提高厌氧生物处理效能

提高厌氧生物处理效能
提高厌氧生物处理效能

提高厌氧生物处理效能

摘要

从厌氧生物处理技术的基本原理出发, 着重介绍了厌氧生物处理技术的影响因素、以及如何提高厌氧生物处理的效能展。

关键词厌氧生物技术,影响因素,颗粒污泥,生物相,混合流态

前言

厌氧生物处理技术由于具有运行成本低、节能、剩余污泥量少、可以处理高浓度和好氧条件下生物难降解有机物质的特点等, 近年来已成为国内外环境科学与工程领域研究的热点,可以作为环境保护、能源回收与生态良性循环结合起来的综合系统的核心技术来发展, 具有良好的环境效益与经济效益。

厌氧生物处理的基本原理

厌氧生物处理是一个复杂的微生物作用过程, 需要厌氧或兼性微生物种群

进行综合而协调的代谢活动, 最终使复杂的有机物完全降解为CH4 、CO2 、H2S 和HN3 。

由厌氧法的基本原理可知, 厌氧过程通过多种生理上不同的微生物类群联

合作用来完成。如果把产甲烷菌以外的所有微生物统称为不产甲烷菌, 与产甲烷菌相比, 它对pH 值、温度、厌氧条件等外界环境因素的变化具有较强的适应性, 且增殖速度快; 而产甲烷菌是一群非常特殊的严格厌氧的细菌, 它对生长环境条件的要求比不产甲烷菌更严格, 而且其繁殖的世代期更长。因此产甲烷菌是决定厌氧消化效率和成败的主要微生物, 产甲烷阶段是厌氧过程速率的限制阶段, 正因为如此, 在讨论厌氧过程的影响因素时, 多以产甲烷菌的生理、生态特征来说明。

2影响因素

一般认为, 控制厌氧处理效率的基本因素有两类。一类是基础因素, 包括微生物量( 污泥浓度) 、营养比、混合接触状况、有机负荷等;另一类是环境因素, 如温度、p H 值、氧化还原电位、毒性物质等。

2. 1 温度

温度是影响微生物生存及生物化学反应的最主要因素之一。各类微生物适应的温度范围是不同的, 根据微生物生长的温度范围, 习惯上将微生物分为三类:嗜冷微生物( 生长温度5~ 20C ) ;嗜温微生物( 生长温度20~ 42C );嗜热微生物( 生长温度42~ 75C) 。相应地, 废水的厌氧处理工艺也分为低温、中温、高温三类。

与其它酶介质细菌反应一样, 厌氧降解过程的速率受温度的影响非常明显。低温厌氧工艺由于微生物反应速率较低, 相应污泥活性明显低于中温和高温, 其反应负荷也较低。当温度在45C以上时, 中温细菌已达到生长极限, 消化速率将迅速减小; 在25C以下时,消化速率急剧下降, 在气温更低的环境下, 细菌将逐渐

停止或减弱其代谢活动, 菌种处于休眠状态, 其生命力可维持相当长的时间, 一旦温度上升至原来的生长温度时, 细菌的活性将很快得到恢复。目前中温工艺以30~ 40C最为常见。2. 2 pH 值各种微生物生长所能适应的pH 值范围不同。在厌氧处理中, 水解菌与产酸菌不如产甲烷菌敏感, 其适应的pH 值范围较广。大多数这类细菌可在pH 值为5. 0~ 8. 5 范围内生长良好, 甚至一些产酸菌在pH 值小于5. 0 时仍能生长。产甲烷菌要求环境介质pH 值在中性附近, 最佳pH 值为6. 5~ 7. 8。微生物对pH 值的波动十分敏感, 即使在适应其生长的pH 值范围内, pH 值的突然改变也会引起细菌活性的明显下降, 表明细菌对pH值变化比对温度变化的适应过程要慢得多。因此, 厌氧系统必须具备一定的缓冲能力以维持pH 值在一个相对稳定的范围内。

2. 3 氧化还原电位

无氧环境是严格的产甲烷菌繁殖的最基本的条件之一。产甲烷菌对氧和氧化剂非常敏感, 这是因为它不像好氧菌那样具有过氧化氢酶, 对厌氧反应器内介质中氧的浓度可以由氧化还原电位来表达。研究表明, 产甲烷菌初始繁殖的环境条件是氧化还原电位不能高于- 330mV。在厌氧消化过程中, 不产甲烷阶段可在兼性条件下完成, 氧化还原电位为+ 0. 1~ - 0. 1V;而在产甲烷阶段, 氧化还原电位必须控制在- 0. 3~ - 0. 35V ( 中温消化) 与- 0. 56~ - 0. 6V ( 高温消化) 之间, 常温消化与中温消化相近, 产甲烷阶段氧化还原电位的临界值为- 0. 2V。

2. 4 厌氧活性污泥( 生物量)

厌氧活性污泥主要由厌氧微生物及其代谢的和吸附的有机物和无机物组成。厌氧活性污泥的浓度和性状与消化效能有密切的关系。厌氧活性污泥的性质主要表现在它的作用效能与沉淀性能, 活性污泥的沉降性能是指污泥混合液在静止状态下的沉降速率, 它与污泥的凝聚状态及密度有关, 以SVI 衡量。一般认为, 在颗粒污泥反应器中, 当活性污泥的SVI 为15~20mL/ g 时, 可认为污泥具有良好的沉降性能。厌氧处理时, 废水中的有机物主要是靠活性污泥中的微生物分解去除, 故在一定范围内, 活性污泥浓度愈高, 厌氧消化的效率也愈高, 但至一定的程度以后,消化效率的提高不再明显。这主要是因为: 厌氧污泥的生长率低, 增长速度慢, 积累时间过长后, 污泥中的无机成分比例增高, 活性下降; 污泥浓度过高有时易引起堵塞而影响正常运行。

2. 5 有机负荷

在厌氧法中, 有机负荷通常指容积有机负荷, 简称容积负荷, 即消化器单

位容积每天接受的有机物量( kgCOD/ m3 d) 。有机负荷是影响厌氧消化效率的一个重要因素, 直接影响产气量和处理效率。在一定时间内, 随着有机负荷的提高, 产气量增加, 但处理程度下降, 反之亦然。对于具体的应用场合, 进料的有机物浓度是一定的, 有机负荷的提高意味着水力停留时间缩短, 有机物分解率将下降, 势必使处理程度降低,但因反应器相对处理量增多了, 单位容积的产量将提高。

2. 6 营养物与微量元素

除了对碳和氮等大量营养物的基本要求外, 大量厌氧菌没有合成某些必需

维生素的能力。因此为保持细菌的生长和活动, 还需要补充某些专门的营养物。厌氧微生物的生长繁殖需要一定比例地摄取碳、氮、磷及镍等微量元素。工程上主要控制进料的碳、氮、磷的比例, 因为其它营养元素不足的情况较为少见。不同的微生物在不同的环境条件下所需的碳、氮、磷的比例不完全一致。一般认为,

