1.2.1 排列(二)(学生用)
1-1.2.1第2课时排列与排列数公式

栏目导引
排列数与排列数公式
从 n 个 不 同 元 素 中 取 出 m(m≤n) 个 元 素 排列数 的 所有不同排列的个数 ,叫做从 n 个不同 定义 元素中取出 m 个元素的排列数. 排列数 表示法 乘积 形式 形式 性质 备注
工具
Anm
Anm= n(n-1)(n-2)…(n-m+1) .
排列数 公式
工具
第一章 计算原理
栏目导引
(2)1!+2·2!+3·3!+„+n·n!
=(2!-1)+(3!-2!)+(4!-3!)+„+[(n+1)!-n!]
=(n+1)!-1.
[题后感悟]
(1)连续正整数的乘积可以写成某个排列数,其
中最大的数是排列元素的总个数,这是排列数公式的逆用.
(2)应用排列数公式的两种形式时,一般写出它们的式子后, 再提取公因式,然后计算,这样做往往会减少运算量.
数字的两位数?
(2)从1,2,3,4,5,6中选出三个数字,能构成多少个没有重复数
字的三位数?
(3)从1,2,3,4,5,6中选出四个数字,能构成多少个没有重复数 字的四位数? 观察以上问题,你认为从n个不同元素中取出m(m≤n)个元素 排成一列,有多少种不同的排法?排列数公式是什么?
工具
第一章 计算原理
工具
第一章 计算原理
栏目导引
2A85+7A84 An-1m 1· n-mn m A 1.计算:(1) ;(2) . - A88-A95 An-1n 1
-
-
2A85+7A84 解析: (1) A88-A95 2×8×7×6×5×4+7×8×7×6×5 = =1. 8×7×6×5×4×3×2×1-9×8×7×6×5 An-1m 1· n-mn A (2) - An-1n 1
第1章-1.2-1.2.1-第1课时 排列与排列数公式

A.6 个
【解析】 符合题意的商有 A2 4=4×3=12. 【答案】 C
3.某段铁路所有车站共发行 132 种普通车票,那么这段 铁路共有的车站数是( A.8 B.12 ) C.16 D.24
【解】 设车站数为 n,则 A2 n=132,n(n-1)=132,∴n =12.
【答案】 B
4.写出下列问题的所有排列. (1)甲、乙、丙、丁四名同学站成一排; (2)从编号为 1,2,3,4,5 的五名同学中选出两名同学任正、 副班长.
沿途有四个车站,求这四个车 要确定一种车票,即是从四个车站中任意选出 2 个车站,按起点站在前、终点站在后进行排列,共有 A2 4种 不同的排法,即共有 A2 4 种不同的车票,由排列数公式可得 A2 4=4×3=12.
树形图法在解决简单排列问题中的应用 (12 分)从 0,1,2,3 这四个数字中,每次取出三个 不同的数字排成一个三位数. (1)能组成多少个不同的三位数,并写出这些三位数. (2)若组成这些三位数中,1 不能在百位,2 不能在十位, 3 不能在个位,则这样的三位数共有多少个,并写出这些三 位数.
【提示】 不是.
排列的概念 一般地,从 n 个不同元素中取出 m( 按照 一定的顺序
m≤n )个元素,
排成一列, 叫做从 n 个不同元素中取
出 m 个元素的一个排列.
排列数及排列数公式
【问题导思】 两个同学从写有数字 1,2,3,4 的卡片中选取卡片进行组数 字游戏.
1. 从这 4 个数字中选出两个能构成多少个无重复数字的 两位数?
【解】 (1)四名同学站成一排, 共有 A4 4=24 个不同的排 列,它们是: 甲乙丙丁,甲丙乙丁,甲丁乙丙,甲乙丁丙,甲丙丁乙, 甲丁丙乙; 乙甲丙丁,乙甲丁丙,乙丙甲丁,乙丙丁甲,乙丁甲丙, 乙丁丙甲;
1.2.1排列(2)课件

练习: 练习:
1.20位同学互通一封信,那么通信的次数是多少? 位同学互通一封信,那么通信的次数是多少? 位同学互通一封信
练习: 练习 7名师生站成一排表演节目 其中老师1人,男生 名师生站成一排表演节目,其中老师 人 男生 名师生站成一排表演节目 其中老师 4人,女生 人,在下列情况下 各有多少种不同的 人 女生 女生2人 在下列情况下 在下列情况下,各有多少种不同的 站法? 站法? (1)两名女生相邻而站 两名女生相邻而站; 两名女生相邻而站 (2)4名男生互不相邻 名男生互不相邻; 名男生互不相邻 (3)4名男生身高不等 按从高到低一种顺序站; 名男生身高不等,按从高到低一种顺序站 名男生身高不等 按从高到低一种顺序站 (4)老师不站中间 女生不站两端 老师不站中间,女生不站两端 老师不站中间 女生不站两端.
