、采样附件和光纤光谱仪组成的模块化测量系统。 光纤光谱仪的优点在于系统的模块化和灵活性。上海辰昶仪器的微小型光纤光谱仪的测量速度非常快,使得它可以用于在线分析。而且由于它选用低成本的通用探测器,所以光谱仪的成本也大大降低,从而大大扩展了它的应用领域。 ?光学平台设计 上海辰昶仪器的光谱仪采用Czerny-Turner 光学平台设计(如图1 所示)。 图1 EQ2000光学平台设计图

光谱仪操作方法

光谱仪操作方法 1、首先打开氩气瓶阀门,再把压力表调压阀调至压力大约为0.5pa; 2、打开仪器电源开关,此时会显示“3.5EO”,只要是后边位数显示“0”都可 以,证明真空已抽完,否则要抽真空一会; 3、待确认显示“0”后,按下绿色电源按钮,一个是“检测”、一个是“光源”。 (关机时与上述相反); 4、打开电脑桌面“光谱仪分析程序”,点选“合金钢”后按确认; 5、选用一个没用的样品放入仪器火花口,点选电脑光谱分析程序里面的“测量” 菜单选项; 6、然后点光谱分析程序中的“显示选择”点选“强度”,如:出现60000(6万) 左右数值代表样品已激发;(注:按“测量”菜单看FeR,FeR(铁)一般接近80000(8万)强度值); 7、待确认试样已激发后,关闭退出“光谱仪分析程序”软件; 8、然后,打开电脑桌面中的“光谱仪描迹”程序软件,点击“条件设置”、再 点击“读电机位置”,此时会显示“4460”位置,在对话框中设置起始位置数减去150的值输入到起始位置中; 9、按“复位到原点”选确认,把样品T10放入仪器火花口,按“开始”选项, 待激发完成后方可选通道6;(刚开始预定电机的起始点4500,终止点4800(直接输入); 10、对照软件屏幕显示出的波形图,看最高点数值,比如:4600话,再从新 选择“条件设置”选项,然后再选“复位到原点选项(4600)”再点选“指定的起始位置”,再点选“读电机位置”选项;此时,看弹出的显示值是否一致,一致后点“OK”退出,关闭“描迹软件”; 11、从新打开“光谱仪分析程序”点“标准化”菜单,此时,系统默认“C25” 按“是”确认; 12、然后放入“C25”试样到仪器火花口,点选软件中的“测量”菜单,待测 量完成后,从新拿出试样换一个点位放好做第2次的“测量”(因一个试样至少测2个点位)注:进行第2次测量不需要设置,直接按“测量”完成;13、当完成第2次测量后,点“平均+偏差”菜单选项,此时,电脑屏幕会弹