厌氧法C: N:P 控制在300~ 500:5:1 为宜;此比值大于好氧法的100:5:1。

3培养颗粒污泥提高厌氧生物处理效能

厌氧颗粒污泥(Anaerobic Granular Sludge)是在高水力剪切作用下,由产甲烷菌、产乙酸菌和水解发酵菌等因生物凝聚作用而形成的呈灰色或褐黑色的特殊生物膜,厌氧颗粒污泥表面被大量的丝状菌覆盖,这些丝状菌互相缠绕,形成了表面凹凸不平的形状,使颗粒的比表面积增加,有利于泥水接触,提高传质效果。

颗粒污泥一般分为3 种类型:①球形颗粒污泥:此种颗粒污泥主要由杆状菌、丝状菌组成,因而也称为杆状菌颗粒污泥,颗粒粒径约1 ~ 3 mm;②松散球形颗粒污泥:此种污泥主要由松散互卷的丝状菌组成,丝状菌附着在惰性粒子的表面,因而也称为丝状菌颗粒污泥,颗粒粒径在1 ~ 5 mm;③紧密球状颗粒污泥:此种颗粒污泥主要由甲烷八叠球菌组成,其颗粒粒径较小,一般为0.1 ~ 0.5 mm。

3.1进水水质及有机物浓度

目前,人们已经成功地利用很多废水培养出厌氧颗粒污泥,如酿造废水、

食品工业废水、造纸工业废水和生活污水等。对淀粉、蔗糖、乙醇、丁酸盐—丙酸盐等不同基质进行研究发现,所形成的颗粒污泥均表现出很高的沉降速率,由此在反应器内可保持很高的生物量,500 d 运行后, COD 去除量最大时分别达到7.6,10.5,32.1,42.6 g/(L·d)。在不同基质下长期生长改变了细菌的种类和营养组成以及颗粒污泥的特性。培养颗粒污泥的进水COD 质量浓度一般以1 000~ 5 000 mg/L 为宜,高的进水浓度有利于底物向构成颗粒污泥的细菌细胞内传递,因而有利于颗粒污泥的形成和生长。但浓度不能过高,过高时细菌生长过快,形成的污泥结构松散、沉降性能差;过低会延长培养时间,甚至难以形成厌氧颗粒污泥。

3.2 接种污泥的影响

接种污泥按其来源可以划分为颗粒污泥和非颗粒污泥,共同点是污泥内必

须含有可降解目标废水中有机物的微生物。所需的接种量目前还没有明确的界定,一般认为接种量为UASB 反应器有效容积的10% ~ 30%为佳[8]。以消化过的污泥、牛粪等为接种物均可生成颗粒污泥。国内的研究也表明用阴沟污泥、厌氧消化过的猪粪、鸡粪、初沉池污泥等为接种物都可形成颗粒污泥。在中温下用好氧活性污泥作接种物,也培养出了性能良好的颗粒污泥。

厌氧颗粒污泥提高了污泥的沉降性能,有利于固液分离;也可更有效地控制污泥停留时间与水力停留时间,提高反应器中的微生物浓度,改善了活性污泥的生化条件,从而提高反应器的处理能力,推动了高效厌氧技术的发展。

4 生物相对厌氧生物处理的影响

4.1 产酸相的效能分析

传统观点认为, 厌氧生物处理的限速步骤是产甲烷阶段, 因而, 国内外的

研究工作大都集中在产甲烷菌的生理生化和生态学等方面, 对产酸发酵过程的

研究尚少。事实上, 产酸发酵细菌的微生物学、生物化学、生态学及运行控制对策等方面的研究, 无疑对厌氧生物处理系统的成败起着关键作用。一方面, 产酸相发酵速率要快, 并尽可能消除由于有机酸的大量产生而抑制或阻遏了产酸菌

的活性; 另一方面, 因为产酸相的发酵产物将作为产甲烷相的底物, 所以, 提

供易于被产甲烷菌利用、并且减少丙酸含量和可能转化为丙酸的产物, 是保证产甲烷相高效、稳定运行的重要因素。

4.2 容积负荷对产甲烷相有机物去除率的影响

根据李建政的试验,表明产甲烷相对COD 的去除率始终保持在85% 以上。进水COD 浓度2500~4000moL 时, 产甲烷相对COD 的去除率平均为92%; 当进水COD 浓度提高到4000~ 6500mol 时, 其COD 去除率则降为85% (平均值)。产甲烷相对BOD5 的去除率始终稳定在95% 左右。

4.2 水力停留时间对产甲烷相产气率的影响

产甲烷相的水力停留时间(HRT ) 在低于1d 时, 仍能保持高效、稳定地运行。当HRT 小于018d 时, 产甲烷相反应器中才发生有机酸的积累现象。在整个正常运行期间, 尽管产酸相出水水质(COD 浓度、发酵末端产物浓度、MLSS、pH 值等) 时有变化, 而产甲烷相始终保持着稳定的运行状态, 对水力负荷的冲击表现出

较强的承受能力。这恰恰证明了选择乙醇型发酵作为产酸相最佳发酵类型的优越性, 也表明产酸相为提高整个二相厌氧生物处理系统的处理能力及运行稳定性

作出了贡献。

(1) 可对产酸相有关运行参数进行单独控制, 使之为产甲烷相提供最佳末

端发酵产物组成, 提高产酸发酵的相对收率, 使产甲烷相的处理能力得到相应

提高。因此, 整个二相厌氧生物处理系统的处理能力与运行稳定性也因之有大幅度提高。

(2) 相分离不仅没有破坏厌氧发酵各类菌群之间的协同作用, 而且, 由于

人为地创造了产酸相微生物和产甲烷相微生物生存需要的最佳环境, 控制产酸

相使之发酵产物更加适合产甲烷菌的转化, 从而使二相微生物之间的协同作用

大大加强, 而彼此之间的制约作用却得到削弱。这样, 不仅增加了厌氧生物处理系统的处理能力, 而且使厌氧生物处理系统具有较强的抗冲击负荷能力, 使运

行更加稳定。

5 混合流态对厌氧生物处理的影响

废水厌氧生物处理中, 反应器的设计和运行性能除与参与反应过程的微生

物( 或酶) 类群特性有密切的关系外, 还与反应物料在反应器内的流动与混合

状况有极大的关系。反应器中物料的流动与混合状况不仅影响反应或处理过程中底物的转化效率, 而且与工艺的运行稳定性、所需的反应时间及设备的投资有关, 因而流态类型是决定反应进行状况的重要工程因素。

目前, 混合流态的研究对反应器工艺优化设计的重要性在新型废水处理反

应器, 尤其是厌氧处理反应器工艺的研究开发中正得到日益的重视。如前所述, 废水厌氧处理的相分离技术是从微生物生理生态角度出发提高处理效果及运行

稳定性的重要发展方向和研究课题。因而, 将产酸和产甲烷阶段分别控制在不同的反应器或同一反应器的不同空间内是厌氧处理工艺设计的必然选择。与此同时,

由两个或多个反应器组成的工艺系统中泥水的混合流态, 对系统的处理效果也

有着十分重要的影响。由于在反应器中保持高浓度的生物量(污泥) 是废水厌氧工艺获得有效处理的重要前提, 而泥水的接触混合程度将直接影响处理效果。因而对厌氧处理反应器混合流态的研究就具有更重要的实际意义。