2 、若 n ∈ N , 则 ( 55 − n )( 56 − n ) L ( 68 − n )( 69 − n ) 用排列数符号表示为 _______
3 、如果
A 23 n = 10 A
3 n
, 则 n = ___
二、例题选讲: 例题选讲:
例1.某信号兵用红、黄、蓝三面旗从 某信号兵用红、 上到下挂在竖直的旗杆上表示信号, 上到下挂在竖直的旗杆上表示信号,每 次可以任挂一面、二面或三面, 次可以任挂一面、二面或三面,并且不 同的顺序表示不同的信号, 同的顺序表示不同的信号,一共可以表 示多少种不同的信号? 示多少种不同的信号?
2019-2020学年高中数学浙江专版选修2-3学案:第一章 1.2 1.2.1 第二课时 排列的综合应用 Word版含解析

第二课时排列的综合应用[典例]用(1)六位奇数;(2)个位数字不是5的六位数;(3)不大于4 310的四位偶数.[解](1)第一步,排个位,有A13种排法;第二步,排十万位,有A14种排法;第三步,排其他位,有A44种排法.故共有A13A14A44=288个六位奇数.(2)法一:(直接法)十万位数字的排法因个位上排0与不排0而有所不同,因此需分两类.第一类,当个位排0时,有A55个;第二类,当个位不排0时,有A14A14A44个.故符合题意的六位数共有A55+A14A14A44=504(个).法二:(排除法)0在十万位和5在个位的排列都不对应符合题意的六位数,这两类排列中都含有0在十万位和5在个位的情况.故符合题意的六位数共有A66-2A55+A44=504(个).(3)分三种情况,具体如下:①当千位上排1,3时,有A12A13A24个.②当千位上排2时,有A12A24个.③当千位上排4时,形如40××,42××的各有A13个;形如41××的有A12A13个;形如43××的只有4 310和4 302这两个数.故共有A12A13A24+A12A24+2A13+A12A13+2=110(个).[一题多变]1.[变设问]本例中条件不变,能组成多少个被5整除的五位数?解:个位上的数字必须是0或5.若个位上是0,则有A45个;若个位上是5,若不含0,则有A44个;若含0,但0不作首位,则0的位置有A13种排法,其余各位有A34种排法,故共有A45+A44+A13A34=216(个)能被5整除的五位数.2.[变设问]本例条件不变,若所有的六位数按从小到大的顺序组成一个数列{a n},则240 135是第几项?解:由于是六位数,首位数字不能为0,首位数字为1有A55个数,首位数字为2,万位上为0,1,3中的一个有3A44个数,所以240 135的项数是A55+3A44+1=193,即240 135是数列的第193项.3.[变条件,变设问]用0,1,3,5,7五个数字,可以组成多少个没有重复数字且5不在十位位置上的五位数.解:本题可分两类:第一类:0在十位位置上,这时,5不在十位位置上,所以五位数的个数为A44=24;第二类:0不在十位位置上,这时,由于5不能排在十位位置上,所以,十位位置上只能排1,3,7之一,有A13=3(种)方法.又由于0不能排在万位位置上,所以万位位置上只能排5或1,3,7被选作十位上的数字后余下的两个数字之一,有A13=3(种).十位、万位上的数字选定后,其余三个数字全排列即可,有A33=6(种).根据分步乘法计数原理,第二类中所求五位数的个数为A13·A13·A33=54.由分类加法计数原理,符合条件的五位数共有24+54=78(个).数字排列问题的解题原则、常用方法及注意事项(1)解题原则:排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论.(2)常用方法:直接法、间接法.(3)注意事项:解决数字问题时,应注意题干中的限制条件,恰当地进行分类和分步,尤其注意特殊元素“0”的处理.排队问题[典例]3(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,其中甲、乙必须在两端;(3)全体站成一排,其中甲不在最左端,乙不在最右端;(4)全体站成两排,前排3人,后排4人,其中女生甲和女生乙排在前排,另有2名男生丙和丁因个子高要排在后排.[解](1)先考虑甲有A13种方案,再考虑其余六人全排列,故N=A13A66=2 160(种).(2)先安排甲、乙有A22种方案,再安排其余5人全排列,故N=A22·A55=240(种).(3)[法一特殊元素优先法]按甲是否在最右端分两类:第一类,甲在最右端有N1=A66(种),第二类,甲不在最右端时,甲有A15个位置可选,而乙也有A15个位置,而其余全排列A55,有N2=A15A15A55,故N=N1+N2=A66+A15A15A55=3 720(种).[法二间接法]无限制条件的排列数共有A77,而甲在左端或乙在右端的排法都有A66,且甲在左端且乙在右端的排法有A55,故N=A77-2A66+A55=3 720(种).[法三特殊位置优先法]按最左端优先安排分步.