船闸设计计算书完美版

船闸设计计算书完美版
船闸设计计算书完美版

第一章船闸总体设计

第一章设计资料

一经济资料

1、建筑物的设计等级:

高良涧二线船闸按III级船闸、II级建筑物标准设计。

2、货运量:

淮河1995年的过闸货运量为1750万吨,年设计通过能力为1750万吨。

3、通航情况:

通航期N=360天/年,客轮及工作船过闸次数e n=1,船舶载重量不均匀系数α=,月不均匀系数β=,船闸昼夜工作时间小时τ=22小时

4、设计船型:

见表1-1

表1-1 船型资料:

二水文与气象资料

1、特征水位及水位组合:见表1-2,1-3

高良涧船闸上游为洪泽湖,下游为灌溉总渠,根据江苏省水利厅规划的洪泽湖调蓄及灌溉总渠控制的情况及可行性研究报告提供的数据进行综合分析后拟定。

表1-2 特征水位表(高程以黄河零点起算(m))

2、地质资料及回填土资料

高良涧二线船闸位于洪泽湖大堤,土质较为复杂,上部为人工夯实的湖堤,多为黄色粘土,持力层为粘土、亚粘土、粉砂夹层,但层次划分不明,软硬变化较大,下卧层基本上为承载力较高的砂性土,土层概况见表1-4

3、地震资料

查江苏省地震烈度区划分图得,该地区属七度区,根据水工建筑物抗震设计规范SDJ —78“对于级挡水建筑物,应根据其重要性和遭震害的危害性可在基本烈度的基础上提高一度”的规定,考虑到本船闸属洪泽湖防洪线上的挡水建筑物,故按地震烈度八度设防。

4、地形资料

地形资料详见“高良涧二线船闸闸址地形图”

5、交通及建筑材料供应情况

水运可直达工地,公路运输亦方便,除木材外,其他材料供应充足,钢材由南京发货、水泥、石料、沙由安徽提供,木材由江西福建运来。

第二节船闸的基本尺度

船闸的基本尺度包括闸室的有效长度、有效宽度及门槛水深。

根据设计船型资料,考虑1顶+2×1000T船队两排并列一次过闸、1顶+2×1000与1拖+12×100船队并列过闸、1拖+4×500并列过闸三种组合。计算结果如下:

m

根据以上三种组合,综合考虑本航线上已建船闸的尺度、内河航运暂定标准、货运密度的变化等方面的情况,取闸室的有效长度为210m,考虑镇静段长度20m,则闸室长度230m,闸室的有效宽度取23m。由船舶吃水得槛上水深Hc≥×=m,考虑留有一定的富裕取m,闸室的有效尺度230×23×m。

第三节船闸各部分高程

船闸的各部分高程不仅要保证船舶能安全、顺利的通过,而且要保证船闸运转操作的安全和方便。在这个前提下还要降低工程造价。船闸各部分高程可参考《船闸总体设计规范》中的有关内容计算确定。

1、上游引航道底高程=上游最低通航水位-引航道的最小水深=-=m

2、上游导航建筑物顶高程=上游设计最高通航水位+超高(空载干弦)

=+=m

3、上闸首门顶高程=上游校核洪水位+安全超高=+=m

当门前产生立波时,上闸首门顶高程=上游设计洪水位+0h +2w h +安全超高=+++=m ,取m 。上式中0h 为波浪中心线超过静水位的高度,2w h 为波高,可按下式计算w

w L h h 2)2(02π

≈,33

.034.00151.02D H h w ω=,

33.0573

.0104.02D H

L w = ,式中H 为墙前水深,H =-=m ,w L 2为波长, ω为风速s m /8.20=ω,D 为吹程,与闸前水面宽度有关,D 取3km

4、 上闸首墙顶高程=门顶高程+结构安装高度=+1=m

5、 上闸首门槛高程=上游最低设计通航水位-门槛水深-=m

6、 闸室墙顶高程=上游最高通航水位+超高(空载干弦)=16+=m 设置m 高的胸墙,则实体墙顶高程为m

7、 闸室底高程=上游设计最低通航水位-闸室设计水深=-=4m 8、 下闸首门顶高程=上游最高通航水位+超高=+=m

9、 下闸首墙顶高程=门顶高程+结构安装高度=+1=,下闸首顶高程不低于闸室墙顶高

程,则取m

10、下闸首门槛高程=下游设计最低通航水位-门槛水深=-=4m

11、下游引航道底高程=下游最底通航水位-引航道最小水深=-=4m 12、下游引航道顶高程=下游最高通航水位+超高(空载干弦)=+=m 船闸各部分高程如下图所示

第四节 引航道尺度

引航道的作用在于保证船舶安全、顺利地进出船闸,供等待过闸的船舶安全停泊,并使进出闸的船舶能交错避让。引航道的平面布置,直接影响船舶进出闸的时间,从而影响船闸的通过能力。在确定引航道的平面布置时,应根据船闸的工程等级、线数、设计船型船队、通过能力等,结合地形地质、水流、泥沙及上下游航道的条件综合考虑。

根据高良涧二线船闸的闸址处的地形条件,采用反对称型引航道布置。 (一) 引航道长度

1、 导航段

c l l ≥,c l 为顶推船队全长,1顶+2×1000级船队长c l =160m

2、 调顺段

≥2l (~)c l =240~320m ,取280m

3、 停泊段

c l l ≥3(主要考虑拖带船队长),考虑到解队过,解队后船队长m ,取180m

4、 过渡段

B l ?≥104,B ?为引航道宽度与航道宽度之差,二级航道宽为70m ,引航道宽

度m (取40m ),则B ?=30m ,4l =300m 5、 制动段

5l 用c l l ?=α5估算,α为船队进入口门航速,一般取~,则=5l 3×160=480m

(二) 引航道宽度

考虑一侧靠船,设计最大船宽m ,一侧等候过闸的船队总宽度1c b =m ,富裕宽度c b b 5.12=?,则引航道 (三) 引航道最小水深

5.10

≥T

H ,即T H 5.10≥=×=m ,考虑留有一定的富裕,取m

第五节 船闸的通过能力

1、 舶(队)进出闸时间

船舶(队)进出闸时间,可根据其运行距离和进出闸速度确定。对单向过闸和双向过闸方式应分别计算。

单向进闸距离是船舶(队)自引航道中停靠位置(距闸首70m )至闸室内停泊处之间的距离,单向出闸距离为船舶(队)自闸室内停泊处至船尾驶离闸首之间的距离;双向进闸距离是船舶(队)自引航道中停靠位置至闸室内停泊处之间的距离,双向出闸距离为船舶(队)自闸室内停泊处至双向过闸靠船码头的距离;