推流混合流态的反应器在同样的条件下可获得比完全混合流态的反应器更

好的处理效果。其原因在于推流反应器中具有比完全混合流反应器更大的传质推动力, 而后者因存在返混而一方面降低了传质推动力, 另一方面因反应器的

宏观均匀混合导致了进水基质的微观短路 (RTD) 而影响了对有机物的去除速率。但对厌氧反应器而言, 良好的泥水混合( 宏观混合) 是必须的, 只有这样, 大

量的生物体才能与进水中的基质良好接触而发挥其降解功能, 否则泥水接触不良, 则易造成反应器的大量死区而不仅严重影响处理效果, 而且会大大降低反

应器的容积利用率。事实上, 厌氧反应器中的混合作用除可通过人工措施实现外, 目前大多是通过合理设计反应器中水流的方向及其流速以及通过产气作用而实

现的, 因而不仅是需要的而且也是不可避免的。

为此, 具有复合流态( 即局部完全混合, 整体趋于推流) 的反应器工艺已

开始成为第三代新型高效厌氧工艺研究和开发的发展主流。其原理在于利用局部空间或单个反应器的混合而提高微生物与进水基质的良好均匀接触, 利于其降

解功能的充分发挥、提高反应器的容积利用率; 利用整体推流所具有的高传质推动力及反应速率而利于处理效果和处理能力的提高。

参考文献

[1] 沈耀良. 废水生物处理新技术[ M] . 北京: 中国环境科学出版社, 1999.

[2] 全面了解污泥性质合理选择污泥处置技术[ J]. 桑德视界, 2000( 9): 32~33.

[3] 严月根, 钱易。两相厌氧工艺的理论基础及实际应用。中国沼气。1989 (4) : 1~6

[4] 俞汉青, 顾国维. 有机废水两相厌氧消化工艺相分离问题的探讨。重庆环境科学, 1993 (2) : 29~33

[5] 沈耀良. 厌氧折流板反应器( ABR) 的水动力学及污泥特性[ J] . 环境工程, 2001, 19( 2) : 12~15.

[6] 李再兴, 杨景亮, 叶莉.厌氧颗粒污泥膨胀床( EGSB)处理生活污水试验研究[J].环境工程学报, 2008, 2(10): 1345~1348.

[7] 李建金,黄勇,李大鹏. 厌氧颗粒污泥的特性、培养及应用研究进展环境科技, 2011.6

[8] JAN B,FERNANDO G F, Alba B C, et al. Effect of sorption kinetics on nickel toxicity in methanogenic granularsludge [J]. Journal of Hazardous Materials, 2010, 180: 289~296.

[9] BryantM.P.,eta. l Rach Microbiol 1987( 59): 20~31

[10]Nachaiyasit S ,Stuckey D C. Effect of low temperatures on the performance of an anaerobicbaffled reactor (ABR). JouralChem. Tech. Biotech.,1997 ,69 : 276~284.

第三章--厌氧生物处理

第三章厌氧生物处理 3.1基本概念 3.1.1厌氧生物处理的基本原理 一、厌氧生物处理的基本生物过程及其特征 ——又称厌氧消化、厌氧发酵; ——实际上,是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。 1、厌氧生物处理工艺的发展简史: ①上述的厌氧过程广泛地存在于自然界中; ②人类第一次利用厌氧消化处理废弃物,是始于1881年——Louis Mouras的“自动净化器”; ③随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污 泥(如各种厌氧消化池等); ——长的HRT、低的处理效率、浓臭的气味等; ④50、60年代,特别是70年代中后期,随着能源危机的加剧,人们对利用厌氧消化过程处理有机废 水的研究得以强化,出现了一批被称为现代高速厌氧消化反应器的处理工艺,厌氧消化工艺开 始大规模地应用于废水处理; ——HRT大大缩短,有机负荷大大提高,处理效率也大大提高; ——厌氧接触法、厌氧滤池(AF)、上流式厌氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生物转盘(ARBC)和挡板式厌氧反应器等; ——HRT与SRT分离,SRT相对很长,HRT则可以较短,反应器内生物量很高。 ⑤最近(90年代以后),随着UASB反应器的广泛应用,在其基础上又发展起来了EGSB和IC反应 器; ——EGSB反应器可以在较低温度下处理低浓度的有机废水; ——IC反应器则主要应用于处理高浓度有机废水,可以达到更高的有机负荷。 2、厌氧消化过程的基本生物过程 ①两阶段理论: ——30~60年代,被普遍接受的是“两阶段理论” ●第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段; ——水解和酸化,产物主要是脂肪酸、醇类、CO2和H2等; ——主要参与微生物统称为发酵细菌或产酸细菌; ——其特点有:1)生长快,2)适应性(温度、pH等)强。 ●第二阶段:产甲烷阶段,又称碱性发酵阶段; ——产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;

厌氧生物处理技术、

废水的厌氧生物处理技术 厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。 1厌氧生物处理的基本原理 1.1两阶段理论 在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇 类、CO 2和H 2 等为主的产物。第二阶段则被称为产甲烷阶段或碱性发酵阶段,所 发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO 2和H 2 等为基质, 并最终将其转为CH 4和CO 2 。 1.2三阶段理论 三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。有机物首先通过发酵细菌的作用生成乙醇、丙酸、 丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH 4和CO 2 。产氢 产乙酸菌和产甲烷菌之间存在着互营共生的关系。该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。 1.3四阶段理论 几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic Bacteria),该菌群的代谢特点是能将H 2/CO 2 合成为乙酸。但是研究结果表明,这 一部分乙酸的量较少,一般可以忽略不计。 目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。 2 厌氧生物处理的优缺点 厌氧生物处理技术与好氧生物处理技术比较,有如下优缺点。

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件.