直读光谱仪讲义 第一章 直读光谱仪的概况

第一章直读光谱仪的概况 国内外光电直读光谱仪的发展 光谱起源于17世纪,1666年物理学家牛顿第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。到1802年英国化学家沃拉斯顿发现太阳光谱不是一道完美无缺的彩虹,而是被一些黑线所割裂。 1814年德国光学仪器专家夫琅和费研究太阳光谱中的黑斑的相对位置时.把那些主要黑线绘出光谱图。 1826年泰尔博特研究钠盐、钾盐在酒精灯上光谱时指出,发射光谱是化学分析的基础、钾盐的红色光谱和钠盐的黄色光谱都是这个元素的特性。 到1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上第一台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。 从1860年到1907年之间、用火焰和电火花放电发现碱金属元素铯Cs、1861年又发现铷Rb和铊Tl,1868年又发现铟In和氦He。1869年又发现氮N。1875~1907年又相继发现镓Ga,钾K,铥Tm,镨Pr,钋Pe,钐Sm,钇y,镥Lu等。 1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。凹面光栅实际上是光学仪器成象系统元件的合为一体的高效元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。 波耳的理论在光谱分析中起了作用,其对光谱的激发过程、光谱线强度等提出比较满意的解释。 从测定光谱线的绝对强度转到测量谱线的相对强度的应用,使光谱分析方法从定性分析发展到定量分析创造基础。从而使光谱分析方法逐渐走出实验室,在工业部门中应用了。 1928年以后,由于光谱分析成了工业的分析方法,光谱仪器得到迅速的发展,一方面改善激发光源的稳定性,另一方面提高光谱仪器本身性能。 最早的光源是火焰激发光谱;后来又发展应用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。工业生产的发晨,光谱学的进步,促使光学仪器进一步得到改善,而后者又反作用于前者,促进了光谱学的发展和工业生产的发展。 六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展。由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。 解放后,我国的光谱仪器工业从无到有,由小到大,得到飞跃的发展,且具有一定的规模,与世界先进技术竞争中求生存,社会商品竞赛中得到发展。 1958年开始试制光谱仪器,生产了我国第一台中型石英摄谱仪,大型摄谱仪,单色仪等。中科院光机所开始研究刻制光栅,59年上海光学仪器厂,63年北京光学仪器厂开始研究刻制光栅,63年研制光刻成功。1966—1968年北京光学仪器厂和上海光学仪器厂先后研制成功中型平面光栅摄谱仪和一米平面光栅摄谱仪及光电直读头。1971—1972年由北京第二光学仪器厂研究成功国内第一台WZG—200平面光栅光量计,结束了我国不能生产光电直读光谱仪的历史。 八十年代以来,我国铸造行业开始引进光电直读光谱仪作为熔炼过程中化学成份控制的分析手段,并逐步取代了我国传统的湿法化学分析法,至今已发展到中小企业也逐步采用光谱法配合作炉前分析。

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 1.X射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

光栅光谱仪的使用

光栅光谱仪的使用实验报告 一、实验目的与实验仪器 1.实验目的 (1)了解平面反射式闪耀光栅的分光原理及主要特性; (2)了解光栅光谱仪的结构,学习使用光栅光谱仪; (3)测量钨灯和汞灯在可见光范围的光谱; (4)测定光栅光谱仪的色分辨能力; (5)测定干涉滤光片的光谱透射率曲线。 2.实验仪器 WDS-3平面光栅光谱仪(200~800nm),汞灯,钨灯&氘灯组件,干涉滤光片。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.平面反射式闪耀光栅原理 (1)θ方向的光强:I θ=(sinα α )2(sinNβ sinβ )2 (2)光栅方程:d(sinθ+sin i)= kλ (3)闪耀光栅:光强最大的方向就是槽面反射定律所规定的方向,0级谱线出现在光栅平面反射的方向,闪耀光栅能够把能量集中在需要的光谱级里。 (4)闪耀波长的计算:λ=2dsinγ k 2.平面光栅光谱仪的结构与组成 (1)光学系统结构:

光栅:1200/mm;闪 耀波长250nm;M1 和M2凹面镜焦距 为300mm;狭缝0- 2mm连续可调。 电子系统:电源系统、光接收系统、步进电动机系统组成。 光学接收系统:光电倍增管及其放大电路组成。 光电倍增管:光信号转变成电信号。是测光仪器和光电自动化设备中的主要探测元件。 目前测量光信号最灵敏的器件之一。 结构: 3.色分辨率 光栅光谱仪的色分辨率是分开两条邻近谱线能力的量度。 以汞灯的两条黄谱线(波长为 577.0nm和579.1nm)为例测出谱 线λ1和λ2峰间的间隔a以及峰 的半宽度b,则色分辨能力为: Δλ =b α δλ δλ=λ 2-λ 1 =2.10nm 4.滤光片光谱特性

直读光谱仪哪个品牌好

直读光谱仪,即原子发射光谱仪。二战后,由于欧洲重建,市场对钢铁检测有巨大的需求,也促进了相关检测仪器的发展。六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展,由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。下面就让合肥卓越分析仪器有限责任公司为您简单介绍一下,希望可以帮助到您! 直读光谱仪品种分为火花直读光谱仪,光电直读光谱仪,原子发射光谱仪,原子吸收光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空直读光谱仪,直读光谱仪分为台式机和立式机。

直读光谱仪广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位。 工作原理分类 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪. 经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光. 分光原理分类 根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪, 衍射光栅光谱仪和干涉光谱仪.