单向进闸距离1L =70+25+210=305m 单向出闸距离4L =20+25+210=255m

双向进闸距离1

L '=280+160+25+210=675m 双向出闸距离4

L '=210+20+25+160+280=695m 根据《船闸总体设计规范》查得

单向进闸s m v /5.01= 单向出闸s m v /5.01= 双向进闸s m v /5.01= 双向出闸s m v /5.01= 则min 2.10605.03051=?=

t ,min 1.660

7.02554=?=t

min 1.16607.06751

=?='t ,min 6.1160

0.1695

4=?='t

2、 闸门的启、闭时间2t

闸门的启、闭时间与闸门型式和闸首口门宽度有关,当闸首口门宽度20~30m 时,2t 约为2~3min ,取2min

3、 闸室灌、泻水时间3t

船闸灌泻水时间与水头、输水系统型式、闸室尺度有关,取3t =min

4、 船舶(队)进出闸门间隔时间5t

船舶(队)进出闸门间隔时间取min

则:单向过闸时间 =++++=543211224t t t t t T +4×2+2×9++2×5=min

双向过闸时间 =+'+++'=54321

242242t t t t t T 2×+4×2+2×9+2×+4×5=min 实际上,由于上行与下行船舶(队)均难以保证到闸的均匀性在设计中一般采用船

舶(队)单向过闸与双向过闸所需时间的平均值来计算昼夜过闸次数,过闸时间

5.51)2

4.1013.52(2/1)2(2/121=+=+

=T T T min 船闸日平均过闸次数

6.255

.5160

2260

=?=

?=

T

n τ 取25次 船闸年通过能力

β

α

??-=G N n n P e )

(

式中:e n —日非运客、货船过闸次数,取1

N —年通航天数(360天) G —次过闸的平均载重吨位(4000吨)

α—船舶装载系数() β—运量不均匀系数

吨44101750107.26071

.183

.04000360)

125()

(?≥?=??-=??-=β

α

G N n n P e

满足通过能力的要求

第六节 船闸的附属设施

船闸附属设施及其布置可参考《船闸总体设计规范》中的有关内容。 1、 系船设备

闸室、引航道等处的靠船建筑物靠船一侧,设置龛式系船柱。系船柱不突出墙面。

闸室墙、引航道等靠船建筑物的顶部设置固定系船柱。在闸室内的布置,首尾系船柱距闸室的有效长度两端距离为10m;在闸室墙墙面上设置固定系船柱其纵向间距为1.5m,横向间距为15m;另外在闸室墙上每隔40m设置浮式系船柱。

2、安全防护和检修设备

高良涧船闸位于洪泽湖大堤(国家一级防洪建筑物)上,为了确保安全,在上闸首设置防洪门,兼做检修门用;船闸闸室的闸室墙前沿设护轮坎。闸室两侧设置两道嵌入式爬梯,爬梯距闸首距离取10m。

3、信号和标志

船闸按昼夜通航要求设置信号和标志,每道工作闸门上、下游均设置水尺。

4、控制通信

高良涧二线船闸距原来的老船闸近5km,在设计时为了充分为了充分发挥两个船闸的综合效益,合理调度船舶运行,建议在两个船闸之间设置一个远方调度站,同船闸上的总调度室一起调度船舶运行。

5、房屋和道路

船闸的周围分别设置生产、辅助生产、生活等用房,并结合船闸建设规划作出统一的总体设计,其布置要求合理紧凑,管理方便。

船闸的各部位之间,应根据需要设置内部道路和对外公路,高良涧船闸破洪泽湖大堤而建,原有的二级公路必需重建。

6、环境保护

船闸设计应贯彻执行《中华人民共和国环境保护法》的有关规定,做到船闸工程设计与环保设计同步进行,保护环境。船闸的环保和绿化设计,应根据国家有关政策、法规、并参照现行的行业标准《港口工程环境保护设计规范》的有关规定。

船闸施工期由于吹填或基坑开挖,场地填筑等产生的粉尘,以及施工机械产生的噪音,对环境构成威胁时,应采取防治保护措施。

闸区范围内应进行近、远期绿化总体规划,其陆域绿化覆盖系数应不小于30%。

7、消防和救护

船闸设计应执行《中华人民共和国消防法》的有关规定,设置专用的消防设施。闸首等部位设置消防栓、灭火器、灭火材料等有关器材。船闸应设专用的消防通道、消防水泵等。船闸的房屋设计应符合现行国家标准《建筑设计防火规范》的有关规定。

第二章 船闸的输水系统

第一节 输水系统的选择、输水型式及消能工

一 输水系统

输水系统可分为集中输水系统和分散输水系统两大类。判别系数

5.30.40

.50.8>==

=

H

T m

采用集中输水系统,结合已建船闸的输水型式采用环形短廊道输水。根据《船闸输水系统设计规范》集中式输水系统的布置原则,可初步确定输水系统的尺寸。

1、 输水廊道的进口

输水廊道的进口应布置在水下一定深度,一般低于设计最低通航水位以下~m 以上,以保证廊道进口顶部不产生负压,避免输水时吸入空气使进入闸室的水流掺气而加剧水流的紊乱。为减少水流进口的损失,在廊道进口修圆,修圆半径为(~)b (b 为输水廊道进口宽度),取m 。 2、 输水廊道的弯曲段

廊道弯曲段的主要设计任务是选择合适的曲率半径,特别是内侧曲面的曲率半径。根据规范,取进口转弯段内侧曲率半径m ,外侧6m ,转弯中心线4m ;出口转弯段内侧曲率半径2m ,外侧8m ,转弯中心线m 。 3、 输水廊道的出口 为减小输水廊道出口的水流流速,扩大水流对冲面积增加消能效果,并减少出口损失,廊道出口断面面积取阀门断面面积的倍(6m )。为使出流均匀增加消能效果,在转弯的起点即开始扩大并增设导墙。导墙的位于廊道正中而略偏向外侧m 。

为使廊道出口处水流平稳,增加对冲消能的效果,并提高廊道内侧曲面的压力,廊道出口淹没水深通常上闸首大于~m ,下闸首应大于~m 。 4、 输水廊道的直线段

在廊道的转弯段之间,应有一定的直线段长度,

主要是为了使阀门后水流能够得到充分扩散,同时便于布

置输水阀门和检修阀门。直线段的长度一般为(~)b 图 2-1 二 消能工

集中输水系统消能工的布置应使水流能够充分消能和均匀扩散,并不妨碍输水系统的泄流能力。根据后面水力计算中求出的流速和水头,查规范可采用简单消能工。选用消力槛消能。

输水系统及消能工的布置简图见图2-1

第二节 船闸输水系统的水力计算

1、 水阀门处廊道断面面积

]

)1(1[22V K g T H

c αμω--=

式中:c —计算水域面积 255×23=58652

m

H —设计水头 取m

μ—阀门全开时输水系统的流量系数,可取~,取 α—系数,锐缘平板阀门μ=时,取

V K —可取~,取

T —闸室灌水时间,取min

则;

2.24]

8.0)56.01(1[8.2987.02

.558692=--??=

ω2m

2、 输水系统的阻力系数和流量系数

流量系数

c

vn t ξξξμ+'+=

1

式中:t μ—时刻t 时的输水系统流量系数

vn ξ—时刻t 时阀门开度n 时的阀门局部阻力系数,可按表A.0.4选用

ξ'—阀门井或门槽的损失系数,平面阀门取,这里用×2(两个门槽) c ξ—阀门全开后输水系统总阻力系数

输水系统总阻力系数c ξ包括进口、进口弯、出口弯、扩大、出口等的局部阻力系数和沿层摩阻损失的阻力系数,即

沿层出口扩大出弯进弯进口ξξξξξξξ+++++=c

各局部阻力系数可按《船闸输水系统设计规范》附录A 表A.0.1中提供的计算方法计算选取,其中:

进口ξ—对于边缘微带圆弧形的进口时为~,取

进弯ξ—进口转弯可由公式?'