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件 好氧生物处理 好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。 过程:有机物被微生物摄取后,通过代谢活动,约有三分之一被分解、稳定,并提供其生理活动所需的能量;约有三分之二被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。后者就是废水生物处理中的活性污泥或生物膜的增长部分,通常称其剩余活性污泥或生物膜,又称生物污泥。在废水生物处理过程中,生物污泥经固—液分离后,需进行进一步处理和处置。 优点:好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。且处理过程中散发的臭气较少。所以,目前对中、低浓度的有机废水,或者说BOD浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。 在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。 厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为 CO2、H20、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。 废水厌氧生物处理 废水厌氧生物处理过程不需另加氧源,故运行费用低。此外,它还具有剩余污泥量少,可回收能量(CH4)等优点。其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。但通过对新型构筑物的研究开发,其容积可缩小。此外,为维持较高的反应速度,需维持较高的反应温度,就要消耗能源。 对于有机污泥和高浓度有机废水(一般BOD5≥2 000mg/L)可采用厌氧生物处理法。

厌氧生物处理

3、厌氧反应概述: 利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程,称为废水的生物处理。根据代谢过程对氧的需求,微生物又分为好氧、厌氧和介于两者间的兼性微生物。厌氧生物处理就是利用厌氧微生物的代谢过程,在无需提供氧的情况下,把有机物转化为无机物和少量的细胞物质,这些无机物包括大量的生物气(即沼气)和水。 厌氧是一种低成本废水处理技术,把废水治理和能源相结合,特别适合发展中国家使用。 4、厌气处理技术的优势和不足: 优势: 4.1可作为环境保护、能源回收和生态良性循环结合系统的技术,具有良好的社会、经济、环境效益。 4.2耗能少,运行费低,对中等以上(1500mg/L)浓度废水费用仅为好氧工艺1/3. 4.3回收能源,理论上讲1kgCOD可产生纯甲烷0.35m3,燃值(3.93×10-1J/m3),高于天然气(3.93×10-1J/m3)。以日排10t COD工厂为例,按COD去除80%,甲烷为理论值80%计算,日产沼气2240m3,相当于2500m3天然气或3.85t煤,可发电5400Kwh. 4.4设备负荷高、占地少。 4.5剩余污泥少,仅相当于好氧工艺1/6~1/10. 4.6对N、P等营养物需求低,好氧工艺要求C:N=100:5:1,厌氧工艺为C:N=(350-500):5:1。 4.7可直接处理高浓有机废水,不需稀释。 4.8厌氧菌可在中止供水和营养条件下,保留生物活性和沉泥性一年,适合间断和季节性运行。 4.9系统灵活,设备简单,易于制作管理,规模可大可小。 厌氧不足: 1、出水污染浓度高于好氧,一般不能达标; 2、对有毒性物质敏感; 3、初次启动缓慢,最少需8-12周以上方能转入正常水平。 5、反应机理:

废水厌氧处理原理介绍

废水厌氧处理原理介绍 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4 和CO2的过程。 一、厌氧生物处理中的基本生物过程 1、三阶段理论 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2 等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类。 (1)水解、发酵阶段; (2)产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2; (3) 产甲烷阶段:产甲烷菌利用乙酸和H2、CO2 产生CH4; 一般认为,在厌氧生物处理过程中约有70%的CH4 产自乙酸的分解,其余的则产自H2和CO2。 2、四阶段理论: 实际上,是在上述三阶段理论的基础上,增加了一类细菌——

同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H2/CO2 合成为乙酸。但研究表明,实际上这一部分由H2/CO2 合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。 总体来说,“三阶段理论”、“四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。 二、厌氧消化过程中的主要微生物 主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。 1、发酵细菌(产酸细菌): 发酵产酸细菌的主要功能有两种:

①水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物; ②酸化——将可溶性大分子有机物转化为脂肪酸、醇类等; 主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时会成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。 2、产氢产乙酸菌: 产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。 主要的产氢产乙酸反应有: 注意:上述反应只有在乙酸浓度很低、系统中氢分压也很低

高效生物处理技术

高效生物处理技术作为有机废水二级处理的重要手段,广泛应用在工业废水处理和生活污水处理工艺中。随着研究的深入和新工艺、新技术的不断引入,废水生物处理的发展方向也逐渐明朗。江苏瑞达科技致力于为客户提供从清洁化生产、“三废”治理、资源综合利用等方面的项目规划,提供系统、实用的解决方案。江苏瑞达科技给大家介绍一下高效生物处理技术。 高效生物处理技术主要是利用微生物的代谢作用除去废水中有机污染物的一种方法,分需氧生物处理法和厌氧生物处理法两种。好氧处理包括:稳定塘(氧化塘),土地处理,生物滤池,生物转盘,氧化沟工艺,活性污泥工艺等。厌氧处理包括:UASB、厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器等。 在同一反应器中复合好氧和厌氧生化过程,并使微生物的悬浮生长和附着生长相结合,

可维持反应器内微生物的多样性,提高生物处理法去除有机污染物的效率。 开发具有高密度生物群、高传质速度的生物反应器,比如深井曝气法等,与传统工艺相比有机负荷可增加到几十倍,提高了设备处理有机物的负荷能力。 发展各种耐水量、水质、毒物、酸碱冲击能力强的工艺,提高出水水质的稳定性,比如AB工艺、SBR 工艺和固定化微生物法等,都在耐冲击负荷能力方面有大的改进。 开发生物处理的细菌系列,对不同污染物寻求高效特性菌,在组合工艺中每一阶段培植特征菌,尽可能提高设备中主体单元的菌浓度,是实施生物处理法的关键所在。 与物理化学方法相结合发展多元组合工艺,比如活性炭生物膜法、生物絮凝法、A/O 工艺和活性生物滤池等,在去除难降解物质和生物脱氮方面都有比较理想的效果。 设备发展的新理念主要体现在传统设备的改进、新材料的应用、设备的集成化和自动控制技术的提高等方面,新设备在结构上有很多的突破,在关键的部件上应用了许多新材料,并且各类设备在自动控制技术方面具有极大的提高,在新型设备中应用各种流量计、浓度计、粒度测量仪和各种传感器,使设备成为动态仪器化处理装置,大大提高了设备的自动化程度和工作效率。在许多关键设备上以小型高效设备取代传统大型设备,还使微生物处理、加药混合化学处理、凝聚与沉降、浓缩和过滤成为一体,用小巧紧凑的模块式组合设备取代传统设备用于水处理中。 由于生物处理工艺的内容和范围很广,而且发展也很迅速,国内外许多行业开发出生物处理工艺新技术和新产品,尤其是研究开发了对高浓度有机废水、生物难降解物质、氮磷营养物质等能够实现有效去除的新工艺和新方法,是当今废水处理领域的热点。生物处理技术因其独特的优点,将在今后进一步得以充实和完善。

环境工程学第三章讲义水的生物化学处理方法

环境工程学第三章讲义水的生物化 学处理方法 第3章水的生物化学处理方法本章教学内容:废水处理的微生物学基础,活性污泥法,生物膜法,厌氧生物技术,污泥处理技术本章教学要求:(1) 理解微生物处理废水的基本原理,掌握活性污泥法的原理与常用的几种工艺流程,掌握生物膜法的原理与几种典型处理工艺;掌握厌氧生物处理技术的机理与影响因素以及处理工艺;(2) 熟悉污泥的性质和常见的处理技术。本章教学重点:活性污泥法、生物膜法、厌氧生物处理技术、污泥的处理本章习题: P290 1, 2, 3, 5,7,13,14 废水处理微生物学基础一、废水处理中的微生物净化污水的微生物主要有细菌、真菌、藻类、原生动物和小型的后生动物等。从利用碳源的角度来