合肥卓越分析仪器有限责任公司是一家生产销售红外碳硫,直读光谱,智能元素分析仪,分光光度计专业化公司,公司数年来生产化学分析仪器,直读光谱分析仪,理化实验室工程,理化分析检测人员培训服务遍及全国各省市地区。 公司多年来对耐磨材料、耐热材料、球墨铸铁、球铁灰铁分析检测,分析研究投入大量人力、财力,总结丰富经验。为用户提供了可靠可行分析方案。公司产品遍布全国各省市地区,出口俄罗斯、蒙古国、吉尔吉斯斯坦、巴基斯坦、缅甸、越南、南非等数十个国家。 公司以三耐材料(耐磨,耐热,耐蚀)分析,矿山分析高中低合金铸造分析见长,为客户实现精确,快速分析提供最佳方案,特别针对原材料:锰铁、硅铁、镍铁等铁合金分析有独到之处。 公司承建的大中型及小型理化中心或化学实验室,从设计开始,设备及器材配置,专业人才培训满足不同层次客户的实际要求,深受海内外用户青睐。欢迎来电咨询合作。

光谱仪工作原理+图

海洋光纤光谱特有的信息 1.光谱仪的工作原理 CCD探测器型的海洋光学光谱仪的工作原理如动画展示。光通过光纤有效的耦合到光谱仪中,经球面镜将进入光谱仪中的发散光束会聚准直到衍射光栅上,衍射分光后又经第二面球面镜会聚聚焦,光谱像投射到线性CCD阵列上,数据信号经A/D转换传至计算机上。 光子撞击CCD像素上的光敏二极管后,这些反向偏置的二极管释放出与光通量成比例的电容器,当探测器积分时间结束,一系列开关关闭并传输电荷至移位寄存器中。当传输完成,开关打开并且与二极管关联的电容器又重新充电开始一个新的积分周期。同时,光能被累积,通过A/D转换数据被读出移位寄存器。数字化的数据最后显示在计算机上。 2.光学分辨率

单色光源的光学分辨率以半高全宽值(FWHM)来表征,它依赖于光栅刻槽密度(mm-1)及光学入瞳直径(光纤或狭缝)。海洋光纤光谱配置客户所要求的系统时,必须平衡两个重要的因素: 1) 光栅刻槽密度增加,分辨率增大,但光谱范围及信号强度会减小。 2) 狭缝宽度或光纤直径变窄,分辨率增大,但信号强度会减小。 如何估算光学分辨率(nm,FWHM) 2. 1. 确定光栅光谱范围,找到光栅的光谱范围通过: 选择光栅:“S”光学平台;选择光栅:“HR”光学平台;选择光栅:“NIR”光学平台。(有想详细了解的,烦请光纤专家予以解释) 2. 2. 光栅光谱范围除以探测器像元数,结果为Dispersion。Dispersion (nm/pixel) = 光谱范围/像元数 探测器像元素见图2

3.像素分辨率 下表列出了不同狭缝(或光纤直径)尺寸下的像素分辨率。尽管狭缝入射宽度不同,但高度一致(1000um)。有想深入了解的版友直接向专家提问。 4.计算光学分辨率(nm) Dispersion (Step 2) x Pixel Resolution (Step 3) 举例:确定光学分辨率,光谱仪型号:USB4000,光栅型号:#3,狭缝宽度:10um 650nm(#3光栅光谱范围)/3648(USB4000探测器像元数)X5.6(像素分辨率)=0.18X5.6nm=1.0nm(FWHM) 5.海洋光纤光谱仪的系统灵敏度 海洋光纤光谱仪对系统灵敏度的定义打破常规,不需要对影响光谱幅度的各种因素进行校正。他们提供一种更有用的方法:NIST-traceable 辐射标准(LS-1-CAL),它可以用能量项来标准化光谱数据。在他们的SpectraSuite操作软件中,可以使用“I”模式下相对能量分布(0到1)或绝对值(以 W/cm2/nm或流明或勒克斯/单位面积为单位)来标准化光谱数据。对透射或反射实验,可以使一个物理标准来标准化(归一化)数据如利用空气中的传播或漫射白板来确定。 6.海洋光纤光谱解决影响光谱幅度值的因素

相关文档
最新文档