=90θξξk k 计算,其中θ为转角(?90),k

ξ'为系数与廊道的形状及转弯的曲率半径有关,当53.05

.324

2==

?R b 时,可查得k ξ'=,则进弯ξ=

出弯ξ—可用上面的方法求得,为

扩大ξ—可用公式2

)1(2

1ωωξ-=k 扩大计算,式中1ω、2ω为前后计算断面的面积

分别为4×和6×,k 为系数,与圆锥顶角有关,由几何关系可知θ为?36.6(计算过程详见底稿),则查表得k =,则可以求出扩大ξ=

出口ξ—对于多支孔出口,出口ξ为~,需将出口处的阻力系数换算为阀门处廊道

断面的阻力系数乘以2)

(出口

ωω,则当出口阻力系数为时实际阻力系数为 沿层ξ—忽略沿层阻力的影响,取沿层ξ=0

则 c ξ=+++++0= 当阀门全开时 2

.0496.11+=t μ=

3、 输水阀门开启时间

)

(2χωω-=

C L r v P gH

DW K t 式中:r K —系数,对锐缘平板阀门取

ω—输水阀门处廊道断面面积 ×4×2=282m

D —波浪力系数,当船舶(队)长度接近闸室长度时,取1

W —船舶(队)排水量,计算阀门开启时间时用单船2×1000×=26003m

L P —船舶允许系缆力,按《船闸输水系统设计规范》表2.2.1确定,取32KN

C ω—初始水位时闸室的横断面积×23=2m

χ—船舶(队)进水横断面积×××2=2m ,其中为船舶断面系数

则: min 8.45.288)

9.465.103(320

.58.922600128725.0==-???????=

s t v

4、 闸室输水时间

闸室输水时间应根据确定的流量系数和阀门开启时间核算

v t g

H

c T )1(22αμω-+=

式中:c —闸室水域面积 255×23=58652

m

μ—阀门全开时输水系统的流量系数,取

ω—输水阀门处的断面面积282m

α—系数,按表3.3.2确定,取

v t —阀门的开启时间,min

则:min 7.6608.4)53.01(8

.92288.00.558692=??-+?????=

T

5、 闸室输水水力特征曲线

船闸的水力特征曲线包括流量系数与时间的关系曲线、闸室水位与时间的关系曲线、流量与时间的关系曲线、能量与时间的关系曲线、比能与时间的关系曲线以及闸室与上下游引航道断面平均流速与时间的关系曲线。

计算公式可参见《船闸输水系统设计规范》附录C 中的有关规定,具体计算过程可以编程计算。详见附录1的水力计算程序。将计算结果绘成水力曲线如下:

1)、流量系数与时间的关系曲线

流量系数可由公式c

vn t ξξξμ+'+=

1

计算,其中vn ξ可由阀门的开启度变化确

定。计算结果见流量系数与时间关系曲线。

2)、闸室水位与时间关系曲线

当忽略阀门开启过程惯性水头的影响时,阀门开启过程中任一时刻段末的水头可按下式计算:

2

1)22(c

g h h mt i i ωμ?-

=+

则闸室水位可用上游水位-水头,计算结果如下图:

3)、流量与时间关系曲线

流量与时间关系曲线可通过下列公式计算:

t

v

np t t t t t d d g L d d h g Q ?

=+

=)(2ωμ

具体计算结果见下图:

4)、能量与时间关系曲线

能量与时间关系曲线可由下式计算

t t t h Q E 81.9=

5)、比能与时间的关系曲线

比能与时间的关系曲线可由下式计算:

t

t

pt E E ω=

计算结果见下图:

6)、流速与时间关系曲线

灌泄水过程各时刻的闸室与引航道断面平均流速可按下式计算:

t

t

t Q v ω=

计算结果见下图:

第三节 停泊稳定条件

当闸室灌水或泄水时,停泊在闸室内或引航道内的船舶将受到水流作用力的作用,而在系船缆绳上产生拉力。

在闸室灌、泄水过程中,影响水流作用力亦即过闸船舶缆绳拉力的大小及其变化的因素是相当复杂的。它不仅与输水系统的型式、阀门的开启方式有关,而且与船舶的大小、编队方式、系缆方法以及船舶在闸室和引航道内的位置有关。目前,缆绳拉力的确定还不能从理

论分析上得到满意的解答,而只能对一些简单的情况作很粗略的近似计算。具体缆绳拉力的确定还需借助水工模型试验。

进行缆绳拉力的估算时,通常作以下的一些假设: 1、 船舶位于闸室纵轴线上;

2、 船舶的竖向位移对缆绳的水平拉力不产生影响;

3、 船舶绑系得很牢固,在水流作用下不产生水平方向的移动,缆绳拉力等于闸室灌泄

水时作用于过闸船舶上的全部水流作用力。

计算公式可参考《船闸输水系统设计规范》中3.3.7有关内容,计算过程如下: 船舶、船队在闸室内的停泊条件可按《船闸输水系统设计规范》中3.3.7的公式进行核算

L P P ≤1

闸室灌水时 )

(21χωω-?==c v r B t gH

DW K P P

式中:

1P —船舶、船队所受的水流作用力(KN ) B P —灌泄水初期的波浪力作用(KN ) r K —取,锐缘平面阀门

ω—输水阀门处的廊道断面面积282m

D —波浪力系数,当船舶、船队的长度接近闸室长度时取1 W —船舶、船队的排水量2×1000×=26003m

H —设计水头m

v t —输水阀门的开启时间

c ω—初始水位的闸室横断面面积×23=2m

χ—船舶、船队浸水横断面面积××=2m

则: 0.1747.235.103604.65

8.922600128725.01=-???????=

=)

(B P P KN

KN P P L 320.171=≤=满足停泊稳定的要求

闸室泄水时 V i P P P +=1

i P —泄水时闸室水面坡降所产生的作用力,可按下式(附录)计算:

]4444[2

24

214

h

g

q h

h h g q h h g P i ---???=χρ?

c

t B H h χ

-

=

C C T

L B Ql q =

1 C

C c T L B l l Q q )(2+= 式中:

?—校正系数取 ρ—水的密度1 t/m

t H —时刻t 的闸室水深,可由闸室水位与时间关系曲线求得-4=m C B -闸室的宽度23m

h —换算的船底以下水深23

47

.23379.7-

=h =m Q —泄水流量,取最大流量s m /3

T l —船尾离上闸首的距离230-160=70m c l —船舶、船队的换算长度87.11047

.232600

==

=

χ

W

l c m C L —闸室水域长度255m

1q —船尾处的单宽流量)]/([314.1255

2370

059.11031m s m q ?=??=

2q —船首处的单宽流量)]/([394.3255

23)

87.11070(059.11032m s m q ?=?+?=

则:

KN

P i 2.5]166

.548

.9394.3166

.45166.5166

.548

.9314.1166

.54166.5[

47.238.90.12.12424=?--

??-????=

V P —由闸室的纵向流速所产生的作用力

2

222

)()(3/1])11[χωαχ?δ-????

??++-+???=gQ R C W fO m P c V ( δ—船舶、船队排水量的方形系数

?—剩余阻力系数,金属船取3105.10?

c m —船前流速不均匀系数,闸室泄水取

α—系数,862.023

379.747

.2323379.7=?-?=-=

ωχωα f —摩擦系数,金属船取31017.0-?

O —船舶浸水表面积(2×+×)=2m

R —水力半径,m L R 679.19

.06.10246.247

.23=?+?==)(χ

C —谢才系数,10.49679

.18.0187

=+

=

C

ω—闸室过水断面面积,×23=2m

22

23

23)47.23717.169(059.1108.9)679.11.4926001.16031017.0(3/1]862.0)111[47.23105.109.0-????????