对于左端除甲外有A16种排法,余下六个位置全排有A66,但减去乙在最右端的排法A15A55种,故N=A16A66-A15A55=3 720(种).(4)将两排连成一排后原问题转化为女生甲、乙要排在前3个位置,男生丙、丁要排在后4个位置,因此先排女生甲、乙有A23种方法,再排男生丙、丁有A24种方法,最后把剩余的3名同学全排列有A33种方法.故N=A23·A24·A33=432(种).排队问题的解题策略(1)合理归类,要将题目大致归类,常见的类型有特殊元素、特殊位置、相邻问题、不相邻问题等,再针对每一类采用相应的方法解题.(2)恰当结合,排列问题的解决离不开两个计数原理的应用,解题过程中要恰当结合两个计数原理.(3)正难则反,这是一个基本的数学思想,巧妙应用排除法可起到事半功倍的效果.[活学活用]排一张有5个歌唱节目和4个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?解:(1)先排歌唱节目有A55种,歌唱节目之间以及两端共有6个空位,从中选4个放入舞蹈节目,共有A46种方法,所以任何两个舞蹈节目不相邻的排法有A55·A46=43 200种方法.(2)先排舞蹈节目有A44种方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入.所以歌唱节目与舞蹈节目间隔排列的排法有A44·A55=2 880种方法.层级一学业水平达标1.6名学生排成两排,每排3人,则不同的排法种数为()A.36B.120C.720 D.240解析:选C由于6人排两排,没有什么特殊要求的元素,故排法种数为A66=720.2.用0到9这十个数字,可以组成没有重复数字的三位数共有()A.900个B.720个C.648个D.504个解析:选C由于百位数字不能是0,所以百位数字的取法有A19种,其余两位上的数字取法有A29种,所以三位数字有A19·A29=648(个).3.数列{a n}共有6项,其中4项为1,其余两项各不相同,则满足上述条件的数列{a n}共有()A.30个B.31个C.60个D.61个解析:选A在数列的6项中,只要考虑两个非1的项的位置,即可得不同数列共有A26=30个.4.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()A.720种B.360种C.240种D.120种解析:选C(捆绑法)甲、乙看作一个整体,有A22种排法,再和其余4人,共5个元素全排列,有A55种排法,故共有排法A22·A55=240种.5.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法种数为()A.36 B.42C.58 D.64解析:选A将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,故共有A22A44=48种摆法,而A,B,C 3件在一起,且A,B相邻,A,C相邻有CAB,BAC两种情况,将这3件与剩下2件全排列,有2×A33=12种摆法,故A,B 相邻,A,C不相邻的摆法有48-12=36种.6.有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地摆成一排,则同一科目的书均不相邻的摆法有________种(用数字作答).解析:根据题意,分2步进行分析:①将5本书进行全排列,有A55=120种情况.②其中语文书相邻的情况有A22A44=48种,数学书相邻的情况有A22A44=48种,语文书,数学书同时相邻的情况有A22A22A33=24种,则同一科目的书均不相邻的摆法有120-48-48+24=48种.答案:487.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允许空袋且红口袋中不能装入红球,则有________种不同的放法.解析:(排除法)红球放入红口袋中共有A44种放法,则满足条件的放法种数为A55-A44=96(种).答案:968.用0,1,2,3,4这5个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数有______种.解析:0夹在1,3之间有A22A33种排法,0不夹在1,3之间又不在首位有A12A22A12A22种排法.所以一共有A22A33+A12A22A12A22=28种排法.答案:289.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?解:(1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有不同排法A25A66=14 400种.(2)先不考虑排列要求,有A88种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有(A88-A45A44)=37 440种.10.从5名短跑运动员中选出4人参加4×100米接力赛,如果A不能跑第一棒,那么有多少种不同的参赛方法?