说,可分为自养型微生物和异养型微生物。从利用氧气的角度来分,有好氧、厌氧和兼性三类。针对单细胞的细菌,从形体来分,有球菌、杆菌和螺旋菌三类。净化污水中,微生物增长与递变的模式,祥教材205页。二、微生物的生理学特性生物酶与代谢过程祥教材206页。三、细菌生长曲线及莫诺公式活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。1、活性污泥的增殖曲线内源呼吸对数增殖减速增殖微生物增殖曲线氧利用速率曲线BOD降解曲线Xa 0 时间注意:1)间歇静态培养;2)底物是一次投加;3)图中同时还表示了有机底物降解和氧的消耗曲线。①适应期:是活性污泥微生物对于新的环境条件、污水中有机物污染物的种类等的一个短暂的适第 1 页应过程;经过适应期后,微生物从数量

上可能没有增殖,但发生了一些质的变化:a.菌体体积有所增大;b.酶系统也已做了相应调整;c.产生了一些适应新环境的变异;等等。BOD5、COD等各项污染指标可能并无较大变化。②对数增长期:F/M值高(?/kgVSS?d),所以有机底物非常丰富,营养物质不是微生物增殖的控制因素;微生物的增长速率与基质浓度无关,呈零级反应,它仅微生物本身所特有的最小世代时间所控制,即只受微生物自身的生理机能的限制;微生物以最高速率对有机物进行摄取,也以最高速率增殖,而合成新细胞;此时的活性污泥具有很高的能量水平,其中的微生物活动能力很强,导致污泥质地松散,不能形成较好的絮凝体,污泥的沉淀性能不佳;活性污泥的代谢速率极高,需氧量大;一般不采用此阶段作为运行工况,但也有采用的,如高负荷活性污泥法。③减速增长期:F/M值下降到一定水平后,有机底物的浓度成为微生物增殖的控制

第18章 厌氧生物处理

第18章厌氧生物处理 18.1厌氧生物处理的发展 18.1.1 第一代厌氧生物反应器 化粪池、双层沉淀池,厌氧消化池等, 特点: ① 水力停留时间(HRT)很长, ② 虽然HRT相当长,但处理效率仍十分低,处理效果不理想; ③ 具有浓臭的气味, 18.1.2第二代厌氧生物反应器 主要包括:厌氧接触法、厌氧滤池(AF)、上流式厌氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生物转盘(ARBC)和挡板式厌氧反应器等。 主要特点: ① HRT大大缩短,有机负荷大大提高,处理效率大大提高; ②HRT与SRT分离,SRT相对很长,HRT则可以较短,反应器内生物量很高。 18.1.3第三代厌氧生物反应器 进UASB反应器的广泛应用,在其基础上以颗粒污泥为主要特征的颗粒污泥膨胀床(EGSB)反应器和厌氧内循环(IC)反应器。 18.2厌氧生物处理的主要特征 18.2.1主要优点 1)能耗大大降低,而且还可以回收生物能(沼气)。 2)污泥产量很低。 3)厌氧微生物可以对好氧微生物不能降解的一些有机物进行降解或部分降解。 18.2.2主要缺点

1)厌氧生物处理过程中所涉及的生化反应过程较为复杂,因此在厌氧反应器运行过程中对技术要求很高; 2)厌氧微生物特别是其中的产甲烷细菌对温度、pH等环境因素非常敏感,也使得厌氧反应器的运行和应用受到很多限制和困难; 3)虽然厌氧生物处理工艺在处理高浓度的工业废水时常常可以达到很高的处理效率,但其出水水质通常较差,一般需要利用好氧工艺进一步处理; 4)厌氧生物处理的气味较大; 5)对氨氮的去除效果不好,一般认为在厌氧条件下氨氮不会降低,而且还可能由于原废水中含有的有机氮在厌氧条件下的转化作用导致氨氮浓度的上升。 18.3 厌氧生物处理基本原理 Bryant认为消化经历四个阶段: 1.水解阶段,固态有机物被细菌的胞外酶水解; 2.酸化; 3.乙酸化阶段,指进入甲烷化阶段之前,代谢中间液态产物都要乙酸化 4.第四阶段是甲烷化阶段。 根据厌氧消化的两大类菌群,厌氧消化过程又可分为两个阶段,即:酸性发酵阶段和碱性发酵阶段,如(图 19-1)所示。 1.酸性发酵阶段 两阶段理论将液化阶段和产酸阶段合称为酸性发酵阶段。在酸性发酵阶段,高分子有机物首先在兼性厌氧菌胞外酶的作用下水解和液化,然后渗入细胞体内,在胞内酶的作用下转化为醋酸等挥发性有机酸和硫化物。pH 值下降。 氢的产生,是消化第一阶段的特征,所以第一阶段也称作“氢发酵”。 兼性厌氧菌在分解有机物的过程中产生的能量几乎全部消耗作为有机物发酵所需的能源,只有少部分合成新细胞。因此酸性消化时,细胞的增殖很少。产酸菌在低 pH 值时也能生存,具有适应温度、 pH 值迅速变化的能力。 2.碱性消化阶段

厌氧生物处理技术、

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 废水的厌氧生物处理技术 厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。 1厌氧生物处理的基本原理 1.1两阶段理论 在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇类、CO2和H2等为主的产物。第二阶段则被称为产甲烷阶段或碱性发酵阶段,所发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO2和H2等为基质,并最终将其转为CH4和CO2。 1.2三阶段理论 三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。有机物首先通过发酵细菌的作用生成乙醇、丙酸、丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH4和CO2。产氢产乙酸菌和产甲烷菌之间存在着互营共生的关系。该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。 1.3四阶段理论 几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic Bacteria),该菌群的代谢特点是能将H2/CO2合成为乙酸。但是研究结果表明,这一部分乙酸的量较少,一般可以忽略不计。 目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。 2 厌氧生物处理的优缺点

厌氧生物处理法、流程及动力学特征

第十章厌氧生物处理法 本章重点:厌氧过程动力学 20世纪70年代以来,由于城市的扩大和工业的迅速发展,有机废.如仍用需氧法处理则需要消耗大量的能量。随着全球性能源问题的日益突出,在废水处理领域内,人们便逐渐对厌氧生物处理工艺产生了新的认识和估价。 厌氧生物处理法的主要优点有:能耗低;可回收生物能源(沼气);每去除单位质量底物产生的微生物(污泥)量少;而且由于处理过程不需要氧,所以不受传氧能力的限制,因而具有较高的有机物负荷的潜力。其缺点是处理后出水的COD、BOD值较高,水力停留时间较长并产生恶臭等。 §10.1 厌氧生物处理法的基本原理和流程 1.基本原理 可将有机物在厌氧条件下的降解过程分成三个反应阶段。 第一阶段是,废水中的溶性大分子有机物和不溶性有机物水解为溶性小分子有机物。 反应的第二阶段为产酸和脱氢阶段。水解形成的溶性小分子有机物被产酸细菌作为碳源和能源,最终产生短链的挥发酸,如乙酸等。 在废水的厌氧生物处理过程中,有机物的真正稳定发生在反应的第三阶段,即产甲烷阶段。产甲烷的反应由严格的专一性厌氧细菌来完成,这类细菌将产酸阶段产生的短链挥发酸(主要是乙酸)氧化成甲烷和二氧化碳。