????+

??+?-+????=-(V P =KN KN KN P P P V i 32121.8921.22.51〈=+=+=

满足

停泊稳定的要求

水轮机的选型计算

一、水轮机选型计算的依据及其基本要求.....................................................................1 1 水轮机选型时需由水电勘测设计院提供下列原始数据.................................1 2 水轮机选型计算应满足下述基本要求......................................................1 二、反击式水轮机基本参数的选择计算..................................................................1 1 根据最大水头及水头变化范围初步选定水轮机的型号.................................1 2 按已选定的水轮机型号的主要综合特性曲线来计算转轮参数.................................1 3 效率修正..........................................................................................4 4 检查所选水轮机工作范围的合理性.........................................................4 5 飞逸转速计算....................................................................................5 6 轴向推力计算....................................................................................5 三、水斗式水轮机基本参数的选择计算......................................................10 1 水轮机流量.......................................................................................10 2 射流直径d 0.......................................................................................10 3 确定D1/d 0.......................................................................................10 4 水轮机转速n ....................................................................................10 5 功率与效率................................................................................................11 6 飞逸转速..........................................................................................12 7 水轮机的水平中心线至尾水位距离A ......................................................12 8 喷嘴数Z 0的确定....................................................................................12 9 水斗数目Z1的确定.................................................................................12 10 水斗和喷嘴的尺寸与射流直径的关系...................................................13 11 引水管、导水肘管及其曲率半径.........................................................13 12 转轮室的尺寸..............................................................................14 A 水机流量..........................................................................................17 B 射流直径.............................................................................................17 C 水斗宽度的选择..........................................................................................17 D D/B 的选择.............................................................................................17 E 水轮机转速的选择.......................................................................................17 F 单位流量的计算..........................................................................................17 G 水轮机效率................................................................................................18 H 飞逸转速................................................................................................18 I 转轮重量的计算..........................................................................................18 四、调速器的选择.............................................................................................20 1 反击式水轮机的调速功计算公式.....................................................................20 2 冲击式水轮机的调速功计算公式.....................................................................20 五、阀门型号、大小的选择.................................................................................21 1 球阀的选择................................................................................................21 2 蝴蝶阀的选择 (22) 目 录

钢结构梯形屋架课程设计计算书(绝对完整)

第一章:设计资料 某单跨单层厂房,跨度L=24m,长度54m,柱距6m,厂房内无吊车、无振动设备,屋架铰接于混凝土柱上,屋面采用1.5*6.0m太空轻质大型屋面板。钢材采用Q235-BF,焊条采用E43型,手工焊。柱网布置如图2.1所示,杆件容许长度比:屋架压杆【λ】=150 屋架拉杆【λ】=350。 第二章:结构形式与布置 2.1 柱网布置 图2.1 柱网布置图 2.2屋架形式及几何尺寸 由于采用大型屋面板和油毡防水屋面,故选用平坡梯形钢屋架,未考虑起拱时的上弦坡度i=1/10。屋架跨度l=24m,每端支座缩进0.15m,计算跨度l0=l-2*0.15m=23.7m;端部高度取H0=2m,中部高度H =3.2m;起拱按f=l0/500,取50mm,起拱后的上弦坡度为1/9.6。 配合大型屋面板尺寸(1.5*6m),采用钢屋架间距B=6m,上弦节间尺寸1.5m。选用屋架的杆件布置和尺寸如施工图所示。

图2.2 屋架的杆件尺寸 2.3支撑布置 由于房屋较短,仅在房屋两端5.5m开间内布置上、下弦横向水平支撑以及两端和中央垂直支撑,不设纵向水平支撑。中间各屋架用系杆联系,上下弦各在两端和中央设3道系杆,其中上弦屋脊处与下弦支座共三道为刚性系杆。所有屋架采用统一规格,但因支撑孔和支撑连接板的不同分为三个编号:中部6榀为WJ1a ,设6道系杆的连接板,端部第2榀为WJ1b,需另加横向水平支撑的的连接螺栓孔和支撑横杆连接板;端部榀(共两榀)为WJ1c。 图2.3 上弦平面

12 1 2 1---1 2---2 图2.3下弦平面与剖面 第三章:荷载计算及杆件内力计算 3.1屋架荷载计算 表3.1 屋架荷载计算表 3.2屋架杆件内力系数 屋架上弦左半跨单位节点荷载作用下的杆件内力系数经计算如图所示。屋架上弦左半跨单位节点荷载、右半跨单位节点荷载、全跨单位节点荷载作用下的屋架左半跨杆件的内力

水电站厂房参数设计计算书

水电站厂房 第一节几种水头的计算(1) H max=Z蓄—Z单机满出力时下游水位 H r= Z蓄—Z全机满出力时下游水位 H min=Z底—Z全机满出力时下游水位 一、H max的计算。 1 假设H max=84m 由公式Nr=K Q H 公式中 Nr为单机出力50000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03H0) Q 为该出力下的流量。 故解出Q=70.028m3/s 查下游流量高程表得下游水位为198.8m 上游水位为284m ΔH=0.03 (284—198.8)=2.6m 又因为284—84—2.6= 197.4 2 重新假设Hmax=83m 由公式Nr=K Q H 解出Q=70.87m3/s 查下游流量高程表得下游水位为199.3m 上游水位为284m ΔH=0.03 (284—199.3)=2.5m

又因为284—83—2.5=198.5 故H max=83m 二、H min的计算。 1 假设H min=60m 由公式Nr=K Q H 公式中 Nr为全机出力200000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03Ho) Q 为该出力下的流量。 故解出Q=392.16m3/s 查下游流量高程表得下游水位为203.50m 上游水位为264m ΔH=0.03 (264—203.50)=1.80m 又因为264—60—1.80=202.20< 203.50 2 重新假设Hmin=59m 由公式Nr=K Q H 解出Q=398.80m3/s 查下游流量高程表得下游水位为203.58m 上游水位为264m ΔH=0.03 (264—203.58)=1.77m 又因为264—59—1.77=203.23 = 203.58 故H min=59m 三、H r的计算。

t高密度澄清池设计计算书环境平台

中间总集水槽宽度:B=0.9(1.5Q )0.4 =0.9×(1.5×0.463) =0.78m 40000t/d 高密度澄清池设计计算书 一、设计水量 Q=40000t/d=1666.7t/h=0.463m 3/s 二、构筑物设计 水的有效水深:本项目的有效水深按 6.8 米设计。 1、絮凝池:停留时间 6~10min ,取 8 min 。 则有效容积:V=1666.7×8/60=222.3 m 3 平面有效面积:A=222.3/6.8=32.7m 2。 取絮凝池为正方形,则计算并取整后。絮凝池的有效容积: 5.7m×5.7m× 6.8m(设计水深)=221m 3。 原水在絮凝池中的停留时间为 7.96min 2、澄清区 斜管上升流速:12~25m/h ,取 22.5 m/h 。——斜管面积 A 1=74.08m 2。 沉淀段入口流速取 60 m/h 。——沉淀入口段面积 A 2=27.78m 2。 0.4 取 B=0.9m 。 从已知条件中可以列出方程: X·X1=27.78——① (X-1.3)·(X-X1-0.25-0.5)=74.08——② 可以推出:A=X 3-2.05X 2-100.885X+36.114=0 当 X=11 时A=9.33>0 当 X=10.9 时A=-12.064<0 所以取 X=11。即澄清池的尺寸:11m×11m×6.8m=822.8m 3原水在澄清池中的停留时间:t=822.8/0.463=1777.1s=29.6min 。 斜管区面积:9.7m×7.7m=74.69m 2 水在斜管区的上升流速:0.463/74.69=0.0062m/s=6.2mm/s=22.32m/h 1