解:法一:当A被选上时,共有A13A34种方法,其中A13表示A从除去第一棒的其他三棒中任选一棒;A34表示再从剩下4人中任选3人安排在其他三棒.当A没有被选上时,其他四人都被选上且没有限制,此时有A44种方法.故共有A13A34+A44=96(种)参赛方法.法二:接力的一、二、三、四棒相当于有四个框图,第一个框图不能填A,有4种填法,其他三个框图共有A34种填法,故共有4×A34=96(种)参赛方法.法三:先不考虑A是否跑第一棒,共有A45=120(种)方法.其中A在第一棒时共有A34种方法,故共有A45-A34=96(种)参赛方法.层级二应试能力达标1.(四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为() A.24B.48C.60 D.72解析:选D第一步,先排个位,有A13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有A13·A44=72(个).2.从4名男生和3名女生中选出3人,分别从事三种不同的工作,若这3人中至少有1名女生,则选派方案共有()A.108种B.186种C.216种D.270种解析:选B可选用间接法解决:A37-A34=186(种),故选B.3.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有() A.288个B.240个C.144个D.126个解析:选B个位上是0时,有A14A34=96(个);个位上不是0时,有A12A13A34=144(个).∴由分类加法计数原理得,共有96+144=240(个)符合要求的五位偶数.4.(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种解析:选B当最左端排甲时,不同的排法共有A55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有4A44种.故不同的排法共有A55+4A44=120+4×24=216种.5.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为________.解析:(插空法)8名学生的排列方法有A88种,隔开了9个空位,在9个空位中排列2位老师,方法数为A29,由分步乘法计数原理,总的排法总数为A88A29=2 903 040.答案:2 903 0406.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为________(用数字作答).解析:甲、乙不能分在同一个班,则不同的分组有甲单独一组,只有1种;甲和丙或丁两人一组,有2种;甲、丙、丁一组,只有1种.然后再把分成的两组分到不同班级里,则共有(1+2+1)A22=8(种).答案:87.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?(1)一个唱歌节目开头,另一个放在最后压台;(2)2个唱歌节目互不相邻;(3)2个唱歌节目相邻且3个舞蹈节目不相邻.解:(1)先排唱歌节目有A22种排法,再排其他节目有A66种排法,所以共有A22·A66=1 440(种)排法.(2)先排3个舞蹈节目,3个曲艺节目有A66种排法,再从其中7个空(包括两端)中选2个排唱歌节目,有A27种插入方法,所以共有A66·A27=30 240(种)排法.(3)把2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A44种排法,再将3个舞蹈节目插入,共有A35种插入方法,最后将2个唱歌节目互换位置,有A22种排法,故所求排法共有A44·A35·A22=2 880(种)排法.8.从1到9这9个数字中取出不同的5个数进行排列.问:(1)奇数的位置上是奇数的有多少种排法?(2)取出的奇数必须排在奇数位置上有多少种排法?解:(1)奇数共5个,奇数位置共有3个;偶数共有4个,偶数位置有2个.第一步先在奇数位置上排上奇数共有A35种排法;第二步再排偶数位置,4个偶数和余下的2个奇数可以排,排法为A26种,由分步乘法计数原理知,排法种数为A35·A26=1 800.(2)因为偶数位置上不能排奇数,故先排偶数位,排法为A24种,余下的2个偶数与5个奇数全可排在奇数位置上,排法为A37种,由分步乘法计数原理知,排法种数为A24·A37=2 520种.。
数学:1.2.1《排列》课件(4)(新人教A版选修2-3)

m n
An- 1 =
An
有什
An
= ( n - m )A
m n
思考3 ( 思考3:n
- 1)( n - 2) L ( n - m + 1)( n - m ) m 用排列数符号如何表示? 用排列数符号如何表示?它与 A n 有什
思考3 思考3:将排列数公式变形为 n ( n - 1) L ( n - m + 1) ( n - m ) L 2 1 m An = (n - m ) L 2 1 m 进一步用阶乘如何表示 A n ?