图 10-1 厌氧处理的连续反应过程 2.甲烷的产生与形成途径 产甲烷阶段,又称碱性发酵阶段,这一阶段产甲烷菌利用前一阶段的产物,并将其转化为CH 4和CO 2,可能反应如下: 4H 2+CO 2 CH 4+2H 2O (10-1) 4H 2+CH 3COOH 2CH 4+2H 2O (10-2) CH 3COOH CH 4+CO 2 (10-3) 因为氧化氢形成甲烷的细菌可从二氧化碳中获得碳源,所以这些细菌带有自养性,其生长速率很慢,虽然它们与分解乙酸的细菌在厌氧反应器中有共生关系,但其数量较少,在厌氧反应过程中,生成的甲院大部分来自乙酸的分解。主要参与微生物统称为产甲烷菌; 其特点有:1)生长慢;2)对环境条件(温度、pH 、抑制物等)非常敏感。 3.基本流程

厌氧生物处理作为利用厌氧性微生物的代谢特性

厌氧生物处理作为利用厌氧性微生物的代谢特性,在毋需提供外源能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物处理法不仅适用于高浓度有机废水,进水BOD最高浓度可达数万mg/l,也可适用于低浓度有机废水,如城市污水等。 厌氧生物处理过程能耗低;有机容积负荷高,一般为5-10 kgCOD/m3.d,最高的可达30-50kgCOD/m3.d;剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。 在全社会提倡循环经济,关注工业废弃物实施资源化再生利用的今天,厌氧生物处理显然是能够使污水资源化的优选工艺。近年来,污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器,发展十分迅速。 而升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。

本文试图就UASB的运行机理和工艺特征以及UASB的设计启动等方面作一简要阐述。 [编辑本段] 二、UASB的由来 1971年荷兰瓦格宁根(Wageningen)农业大学拉丁格(L ettinga)教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥(granular sludge)。颗粒污泥的出现,不仅促进了以UAS B为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。 [编辑本段] 三、UASB工作原理 UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀

污水厌氧生物处理讲义全

厌氧生物处理 活性污泥法与生物膜法是在有氧条件下,由好氧微生物降解污水中的有机物,最终产物是水和二氧化碳,作为无害化和高效化的方法被推广应用。但当污水中有机物含量很高时,特别是对于有机物含量大大超过生活污水的工业废水,采用好氧法就显得能耗太多,很不经济了。因此,对于高浓度有机废水一般采用厌氧消化法。即在无氧的条件下,由兼性菌及专性厌氧细菌降解有机物,最终产物是二氧化碳和甲烷气体。厌氧生物处理具有高效低耗的特点,因此比好氧生物处理技术更具优越性。 第一节概述 一、厌氧生物处理中的厌氧微生物厌氧生物处理是以厌氧细菌为主而构成的微生物生态系统。厌氧细菌有两种,一种是只要有氧存在就不能生长繁殖的细菌,称为绝对厌氧菌;另一种是不论有氧存在与否都能增长的细菌,称为兼性厌氧细菌(也称兼性细菌) 。当流入废水的BOD浓度较高,细菌在好氧状 态下增长以后,由于缺氧会使各种厌氧细菌繁殖起来。一般污水散发出恶臭是由于厌氧细菌增长产生了硫化氢、胺等气体所造成的。厌氧生物处理中的厌氧微生物主要有产甲烷细菌和产酸发酵细菌,常见的甲烷菌有四类:既甲烷杆菌、甲烷球菌、甲烷八叠球菌、甲烷螺旋菌;产酸发酵细菌主要有气杆菌属、产碱杆菌属、芽孢杆菌属、梭状芽孢杆菌属、小球菌属、变形杆菌属、链球菌属等。 二、厌氧生物处理技术 厌氧生物处理技术于19 世纪末首先在英国得到应用,到1914 年美国已建立14 座厌氧消化池。 厌氧生物处理利用厌氧微生物的代谢过程,在无需提供氧气的情况下把有机物转化为无机物和少量的细胞物质,这些无机物主要包括大量的生物气和水。此生物气俗称沼气,沼气的主要成分是约2/3 的甲烷和1/3 的二氧化碳,是一种可回收的能源。 厌氧水处理是一种低成本的水处理技术,它又是把水的处理和能源的回收利用相结合的一种技术。 发展中国家面临严重的环境污染问题、能源短缺以及经济发展与环境治理所面临的资金不足等问题,这些国家需要有效、简单又费用低廉的技术;厌氧水处理技术可以作为能源生产和环境保护体系的一个核心部分,其产物可以被燃烧利用而产生经济价值。如处理过的洁净水可用于鱼塘养鱼和农田灌溉;产生的沼气可作为能源;剩余污泥可以作为肥料用于土壤改良。 1、厌氧处理具有下列优点: ( 1)、处理成本低。在废水处理成本上比好氧处理要便宜得多,特别是对中等以上浓度 (COD>1500mg/L的废水更是如此。厌氧法成本的降低主要由于动力的大量节省、营养物添 加费用和污泥脱水费用的减少,即使不计沼气作为能源所带来的收益,厌氧法也仅约为好氧法成本的 1/3 ;如所产沼气能被利用,则费用更会大大降低,甚至带来相当的利润。 (2)、低能耗。厌氧处理不但能源需求很少而且还能产生大量的能源。厌氧法处理污水 可回收沼气。回收的沼气可用于锅炉燃料或家用燃气。当处理水COD在4000~5000mg/L之间,回收沼气的经济效益较好。 (3)、应用范围广。厌氧生物处理技术比好氧生物处理技术对有机物浓度适应性广。好氧生物处理只能处理中、低浓度有机污水,而厌氧生物处理则对高、中、低浓度有机污水均能处理。 ( 4)、污泥负荷高。厌氧反应器容积负荷比好氧法要高得多,单位反应器容积的有机物去除量也因此要高得多,特别是使用新一代的高速厌氧反应器更是如此。因此其反应器负荷高、体积小、占地少。厌氧法可直接处理高浓度有机废水和剩余污泥。 (5) 剩余污泥量少好氧法处理污水,因为微生物繁殖速度快,剩余污泥生成率很高。而厌氧法处理污水, 由于厌氧世代时间很长、微生物增殖缓慢,因而处理同样数量的废水仅产生相当于好氧法 1/10~1/6 的剩余污泥;剩余污泥脱水性能好,脱水时可不使用或少使用絮凝剂,因此剩余污泥