钢结构课程设计计算纸

一、设计资料 温州地区某一单跨厂房总长度60m,纵向柱距6m,跨度18m。建筑平面图如图1所示。 1.结构形式: 钢筋混凝土柱,梯形钢屋架。柱的混凝土强度等级为C30,屋面坡度i=1/10; L为屋架跨度。地区计算温度高于-200C,无侵蚀性介质,屋架下弦标高为18m; 厂房内桥式吊车为1台30t(中级工作制)。 2. 屋架形式及材料: 屋架形式、几何尺寸及内力系数(节点荷载P=1.0作用下杆件的内力)如附图2所示。屋架采用的钢材为Q235钢,并具有机械性能:抗拉强度、伸长率、屈服点、180℃冷弯试验和碳、硫、磷含量的保证;焊条为E43型,手工焊。 3. 荷载标准值(水平投影面计) ①永久荷载: 三毡四油(上铺绿豆砂)防水层 0.5 KN/m2 水泥砂浆找平层 0.5 KN/m2 保温层0.55 KN/m2 一毡二油隔气层 0.05 KN/m2 水泥砂浆找平层 0.4 KN/m2 预应力混凝土大型屋面板 1.4 KN/m2 屋架及支撑自重:按经验公式0.120.011 q L =+计算: 0.318 KN/m2 悬挂管道: 0.15 KN/m2 ②可变荷载: 屋面活荷载标准值:2 7.0m kN / 雪荷载标准值: 0.35KN/m2 积灰荷载标准值: 1.2 KN/m2 厂房平面图

.51507.5 9 内力系数图 二、屋盖支撑布置 1、上弦横向水平支撑 上弦横向水平支撑布置在房屋两端的第二开间,沿屋架上弦平面在跨度方向全长布置。考虑到上弦横向水平支撑的间距大于60m,应在中间柱间增设横向水 平支撑。 2、下弦横向水平支撑 屋架跨度为18m,应在上弦横向水平支撑同一开间设置下弦横向水平支撑,

钢结构屋架设计计算书

. 1.设计资料 某车间厂房总长度约为108米,跨度为18m。车间设有两台30吨中级工作制吊车。车间无腐蚀性的介质。该车间为单跨双坡封闭式厂房,屋架采用三角形豪式钢屋架。屋面坡度为1:3,屋架间距为6m,屋架下弦标高为9米,其两端铰支于钢筋 混凝土柱上,上柱截面尺寸为400mm×400mm,混泥土强度等级为C20。屋面采用彩色压型钢屋板加保温层屋面,C型檩条,檩距为1.5~2?。屋面的活荷载为kNm=1.0,屋面的恒荷载的标准值为0.5γ2.1米。结构的重要度系数为022??,不考虑积灰荷载、风荷载,不考虑全跨荷载积雪不均匀分布m,雪荷载为0.350.2 kN kNm状况。屋架采用Q235B,焊条采用E43型。 2.屋架形式及几何尺寸 1′°2618=檩距arctan,=屋架形式及几何尺寸如图檩条支承于屋架上弦节点。屋架坡角为α3。为1.866m 屋架形式和几何尺寸1 图 支撑的布置3.上、下弦横向水平支撑设置在厂房两端和中部的同一柱间,并在相应开间的屋架跨中设置垂直支撑,在其余开间的屋架上弦跨中设置一道通长的刚性细杆,下弦跨中设置一道通长的柔性细。2杆。在下弦两端设纵向水平支撑。支撑的布置见图

'. . 图2 支撑的布置图 4.檩条布置 檩条设置在屋架上弦的每个节点上,间距1.866m。因屋架间距为6m,所以在檩条跨中设一道直拉条。在屋脊和屋檐分别设置斜拉条和撑杆。 荷载标准值5.35.31kN6=×6×=0.51.77××=0.5×1.866P上弦节点恒

荷载标准值110√3×61.866×0.35=60.35=×1.77×=3.72kN×P上弦 节点雪荷载标准值210√3 由檩条传给屋架上弦节点的恒荷载如图 上弦节点恒荷载图3 由檩条传给屋架上弦节点的雪荷载如图4 '. . 图4 上弦节点雪荷载 6.内力组合 内力组合见表—1

空气采样探测器设计方案

空气采样探测器设计方案 极早期主动式空气采样感烟探测系统技术方案 一、项目概述 本项目为暗室工程新建项目~单层高度20米以上~考虑到防火要求~因空间高~不宜采用普通点型火灾探测设备~为达到暗室高大空间的火灾防护能力~最大限度的减少~避免火灾隐患~确保整个火车站正常运营状态。我方采用了澳大利亚Vision生产的极早期主动式空气采样感烟探测系统VESDA对大楼火灾系统进行监控。利用VESDA系统先进的探测技术~卓越的探测性能对高大空间提供可靠的保障。系统主要由安装在现场的VESDA标准型探测器和设置在主站房一层消防控制室的集中监控微机组成。整个系统连接成一个网络~可以通过监控微机对全部前端探测器进行编程~监控和维护等工作。 二、方案设计依据 本方案在设计过程中依据了下列相关文件 , 《火灾自动报警系统设计规范,GB50116,98,》 , 《火灾自动报警系统施工及验收规范,GB 50166,92,》 , 《火灾报警器通用技术条件,GB4717,1993,》 , 《消防联动控制设备通用技术条件 GB16806,1997》 , 《VESDA System Design Manual Version 2.2》,Vision公司 设计手册, , 《VESDA设计规范2002》,北京华脉金威公司企业标准, , 《VESDA施工及验收规范2002》,北京华脉金威公司企业标准, 三、 VESDA产品功能及介绍 3.1. 综述

VESDA——VERY EARLY SMOKE DETECTION APPARATUS~中文翻译为:极早期的烟雾探测设备~这是根据产品的功能而起的名字。而根据其原理特点~也称其为主动吸气式或采样式烟雾探测器。 澳大利亚Vision公司生产的VESDA的第一代产品早在七十年代就已研制出来了。在1983年就已开始推向全球~并被广泛采用。VESDA以其先进的技术和完善的品质享有最高声誉~成为保障高价值财产和重要设备设施安全的第一选择。 3.2. 燃烧过程的认识 火情的发展一般分为四个阶段:不可见烟,阴燃,阶段、可见烟阶段、明火阶段和高温阶段。上图展示了火灾的整个演变过程。传统的火灾报警系 火灾发展趋势与VESDA探测范围示意图 统通常是在可见烟阶段才能探测到烟雾~发出警报~此时火情所造成巨大的经济和财产损失已不可避免。请注意:在此之前~不可见烟阶段给我们提供了充裕的时间~VESDA可以及早探测险情~并控制火情的发生和曼延。

课程设计梯形钢屋架设计(21m跨)