A
m n
n! = (n - m ) !
m n
思考4 思考4:当m=n时,公式 A 成立吗?对此怎样处理? 成立吗?对此怎样处理? 规定: !=1 规定:0!=1
么关系? 么关系? A m = n - m A m n- 1 n n 思考4 思考4:考察恒等式 n(n-1)(n-2)…(n- n(n-1)(n-2)…(n-m+1) [(n-m)+m](n-1)(n-2)…(n- =[(n-m)+m](n-1)(n-2)…(n-m+1) (n-1)(n-2)…(n- 1)(n-m)+ =(n-1)(n-2)…(n-m+1)(n-m)+ m(n-1)(n-2)…(n- 1), m(n-1)(n-2)…(n-m+1),用排列数 表示可得什么结论? 表示可得什么结论? m = A m + m A m - 1 A
3.排列数公式源于分步乘法计数原理, 3.排列数公式源于分步乘法计数原理, 排列数公式源于分步乘法计数原理 对排列数公式作进一步的变形与拓展, 对排列数公式作进一步的变形与拓展, 可以得出排列数的一些基本性质. 可以得出排列数的一些基本性质.
高中数学 第一章 计数原理 1.2 排列与组合 1.2.1 排列(第3课时)教案 新人教A版选修2-

1.2.1 排列第三课时教学目标知识与技能利用捆绑法、插空法解决排列问题.过程与方法经历把简单的计数问题化为排列问题解决的过程,从中体会“化归〞的数学思想.情感、态度与价值观能运用所学的排列知识,正确地解决实际问题,体会“化归〞思想的魅力.重点难点教学重点:利用捆绑法、插空法解决排列问题.教学难点:利用捆绑法、插空法解决排列问题.教学过程复习回顾提出问题:7位同学排队,根据上一节课所学的方法,解决以下排列问题.(1)7位同学站成一排,共有多少种不同的排法?(2)7位同学站成两排(前3后4),共有多少种不同的排法?(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?活动设计:学生自己做,找学生到黑板上板演.活动成果:解:(1)问题可以看作:7个元素的全排列A77=5 040.(2)根据分步乘法计数原理:7×6×5×4×3×2×1=7!=5 040.(3)问题可以看作:余下的6个元素的全排列A66=720.(4)根据分步乘法计数原理:第一步甲、乙站在两端有A22种;第二步余下的5名同学进行全排列有A55种,所以,共有A22·A55=240种排列方法.(5)第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有A25种方法;第二步从余下的5位同学中选5位进行排列(全排列)有A55种方法,所以一共有A25A55=2 400种排列方法.典型例题类型一:捆绑法例17位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?解:(1)先将甲、乙两位同学“捆绑〞在一起看成一个元素,与其余的5个元素(同学)一起进行全排列有A66种方法;再将甲、乙两个同学“松绑〞进行排列有A22种方法.所以这样的排法一共有A66A22=1 440种.(2)方法同上,一共有A55A33=720种.(3)解法一:将甲、乙两同学“捆绑〞在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有A25种方法;将剩下的4个元素进行全排列有A44种方法;最后将甲、乙两个同学“松绑〞进行排列有A22种方法.所以这样的排法一共有A25A44A22=960种.解法二:将甲、乙两同学“捆绑〞在一起看成一个元素,此时一共有6个元素,假设丙站在排头或排尾有2A55种方法,所以,丙不能站在排头和排尾的排法有(A66-2A55)·A22=960种.解法三:将甲、乙两同学“捆绑〞在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有A14种方法,再将其余的5个元素进行全排列共有A55种方法,最后将甲、乙两同学“松绑〞,所以,这样的排法一共有A14A55A22=960种.(4)将甲、乙、丙三个同学“捆绑〞在一起看成一个元素,另外四个人“捆绑〞在一起看成一个元素,此时一共有2个元素,∴一共有排法种数:A33A44A22=288种.点评:对于相邻问题,常用“捆绑法〞(先捆后松).[巩固练习]某商场中有10个展架排成一排,展示10台不同的电视机,其中甲厂5台,乙厂3台,丙厂2台,假设要求同厂的产品分别集中,且甲厂产品不放两端,那么不同的陈列方式有多少种?解:将甲厂5台不同的电视机“捆绑〞在一起看成一个元素,乙厂3台不同的电视机“捆绑〞在一起看成一个元素,丙厂2台不同的电视机“捆绑〞在一起看成一个元素,此时一共有3个元素,甲不放两端,甲有1种排法,乙、丙排在两端有A22种排法,共有A55A33A22A22=2 880种不同的排法.[变练演编]7位同学站成一排,(1)甲、乙两同学之间恰好有一个人的排法共有多少种?(2)甲、乙两同学之间恰好有两个人的排法共有多少种?