高效厌氧生物处理

高效厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,通过厌氧菌和兼性菌代谢作用,对有机物进行生化降解的过程。高效厌氧生物处理工艺按微生物的凝聚形态可分为厌氧活性污泥法和厌氧生物膜法。下面给大家详细介绍一下高效厌氧生物处理。 主要特征 1、处理过程中可以大大降低能耗,而且还可以回收生物能(沼气); 2、污泥产量很低,厌氧微生物的增值速率比好氧微生物低得多,产酸菌的产率Y为0.15~0.34 kgVSS/kgCOD,产甲烷菌的产率Y为0.03 kgVSS/kgCOD左右,而好氧微生物的产率约为0.25~0.6 kgVSS/kgCOD; 3、厌氧微生物有可能对好氧微生物不能降解的一些有机物进行降解或部分降解; 4、反应过程较复杂,厌氧消化是由多种不同性质、不同功能的微生物协同工作的一个

连续的微生物过程; 5、对温度、pH值等环境因素较敏感; 6、单独使用厌氧处理,其出水水质很难达标,需进一步利用好氧法进行处理; 7、气味较大,特别是有臭味; 8、对氨氮的去除效果不好等。 工作原理 高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。 水解阶段 水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。 高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。它们在一阶段被细菌胞外酶分解为小分子。例如,纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白质酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。水解过程通常较缓慢,因此被认为是含高分子有机物或悬浮物废液厌氧降解的限速阶段。多种因素如温度、有机物的组成、水解产物的浓度等可能影响水解的速度与水解的程度。水解速度的可由以下动力学方程加以描述:ρ=ρo/(1+Kh·T) ρ——可降解的非溶解性底物浓度(g/L); ρo———非溶解性底物的初始浓度(g/L); Kh——水解常数(d-1); T——停留时间(d) 发酵阶段

厌氧生物处理、调试运行指导手册

厌氧生物处理、调试、运行指导手册 1、目的:本手册用于厌氧生物降解工艺单元的运行管理。 2、内容及对象:手册包括有以下7个内容:即: 厌氧生物反应概述;厌氧技术优势和不足;反应机理;厌氧反应器类型;厌氧反应器工艺控制条件;启动方式;运行管理;问题及解决措施; 手册适用于厌氧反应器操作人员、污水站技工、化验人员和管理人员,亦可供相关人员参考。 3、厌氧反应概述: 利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程,称为废水的生物处理。根据代谢过程对氧的需求,微生物又分为好氧、厌氧和介于两者间的兼性微生物。厌氧生物处理就是利用厌氧微生物的代谢过程,在无需提供氧的情况下,把有机物转化为无机物和少量的细胞物质,这些无机物包括大量的生物气(即沼气)和水。 厌氧是一种低成本废水处理技术,把废水治理和能源相结合,特别适合发展中国家使用。 4、厌气处理技术的优势和不足: 优势: 4.1可作为环境保护、能源回收和生态良性循环结合系统的技术,具有良好的社会、经济、环境效益。 4.2耗能少,运行费低,对中等以上(1500mg/L)浓度废水费用仅为好氧工艺1/3. 4.3回收能源,理论上讲1kgCOD可产生纯甲烷0.35m3,燃值(3.93×10-1J/m3),高于天然气(3.93×10-1J/m3)。以日排10t COD工厂为例,按COD去除80%,甲烷为理论值80%计算,日产沼气2240m3,相当于2500m3天然气或 3.85t煤,可发电5400Kwh. 4.4设备负荷高、占地少。 4.5剩余污泥少,仅相当于好氧工艺1/6~1/10. 4.6对N、P等营养物需求低,好氧工艺要求C:N:P=100:5:1,厌氧工艺为C:N:P=(350-500):5:1。 4.7可直接处理高浓有机废水,不需稀释。

污水处理常用工艺方案

污水处理常用工艺方案 1 物理法 1.沉淀法:主要去除废水中无机颗粒及SS 2.过滤法:主要去除废水中SS和油类物质等 3.隔油:去除可浮油和分散油 4.气浮法:油水分离、有用物质的回收及相对密度接近于1(水的密度近似1)的悬浮固体 5.离心分离:微小SS的去除 6.磁力分离:去除沉淀法难以去除的SS和胶体等 2 化学法 1.混凝沉淀法:去除胶体及细微SS 2.中和法:酸碱废水的处理 3.氧化还原法:有毒物质、难生物降解物质的去除 4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除

3 物理化学法 1.吸附法:少量重金属离子、难生物降解有机物、脱色除臭等 2.离子交换法:回收贵重金属,放射性废水、有机废水等 3.萃取法:难生物降解有机物、重金属离子等 4.吹脱和汽提:溶解性和易挥发物质的去除。 4 生物法 1、活性污泥法:废水生物处理中微生物(micro-organism)悬浮在水中的各种方法的统称。 (1)SBR法 序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。 工艺流程图:

SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。 优点: 1)工艺简单,节省费用 2)理想的推流过程使生化反应推力大、效率高 3)运行方式灵活,脱氮除磷效果好 4)防治污泥膨胀的最好工艺 5)耐冲击负荷、处理能力强 (2)CASS法 CASS法是SBR法的改进型,特点是占地小、运行费用低、技术成熟、工艺稳定。CASS法是在CASS反应池前部设置生物选择区,后部设置可升降的自动滗水装置。 工艺流程图:

第三章厌氧生物处理

第三章 厌氧生物处理 3.1 基本概念 3.1.1厌氧生物处理的基本原理 一、厌氧生物处理的基本生物过程及其特征 ——又称厌氧消化、厌氧发酵; ——实际上,是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。 1、厌氧生物处理工艺的发展简史: ①上述的厌氧过程广泛地存在于自然界中; ②人类第一次利用厌氧消化处理废弃物,是始于1881年——Louis Mouras 的“自动净化器”; ③随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污 泥(如各种厌氧消化池等); ——长的HRT 、低的处理效率、浓臭的气味等; ④50、 60年代,特别是70年代中后期,随着能源危机的加剧,人们对利用厌氧消化过程处理有机废 水的研究得以强化,出现了一批被称为现代高速厌氧消化反应器的处理工艺,厌氧消化工艺开始大规模地应用于废水处理; ——HRT 大大缩短,有机负荷大大提高,处理效率也大大提高; ——厌氧接触法、厌氧滤池(AF )、上流式厌氧污泥床(UASB )反应器、厌氧流化床(AFB )、AAFEB 、 厌氧生物转盘(ARBC )和挡板式厌氧反应器等; ——HRT 与SRT 分离,SRT 相对很长,HRT 则可以较短,反应器内生物量很高。 ⑤最近(90年代以后),随着UASB 反应器的广泛应用,在其基础上又发展起来了EGSB 和IC 反应器; ——EGSB 反应器可以在较低温度下处理低浓度的有机废水; ——IC 反应器则主要应用于处理高浓度有机废水,可以达到更高的有机负荷。 2、厌氧消化过程的基本生物过程 ①两阶段理论: ——30~60 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段; ——水解和酸化,产物主要是脂肪酸、醇类、CO 2和H 2等; ——主要参与微生物统称为发酵细菌或产酸细菌; ——其特点有:1)生长快,2)适应性(温度、pH 等)强。 第二阶段:产甲烷阶段,又称碱性发酵阶段; ——产甲烷菌利用前一阶段的产物,并将其转化为CH 4和CO 2; ——主要参与微生物统称为产甲烷菌; 图1厌氧反应的两阶段理论图示 内源呼 吸产物 水解胞外酶 胞内酶产甲烷菌 胞内酶产酸菌 不溶性有机物 可溶性有机物 细菌细 胞 脂肪酸、醇类、 H 2、CO 2 其它产物 细菌细胞 CO 2、CH 4