梯形钢屋架设计(21m 跨) 一、设计资料 某地区某金工车间。采用无檩屋盖体系,梯形钢屋架。跨度为21 m ,柱距6 m ,厂房长度为144 m ,厂房高度为15.7 m 。车间内设有两台150/520 kN 中级工作制吊车,计算温度高于 -20 ℃。采用三毡四油防水屋面上铺小石子设计荷载标准值0.4 kN/m 2,水泥砂浆找平层设计荷载标准值0.4 kN/m 2,泡沫混凝土保温层设计荷载标准值0.1 kN/m 2,水泥砂浆找平层设计荷载标准值0.5 kN/m 2, 1.5 m ×6.0 m 预应力混凝土大型屋面板设计荷载标准值1.4 kN/m 2。屋面积灰荷载0.35 kN/m 2,屋面活荷载0.35 kN/m 2,雪荷载为0.45 kN/m 2,风荷载为0.5 kN/m 2。屋架铰支在钢筋混凝土柱上,柱截面为400 mm ×400 mm ,砼标号为C20。 二、屋架形式、尺寸、材料选择及支撑布置 1、钢材及焊条选择 根据建造地区(北京)的计算温度和荷载性质及连接方法,钢材选用Q235-B 。焊条采用E43型,手工焊。 2、屋架形式及尺寸 本设计采用无檩屋盖,i =1/10,采用梯形屋架。 屋架跨度为L =21000 mm 屋架计算跨度为0L =L -300=20700 mm , 端部高度取0H =2000 mm ,(1/16 ~ 1/12)L ,(通常取为2.0 ~2.5 m ) 中部高度取H =0H +0.5i L =2000 + 0.1×21000/2=3050 mm , 屋架杆件几何长度见附图1所示,屋架跨中起拱42 mm (f = L /500考虑)。 为使屋架上弦承受节点荷载,配合宽度为1.5 m 的屋面板,采用上弦节间长度为3.0 m 。

水轮机选型设计计算书 原稿

第一章 水轮机的选型设计 第一节 水轮机型号选定 一.水轮机型式的选择 根据原始资料,该水电站的水头范围为18-34m , 二.比转速的选择 水轮机的设计水头为m H r 5.28= 适合此水头范围的有HL240和ZZ450/32a 三.单机容量 第二节 原型水轮机主要参数的选择 根据电站建成后,在电力系统的作用和供电方式, 初步拟定为2台,3台,4台三种方案进行比较。 首先选择HL240 n11=72r/min 一.二台 1、计算转轮直径 水轮机额定出力:kw N P G G r 67.66669 .0106.04 =?== η 上式中: G η-----发电机效率,取0.9 G N -----机组的单机容量(KW ) 由型谱可知,与出力限制线交点的单位流量为设计工况点单位流量,则Q 11r =1.155m 3 /s,对应的模型效率ηm =85.5%,暂取效率修正值 Δη=0.03,η

=0.855+0.03=0.885。模型最高效率为88.5%。 m H Q P D r r 09.2885 .05.28155.181.967 .666681.95 .15.1111=???== η 按我国规定的转轮直径系列(见《水轮机》课本),计算值处于标准值2m 和2.25m 之间,且接近2m ,暂取D 1=2m 。 2、计算原型水轮机的效率 914.02 46 .0)885.01(1)1(155 110max =--=--=D D M M ηη Δη=η max -ηM0=0.914-0.885=0.0.029 η=ηm +Δη=0.855+0.029=0.884 3、同步转速的选择 min /18.1972 95 .0/5.2872av 1110r D H n n =?== min /223.11855 .0884 .07210 M 0 T 11011r n n =-?=-=?)( )( ηηmin /223.73223.172n 1111r 11r n n m =+=?+= 4、水轮机设计单位流量Q11r 的计算 r Q 11= r r r H D η5 .12181.9P =884.05.28281.967.66665.12???=1.2633 m /s 5、飞逸转速的计算 r n = 1 11max D H n r =73.223×28.33=212.851r/min 6、计算水轮机的运行范围 最大水头、平均水头和最小水头对应的单位转速 min)/609.66223.18.332 180.19711max 1min 11r n H nD n =-?=?-= min)/(777.70223.195 .0/5.282180.19711av 111r n H nD n a =-?=?-=

钢结构课程设计梯形钢屋架计算书

-、设计资料 1、某工厂车间,采用梯形钢屋架无檩屋盖方案,厂房跨度取27m,长度为102m,柱距6m。采用1.5m×6m预应力钢筋混凝土大型屋面板,保温层、找平层及防水层自重标准值为1.3kN/m2。屋面活荷载标准值为0.5kN/m2,雪荷载标准值0.5kN/m2,积灰荷载标准值为0.6kN/m2,轴线处屋架端高为1.90m,屋面坡度为i=1/12,屋架铰接支承在钢筋混凝土柱上,上柱截面400mm×400mm,混凝土标号为C25。钢材采用Q235B级,焊条采用E43型。 2、屋架计算跨度: Lo=27m-2×0.15m=26.7m 3、跨中及端部高度: 端部高度:h′=1900mm(端部轴线处),h=1915mm(端部计算处)。 屋架中间高度h=3025mm。 二、结构形式与布置 屋架形式及几何尺寸如图一所示: 2、荷载组合 设计桁架时,应考虑以下三种组合: ①全跨永久荷载+全跨可变荷载 (按永久荷载为主控制的组合) :全跨节点荷 载设计值:F=(1.35×3.12+1.4×0.7×0.5+1.4×0.9×0.6) ×1.5×6 =49.122kN 图三桁架计算简图 本设计采用程序计算结构在单位节点力作用下各杆件的内力系数,见表一。

1、上弦杆: 整个上弦杆采用相等截面,按最大设计内力IJ 、JK 计算,根据表得: N = -1139.63KN ,屋架平面内计算长度为节间轴线长度,即:ox l =1355mm ,本屋架为无檩体系,认为大型屋面板只起刚性系杆作用,不起支撑作用,根据支撑布置和内力变化情况,取屋架平面外计算长度oy l 为支撑点间的距离,即: oy l =3ox l =4065mm 。根据屋架平面外上弦杆的计算长度,上弦截面宜选用两个不等肢角钢,且短肢相并,如图四所示: 图四 上弦杆

钢屋架课程设计计算书及施工图

一、课程设计名称 梯形钢屋架设计 二、课程设计资料 北京地区某金工车间,采用无檩屋盖体系,梯形钢屋架。跨度为27m,柱距6m,厂房高度为15.7m,长度为156m。车间内设有两台200/50kN中级工作制吊车,计算温度高于-20℃。采用三毡四油,上铺小石子防水屋面,水泥砂浆找平层,厚泡沫混凝土保温层,1.5m×6m预应力混凝土大型屋面板。屋面积灰荷载为0.4kN/㎡,屋面活荷载为0.4kN/㎡,雪荷载为0.4kN/㎡,风荷载为0.45 kN/㎡。屋架铰支在钢筋混凝土柱上,柱截面为400mm×400mm,混凝土标号为C20。 设计荷载标准值见表1(单位:kN/㎡)。 三、钢材和焊条的选用 根据北京地区的计算温度、荷载性质和连接方法,屋架刚材采用 Q235沸腾钢,要求保证屈服强度 fy、抗拉强度 fu、伸长率δ和冷弯实验四项机械性能及硫(S)、磷(P)、碳(C)三项化学成分的合格含量。焊条采用 E43型,手工焊。