解:(1)先在甲、乙两同学之间排一个人,有A15种不同的排法,把甲、乙和中间的一人“捆绑〞在一起看成一个元素,此时一共有5个元素,共有A15A55A22=1 200种不同的排法.(2)先在甲、乙两同学之间排两个人,有A25种不同的排法,把甲、乙和中间的两人“捆绑〞在一起看成一个元素,此时一共有4个元素,共有A25A44A22=960种不同的排法.类型二:插空法例27位同学站成一排,(1)甲、乙两同学不能相邻的排法共有多少种?(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?解:(1)方法一:(排除法)A77-A66·A22=3 600;方法二:(插空法)先将其余五个同学排好有A55种方法,此时他们留下六个位置(称为“空〞),再将甲、乙同学分别插入这六个位置(空)有A26种方法,所以一共有A55A26=3 600种方法.(2)先将其余四个同学排好有A44种方法,此时他们留下五个“空〞,再将甲、乙和丙三个同学分别插入这五个“空〞有A 35种方法,所以一共有A 44A 35=1 440种方法.点评:对于不相邻问题,常用“插空法〞(特殊元素后考虑).[巩固练习]5男5女排成一排,按以下要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列.解:(1)先将男生排好,有A 55种排法;再将5名女生插在男生之间的6个“空〞(包括两端,但不能同时排在两端)中,有2A 55种排法,故此题的排法有N =2A 55·A 55=28 800种.(2)方法1:N =A 1010A 55=A 510=30 240; 方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有A 510种排法;余下的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法.故此题的排法为N =A 510×1=30 240种.[变练演编]5男6女排成一列,问(1)5男排在一起有多少种不同排法?(2)5男不都排在一起有多少种排法?(3)5男每两个不排在一起有多少种排法?(4)男女相互间隔有多少种不同的排法?解:(1)先把5男看成一个整体,得A 77,5男之间排列有顺序问题,得A 55,共A 77A 55种.(2)全排列除去5男排在一起即为所求,得A 1111-A 77A 55.(3)因为男生人数少于女生人数,利用男生插女生空的方法解决问题,得A 66A 57.(4)利用男生插女生空的方法,但要保证两女生不能挨在一起,得A 66A 55.[达标检测]1.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A .1 440种B .960种C.720种 D.480种2.把4个不同的黑球,4个不同的红球排成一排,要求黑球、红球分别在一起,不同的排法种数是( )A.A88 B.A44A44C.A44A44A22D.以上都不对3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,那么不同插法的种数为( )A.42 B.96C.48 D.124答案:课堂小结1.知识收获:进一步复习排列的概念和排列数公式.2.方法收获:捆绑法、插空法.3.思维收获:化归思想、分类讨论思想.补充练习[基础练习]1.6人站成一排照相,其中甲、乙、丙三人要站在一起,且要求乙、丙分别站在甲的两边,那么不同的排法种数为( )A.12 B.24C.48 D.1442.由数字0,1,2,3,4,5组成无重复数字的四位数,其中是25的倍数的数共有______个( )A.9 B.12C.24 D.213.用数字0,1,2,3,4能组成没有重复数字的且比20 000大的五位奇数的个数为( ) A.3 B.30C.72 D.184.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为( )A.540 B.300C.180 D.150答案:[拓展练习]5.有4名男生、5名女生,全体排成一行,问以下情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男、女生分别排在一起;(4)男女相间;(5)甲、乙、丙三人从左到右顺序保持一定.答案:(1)241 920 (2)10 080 (3)5 760 (4)2 880 (5)60 480设计说明本节课是排列的第三课时,本节课的主要目标是介绍排列中常用的捆绑法和插空法.本节课的特点是教师引导给学生以提示,在从例题中学会了方法后,马上让学生练习巩固方法,在变练演编中,举一反三,反复强化,使学生更好地掌握方法和技巧.备课资料一、相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有________.解析:把A,B视为一人,且B固定在A的右边,那么此题相当于4人的全排列,有A44=24种排法.二、相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例1书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有______种不同的插法(具体数字作答).