高效厌氧生物反应器调试UASB

UASB 一、上流式厌氧污泥床反应器(UASB)调试计划: 1.UASB反应器的反应原理 UASB反应器可分为三个区域,反应区和沉淀区和气、液、固三相分离区。在反应区下部,是由沉淀性能良好的污泥(颗粒污泥或絮状污泥),形成厌氧污泥床。当废水由反应器底部进入反应器后,由于水的向上流动和产生的大量气体上升形成了良好的自然搅拌作用,并使一部分污泥在反应区的污泥床上方形成相 对稀薄的污泥悬浮层。悬浮液进入分离区后,气体首先进入集气室被分离,含有

悬浮液的废水进入分离区的沉降室,由于气体已被分离,在沉降室扰动很小,污泥在此沉降,由斜面返回反应区。 2.UASB反应器运行的三个重要前提: ?反应器内形成沉淀性能良好的颗粒污泥或絮状污泥。 ?由于产气和进水的均匀分布所形成的良好的自然搅拌作用。 ?合理的三相分离器使沉淀性能良好污泥能保留在反应区内。 3.UASB反应器启动运行的四个阶段: 3.1第一阶段:UASB启动运行初始阶段: 选用接种污泥: 选用污水厂污泥消化池的消化污泥接种(具有一定的产甲烷活性)。 接种污泥的方法:接种污泥量、接种污泥的浓度 方法:将含固80%的接种污泥加水搅拌后,均匀倒入到UASB反应池。 接种污泥量:接种污泥量为UASB反应器的有效容积的30%到50%,最少15%,一般为30%。接种污泥的填充量不超过UASB反应器的有效容积的60%。本系统接种污泥量为80m3。 接种污泥的浓度:初启动时,稀型污泥的接种量为20到30kg VSS/m3, 浓度小于40 kg VSS/m3的稠型硝化污泥接种量可以略小些。 亦有建议以6-8kgVSS/m3为宜,因为消化污泥一般为絮状体,不宜接种太多,太对了对颗粒污泥不但没有好出,反而不利,种泥即污泥种的意思,种泥太多事没有必要的,颗粒污泥并非是种泥本身形成的,而是以种泥为种子,在提供充足的营养基质下由新繁殖的微生物形成,种泥多了,反而会与初生得颗粒污泥争夺养分,不利于颗粒污泥的形成。 接种污泥时的水质 配制低浓度的废水有利于颗粒污泥的形成,但浓度也应当足够维持良好的细

厌氧生物处理技术、教学内容

厌氧生物处理技术、

废水的厌氧生物处理技术 厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。 1厌氧生物处理的基本原理 1.1两阶段理论 在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇类、CO2和H2等为主的产物。第二阶段则被称为产甲烷阶段或碱性发酵阶段,所发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO2和H2等为基质,并最终将其转为CH4和CO2。 1.2三阶段理论 三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。有机物首先通过发酵细菌的作用生成乙醇、丙酸、丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH4和CO2。产氢产乙酸菌和产甲烷菌之间存在着互营共生的关系。该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。 1.3四阶段理论 几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic

Bacteria),该菌群的代谢特点是能将H2/CO2合成为乙酸。但是研究结果表明,这一部分乙酸的量较少,一般可以忽略不计。 目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。 2 厌氧生物处理的优缺点 厌氧生物处理技术与好氧生物处理技术比较,有如下优缺点。 (1)厌氧法的主要优点:①应用范围较广:适用于处理污泥及有机废水;可处理好氧法难降解的有机物,也可处理含有毒有害物质较高的有机废水。②运行成本与能耗较低:厌氧处理的污泥产率低;厌氧法所需营养成分较少,一般可不必投加营养分;厌氧法不需要供氧设备,因而能耗较少。③负荷高,相对来说厌氧法的反应容积较较好氧法为小。 (2)厌氧法的主要缺点:①处理程度往往达不到排放标准,常需好氧法或其他处理法补充,才能达到排放标准;②厌氧生物处理技术,不能除磷;③厌氧生物处理的启动与处理时间较好氧法长。④厌氧生物处理技术,在处理高、低浓度的有机废水时,生产运行经验及理论研究,尚欠成熟。 3厌氧生物处理工艺 3.1厌氧接触工艺 厌氧接触工艺是在一个厌氧的完全混合反应器基础上增加了污泥分离和回流装置。从完全混合式反应器中排出的混合液首先在沉淀池中进行固液分离,可以采用沉淀池或气浮处理装置进行处置。污水从沉淀池上部排出,沉淀下的污泥回流至消化池,这样做既可保证污泥不流失,又可提高消化池内的污泥浓度,从而在一定程度上提高设备的有机负荷率和处理效率。

厌氧生物处理机理研究厌氧反应四个阶段

厌氧生物处理机理研究厌氧反应四个阶段 一、概述 厌氧生物处理技术在水处理行业中一直都受到环保工作者们的青睐,由于其具有良好的去除效果,更高的反应速率和对毒性物质更好的适应,更重要的是由于其相对好氧生物处理废水来说不需要为氧的传递提供大量的能耗,使得厌氧生物处理在水处理行业中应用十分广泛。 但由于总体反应式基于莫诺方程的厌氧处理受到低浓度废水Ks的限制,所以厌氧在处理低浓度废水方面没有太大的空间,可最近的一些报道和试验表明,厌氧如果提供合适的外部条件,在处理低浓度废水方面仍然有非常高的处理效果。 我们可以根据厌氧反应的原理加以动力学方程推导出厌氧生物处理低浓度废水尤其在处理生活污水方面的合适条件。 二、厌氧反应四个阶段 一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解: (1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解。 (2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。 (3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。 (4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反应过程的限速阶段。 再上述四个阶段中,有人认为第二个阶段和第三个阶段可以分为一个阶段,在这两个阶段的反应是在同一类细菌体类完成的。前三个阶段的反应速度很快,如果用莫诺方程来模拟前三个阶段的反应速率的话,Ks(半速率常数)可以在50mg/l以下,μ可以达到5KgCOD/KgMLSS.d。而第四个反应阶段通常很慢,同时也是最为重要的反应过程,在前面几个阶段中,废水的中污染物质只是形态上发生变化,COD几乎没有什么去除,只是在第四个阶段中污染物质变成甲烷等气体,使废水中COD大幅度下降。同时在第四个阶段产生大量的碱度这与前三个阶段产生的有机酸相平衡,维持废水中的PH稳定,保证反应的连续进行。 三水解反应

相关文档
最新文档