四、 屋架形式和几何尺寸 屋面材料为预应力混凝土大型屋面板,采用无檩屋盖体系,平坡梯形钢屋架。屋面坡度。10/1=i 屋架计算跨度。mm l l 2670015022700015020=?-=?-= 屋架端部高度取:mm H 20000=。 跨中高度:mm i l H 335033351.02/2670020002 H 0 0≈=?+=?+=。 屋架高跨比: .812670033500==l H 。 屋架跨中起拱,54500/mm l f ==取50 mm 。 为了使屋架节点受荷,配合屋面板1.5m 宽,腹杆体系大部分采用下弦节间水平尺寸为3.0m 的人字形式,上弦节间水平尺寸为 1.5m ,屋架几何尺寸如图 1 所示。 图1:27米跨屋架几何尺寸 五、 屋盖支撑布置 根据车间长度、跨度及荷载情况,在车间两端 5.5m 开间内布置上下弦横

弱电系统计算书

建筑弱电课程设计计算书 一、消防、报警及控制系统 1、工程概况 此次设计工程为蚌埠绿地中央广场,40层建筑,首层设有健身房、校长室、学生处、教务处、办公室、更衣室、消控室等功能室。设计高度不超过6米。其消防设计采用火灾报警系统一级保护对象设计,采用控制中心报警系统。消防控制室内置火灾自动报警控制、消防联动控制装置、彩色图形显示装置、消防专用电话总机、火灾应急广播控制盘,负责整个建筑内的火灾报警信号、消防设备的集中监控和消防指挥。 2、探测器数目的确定 以下均选择离子感烟探测器。因为是一级保护对象,故k=0.8。 【1】健身房 (1)确定感烟探测器的保护面积A 和保护半径R 。 因保护区域面积2 10.213.1133.62S m =?=。 房间高度6h m ≤。 顶棚坡度0o θ=,即15o θ≤。 查表3-3可得,感烟探测器: 保护面积 2 60A m =; 保护半径 5.8R m =。 (2)计算所需探测器数N 根据建筑设计防火规范,因为是一级保护对象,取0.8K =。 133.62 2.780.860 S N KA ≥==? (只),取3只。 (3)确定探测器安装间距a ,b 查极限曲线D 由式22 5.811.6D R m ==?=,2 60A m =,查图3-36得极限曲线为D5。 确定a ,b 认定a=6m,对应D5查得b=9m 。 (4)由平面图按a 、b 值布置3只探测器。 (5)校核 222269 5.42222a b r m ????????=+=+= ? ? ? ????????? 即5.8m=R>r=5.4m 满足保护半径R 的要求。 【2】校长室、学生处、教务处、办公室和消控室 (1)确定感烟探测器的保护面积A 和保护半径R 。 因保护区域面积2 5.4 3.619.44S m =?=。 房间高度12h m ≤。 顶棚坡度0o θ=,即15o θ≤。 查表3-3可得,感烟探测器:

钢结构课程设计计算书

一由设计任务书可知: 厂房总长为120m,柱距6m,跨度为24m,屋架端部高度为2m,车间内设有两台中级工作制吊车,该地区冬季最低温度为-22℃。暂不考虑地震设防。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。卷材防水层面(上铺120mm 泡沫混凝土保温层和三毡四油防水层)。屋面活荷载标准值为0.7KN/㎡,雪荷载标准值为0.4KN/㎡,积灰荷载标准值为0.5KN/㎡。 屋架采用梯形钢屋架,钢屋架简支于钢筋混凝土柱上,混凝土强度等级C20. 二选材: 根据该地区温度及荷载性质,钢材采用Q235-C。其设计强度为215KN/㎡,焊条采用E43型,手工焊接,构件采用钢板及热轧钢筋,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度L。=24000-2×150=23700,端部高度:h=2000mm(轴线处),h=2150(计算跨度处)。 三结构形式与布置: 屋架形式及几何尺寸见图1所示: 图1 屋架支撑布置见图2所示:

图2 四荷载与内力计算: 1.荷载计算: 活荷载于雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值: 防水层(三毡四油上铺小石子)0.35KN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40 KN/㎡保温层(40mm厚泡沫混凝土0.25 KN/㎡预应力混凝土大型屋面板 1.4 KN/㎡钢屋架和支撑自重0.12+0.011×24=0.384 KN/㎡ 总计:2.784 KN/㎡可变荷载标准值: 雪荷载<屋面活荷载(取两者较大值)0.7KN/㎡积灰荷载0.5KN/㎡风载为吸力,起卸载作用,一般不予考虑。 总计:1.2 KN/㎡永久荷载设计值 1.2×2.784 KN/㎡=3.3408KN/㎡可变荷载设计值 1.4×1.2KN/㎡=1.68KN/㎡2.荷载组合: 设计屋架时应考虑以下三种组合: 组合一全跨永久荷载+全跨可变荷载 屋架上弦荷载P=(3.3408KN/㎡+1.68KN/㎡) ×1.5×6=45.1872KN 组合二全跨永久荷载+半跨可变荷载 屋架上弦荷载P1=3.3408KN/㎡×1.5×6=30.07KN P2=1.68KN/㎡×1.5×6=15.12KN 组合三全跨屋架及支撑自重+半跨大型屋面板自重+半跨屋面活荷载

水电站课程设计计算书

水电站厂房课程设计计算书 1.蜗壳单线图的绘制 1.1 蜗壳的型式 根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。可知采用金属蜗壳。又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。 1.2 蜗壳主要参数的选择 金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345?=。 通过计算得出最大引用流量m ax Q 值,计算如下: ○ 1水轮机额定出力:15000 156250.96 f r f N N KW η= = = 式中:60000150004 f KW N KW = =,0.96f η=。 ○ 2'31max 3 3 2222115625 1.11 1.159.819.81 2.2546.20.904 r p N Q m s D H η = = =

空气采样探测器设计方案

.. w 极早期主动式空气采样感烟探测系统技术方案 一、项目概述 本项目为暗室工程新建项目,单层高度20米以上,考虑到防火要求,因空间高,不宜采用普通点型火灾探测设备,为达到暗室高大空间的火灾防护能力,最大限度的减少,避免火灾隐患,确保整个火车站正常运营状态。我方采用了澳大利亚Vision生产的极早期主动式空气采样感烟探测系统VESDA对大楼火灾系统进行监控。利用VESDA系统先进的探测技术,卓越的探测性能对高大空间提供可靠的保障。系统主要由安装在现场的VESDA标准型探测器和设置在主站房一层消防控制室的集中监控微机组成。整个系统连接成一个网络,可以通过监控微机对全部前端探测器进行编程,监控和维护等工作。 二、方案设计依据 本方案在设计过程中依据了下列相关文件 ?《火灾自动报警系统设计规(GB50116-98)》 ?《火灾自动报警系统施工及验收规(GB 50166-92)》 ?《火灾报警器通用技术条件(GB4717-1993)》 ?《消防联动控制设备通用技术条件 GB16806-1997》 ?《VESDA System Design Manual Version 2.2》(Vision公司设计手册) ?《VESDA设计规2002》(华脉金威公司企业标准) ?《VESDA施工及验收规2002》(华脉金威公司企业标准)

三、VESDA产品功能及介绍 3.1.综述 VESDA——V ERY E ARLY S MOKE D ETECTION A PPARATUS,中文翻译为:极早期的烟雾探测设备,这是根据产品的功能而起的名字。而根据其原理特点,也称其为主动吸气式或采样式烟雾探测器。 澳大利亚Vision公司生产的VESDA的第一代产品早在七十年代就已研制出来了。在1983年就已开始推向全球,并被广泛采用。VESDA以其先进的技术和完善的品质享有最高声誉,成为保障高价值财产和重要设备设施安全的第一选择。 3.2.燃烧过程的认识 火情的发展一般分为四个阶段:不可见烟(阴燃)阶段、可见烟阶段、明火阶段和高温阶段。上图展示了火灾的整个演变过程。传统的火灾报警系 火灾发展趋势与VESDA探测范围示意图 统通常是在可见烟阶段才能探测到烟雾,发出警报,此时火情所造成巨大的经济和财产损失已不可避免。请注意!在此之前,不可见烟阶段给我们提供了充裕的时间,VESDA可以及早探测险情,并控制火情的发生和曼延。