解析:A17A33+A27A23+A37=504种.例2高三(1)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,那么不同排法的种数是________.解析:不同排法的种数为A55A26=3 600.例3某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后才能进行.那么安排这6项工程的不同排法种数是________.解析:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个“空〞中,可得有A25=20种不同排法.例4某市春节晚会原定10个节目,导演最后决定添加3个与“抗冰救灾〞有关的节目,但是赈灾节目不排在第一个也不排在最后一个,并且已经排好的10个节目的相对顺序不变,那么该晚会的节目单的编排总数为________种.解析:A19A33+A29A23+A39=990种.例53个人坐在一排8个椅子上,假设每个人左右两边都有空位,那么坐法的种数有多少种?解析:解法1:先将3个人(各带一把椅子)进行全排列有A33,○*○*○*○,在四个“空〞中分别放一把椅子,还剩一把椅子再去插空有A14种,所以每个人左右两边都有空位的排法有A14A33=24种.解法2:先拿出5个椅子排成一排,在5个椅子中间出现4个“空〞,*○*○*○*○*,再让3个人每人带一把椅子去插空,于是有A34=24种.注:题中*表示元素,○表示空.例6停车场划出一排12个停车位置,今有8辆车需要停放.要求空位置连在一起,不同的停车方法有多少种?解析:先排好8辆车有A88种方法,要求空位置连在一起,那么在每2辆之间及其两端的9个空档中任选一个,将空位置插入有A19种方法,所以共有A19A88种方法.。
人教高中数学选修2-3第一章121排列(优质公开课教案)

1.2.1排列上课班别:高二授课教师:教材:人教版选修2—3教学目标:1、知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。
2、过程与方法:能运用所学的排列知识,正确地解决的实际问题3、情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列数公式的理解与运用;排列应用题常用的方法有直接法,间接法教学难点:排列数公式的推导授课类型:新授课课时安排:1课时教具:多媒体内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题.只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法二、讲解新课:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。
1.2.1排列

A31 A32 A33 15
变式:将题中的“3面旗”改为“3色旗”,
结论如何?
3 32 33 38
课堂练习:
1、20位同学互通一封信,那么通信次数是多
少?
A220 380(次)
2、由数字1、2、3、4、5、6可以组成多少个
没有重复数字的正整数?
A61 A62 A63 A64 A65 A66 1956(个)
2、有序性(所选元素有先后位置等顺序之分) 【排列数】所有排列总数
Anm n(n 1)(n 2)...(n m 1)
Anm
=
n! (n- m)!
例题与练习 例1 计算:
(1)A136 161514 3360
(2)A66 =6!=6×5×4×3×2×1=720
(3) 8!7! 7 5!
1.2.1 排列
分类加法计数原理:
完成一件事,有n类不同方案,在第1类方案
中有m1种不同的方法,在第2类方案中有m2种不同 的方法 ……在第n类方案中有mn种不同的方法.那
么完成这件事共有 N m1 m2 mn 种
不同的方法. 分步乘法计数原理:
完成一件事,需要分成n个步骤,做第1步有
m1种不同的方法,做第2步有m2种不同的方法……, 做第n步有mn种不同的方法.那么完成这件事共
变:1、用0到9这十个数字,可以组成多少 个没有重复数字的且能被5整除的三位数?
A92 A81 A81
一 个个数,字有中任A91选种2选个法,,有再A92排种十选位法和,个根位据上分的步数计字数,原可理以,从所余求下三的位9
数的个数是: A91 A92 648
(特殊位置预置法)
分析2:所求的三位数可分为:不含数字0的,有 A93 个;含有数字
2019-2020年人教A版高中数学选修2-3:1.2排列与组合1.2.1排列课件 (共29张PPT)

[自主梳理] 1.排列的有关概念 (1)定义:一般地,从 n 个 不同 元素中取出 m(m≤n)个元素,按照一定的顺序 排成一列,叫作从 n 个 不同 元素中取出 m 个元素的一个排列. (2)相同排列:两个排列相同,当且仅当两个排列的元素 完全相同 ,且元素的 排列顺序 也相同.