水轮机计算

水电站作业 水轮机型号及主要参数的选择: 已知某水电站最大水头H max=245m,加权平均水头H av=242.5m,设计水头H r=240m,最小水头H min=235m,水轮机的额定出力为12500kw,水电站的海拔高程为2030m,最大允许吸出高Hs≥-4.0m。 要求: 1、选择两种机型(HL120-38,HL100-40)进行选择。 2、对选择的机型进一步绘制其运转特性曲线,

` (一)水轮机型号的选择 根据题目条件已知要用HL120-38和HL100-40型水轮机进行选择,对比计算分别如下: (二)水轮机主要参数的计算 HL120-38型水轮机方案主要参数的计算 1、转轮直径的计算 1D = 式中: '3112500;240; 380/0.38/r r N kW H m Q L s m s ==== 同时在附表1中查得水轮机模型在限制工况的效率=88.4%M η,由此可初步假定水轮机在该工况的效率为90.4% 将以上各值代入上式得 10.999D m = = 选用与之接近而偏大的标准直径1 1.00D m =。 2、效率修正值的计算 由附表一查得水轮机模型在最优工况下的max =90.5%M η,模型转轮直径10.38M D m =,则原型水轮机的最高效率max η可依下式计算,即 max max =1M ηη-(1- 1(10.93593.5%=--== 考虑到制造工艺水平的情况取11%ε=;由于水轮机所应用的蜗壳和尾水管的型式与模型基本相似,故认为20ε=,则效率修正值η?为: max max 10.9350.9050.010.02M ηηηε?=--=--=

钢结构屋架设计计算书Word 文档

1.设计资料 某车间厂房总长度约为108米,跨度为18m。车间设有两台30吨中级工作制吊车。车间无腐蚀性的介质。该车间为单跨双坡封闭式厂房,屋架采用三角形豪式钢屋架。屋面坡度为1:3,屋架间距为6m,屋架下弦标高为9米,其两端铰支于钢筋混凝土柱上,上柱截面尺寸为 ,混泥土强度等级为C20。屋面采用彩色压型钢屋板加保温层屋面,C型檩条,檩距为1.5~2.1米。结构的重要度系数为,屋面的恒荷载的标准值为。屋面 的活荷载为,雪荷载为,不考虑积灰荷载、风荷载,不考虑全跨荷载积雪不均匀分布状况。屋架采用Q235B,焊条采用E43型。 2.屋架形式及几何尺寸 屋架形式及几何尺寸如图檩条支承于屋架上弦节点。屋架坡角为,檩距为 1.866m。 图1 屋架形式和几何尺寸 3.支撑的布置 上、下弦横向水平支撑设置在厂房两端和中部的同一柱间,并在相应开间的屋架跨中设置垂直支撑,在其余开间的屋架上弦跨中设置一道通长的刚性细杆,下弦跨中设置一道通长的柔性细杆。在下弦两端设纵向水平支撑。支撑的布置见图2。

图2 支撑的布置图 4.檩条布置 檩条设置在屋架上弦的每个节点上,间距1.866m。因屋架间距为6m,所以在檩条跨中设一道直拉条。在屋脊和屋檐分别设置斜拉条和撑杆。

5.荷载标准值 上弦节点恒荷载标准值 上弦节点雪荷载标准值 由檩条传给屋架上弦节点的恒荷载如图3 图3 上弦节点恒荷载由檩条传给屋架上弦节点的雪荷载如图4 图4 上弦节点雪荷载6.内力组合 内力组合见表—1 杆件名称杆件编 号 恒荷载及雪荷载半跨雪荷载内力组合最不利 荷载 (kN)内力 系数 恒载 内力 (kN) 雪载 内力 (kN) 内力 系数 半跨雪 载内力 (kN) 1.2恒+ 1.4雪 (kN) 1.2恒+ 1.4半跨 雪(kN)123452+32+5 上弦杆1-2-14.23-75.56 -52.94 -10.28-38.24 -164.78 -144.21 -164.78 2-3-12.65-67.17 -47.06 -8.7-32.36 -146.49 -125.92 -146.49 3-4-11.07-58.78 -41.18 -7.11-26.45 -128.19 -107.57 -128.19 4-5-9.49-50.39 -35.30 -5.53-20.57 -109.89 -89.27 -109.89 5-6-7.91-42.00 -29.43 -3.95-14.69 -91.60 -70.97 -91.60 下弦杆1-713.571.69 50.22 9.7536.27 156.33 136.8 156.33 7-813.571.69 50.22 9.7536.27 156.33 136.8 156.33 8-91263.72 44.64 8.2530.69 138.96 119.43 138.96 9-1010.555.76 39.06 6.7525.11 121.59 102.06 121.59 10-11947.79 33.48 5.2519.53 104.22 84.69 104.22

探测器设计布置计算书

探测器设计布置计算书 一、设计题目 1、设计题目 火灾自动报警系统探测器的布置 2、设计范围 鹤岗国土资源局办公楼 二、计算及分析 1、设计分析 根据式N=S/KA (4-1)式中, N为探测器数量(N只取整数),S为该探测区域面积,m2;A为探测器的保护面积,m2;K为修正系数,特级保护对象宜取0.7~0.8,一级保护对象宜取0.8~0.9,二级保护对象宜取0.9~1.0 因为此次工程中的鹤岗国土资源局办公楼属于二级保护对象,所以修正系数k为1.0 2、计算 地下一层 ①风机房合用前室 因为风机房和合用前室面积大致相同所以一同计算 面积S大约为16.24m2 使用感烟探测器,因为屋顶坡度θ≤15°S≤80 h≤12

于是根据查表得,保护面积A=80 m2,保护半径R=6.7m 。由公式:N=S/KA 得N=S/KA=16.24m2/1×80m2=0.203 根据其布局布置1个感烟探测器。 ②水箱间配电房水泵房 因为这三间的面积大致相同所以一同计算 面积S大约为25.74m2 使用感烟探测器因为屋顶坡度θ≤15°S≤80 h≤12 于是根据查表得,保护面积A=80 m2,保护半径R=6.7m 。由公式:N=S/KA 得N=S/KA=25.74m2/1×80m2=0.32 根据其布局布置1个感烟探测器。 ③设备用房 面积S大约为70.59m2 使用感烟探测器因为屋顶坡度θ≤15°S≤80 h≤12 于是根据查表得,保护面积A=80 m2,保护半径R=6.7m 。由公式:N=S/KA 得N=S/KA=70.59m2/1×80m2=0.88 根据其布局布置1个感烟探测器。 ④地下汽车库 面积S大约为 660.23 m2 使用感温探测器因为屋顶坡度θ≤15°S>30 h≤8 于是根据查表得,保护面积A=20 m2,保护半径R=3.6m 。由公式:N=S/KA 得N=S/KA=660.23m2/1×20m2=33.01(只)根据其布局布置34个感烟探测器。

相关文档
最新文档