2.排列数与排列数公式
后面,则他可选的密码个数共有( )
A.A66
B.A68
C.A35+A33
D.A35·A33
解析:分两步.第一步选 3 个数字安排在后三位,有 A35种方法,第二步把 3 个字母
安排在前三位,有 A33种方法,故共有 A35·A33个密码.
答案:D
探究三 “在”与“不在”的问题 [典例 3] 7 位同学站成一排. (1)若甲站在中间的位置,则共有多少种不同的排法? (2)甲、乙只能站在两端的排法共有多少种? (3)甲、乙不能站在排头和排尾的排法共有多少种? (4)甲不能站排头、乙不能站排尾的排法共有多少种? [解析] (1)先考虑甲站在中间,有 1 种排法,再在余下的 6 个位置排另外 6 位同学, 共 A66=720 种排法. (2)先考虑甲、乙站在两端,有 A22种排法,再在余下的 5 个位置排另外 5 位同学,有 A55种排法,共 A22A55=240 种排法.
1.2 排列与组合 1.2.1 排 列重点:排列的概念;排列数公
2.了解排列数的概念.
式;用排列知识解决简单的实
3.掌握排列数公式的推导方法.
际问题.
4.能用排列知识解决简单的实际问题. 难点:排列数公式的推导方法.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要 表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法 主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.
数学:1.2.1《排列》(三)课件(人教A版选修)

例1:一天要排语、数、英、体、班会六节课,要求上午的四 节课中,第一节不排体育课,数学排在上午;下午两节中有 一节排班会课,问共有多少种不同的排法?
例2:有4个男生和3个女生排成一排,按下列要求各有多少种 不同排法: (1)7位同学站成一排,甲、乙只能站在两端? (2)7位同学站成一排,甲、乙不能站在两端?
2.基本的解题方法: (1)有特殊元素或特殊位置的排列问题,通常是先排特殊元 素或特殊位置,称为优先处理特殊元素(位置)法(优先法);
特殊元素,特殊位置优先安排策略 (2)某些元素要求必须相邻时,可以先将这些元素看作一个元 素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法 称为“捆绑法”;相邻问题捆绑处理的策略
引申练习
1、4名男生和4名女生站成一排,若要求男女相间,则不同的
排法数有( B )
(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾?
(4)若甲、乙两名女生相邻,且不与第三名女生相邻? (5)甲、乙、丙3名同学必须相邻,而且要求乙、丙分别站
在甲的两边?
; 微信红包群 / 微信红包群 ;
去迎接每一天。用自己的双眼,去欣赏属于自己的快乐风景。也可以认为,人的心灵应该永远充满喷涌的激情,人生需要不停的行走,不断地接受新的挑战,追求新的事物,在不断的追求中方能享受人生的快乐,没有欲望,没有追求,就永远难享快乐!还可以将“欲望”分为物质和精神两个层 面,分别论述这两个层面与快乐的关系,或论其中一个层面与快乐的关系。 写作时,可就以上三个方面任选一个角度写一篇议,也可以用一个人物的经历演绎故事,表达自己对这个话题的看法,鼓励文体创新,写出富有个性的佳作。 ? 10.阅读
课件1:1.2.1 排列

4× 3×2=24种
4种 3种
2种
问题探究
问题3 从n个不同元素中取出2个元素,排成一列,共有多少种
排列方法?
问题4 从n个不同元素中取出3个元素,排成一列,共有多少种 排列方法?
n种 (n-1)种 (n-2)种
n种 (n-1)种 n (n-1) 种
n (n-1)(n-2) 种
算.
n Am
理论迁移
例2 某年全国足球甲级(A组)联赛共有14个队参加, 每队要与其余各队在主、客场分别比赛一次,求总共要进
行多少场比赛.
A 14 13 182
2 14
理论迁移
例3(1)从5本不同的书中选3本送给3名同学,每人各1本,共有
பைடு நூலகம்
多少种不同的送法?
3 ( 种 ) 5 (2)从5种不同的书中选3本送给3名同学,每人各1本,共有多少
A
= 60
种不同的送法?
5 = 125 (种)
3
典型例题
题型一 数字排列的问题 例1.用0,1,2,…,9十个数字可组成多少个满足以下条 件的且没有重复数字的数: (1)五位奇数; (2)大于30 000的五位偶数.
解 (1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有5种取
法;取定末位数字后,首位就有除这个数字和0之外的8种不同取法;首末 两位取定后,十个数字还有八个数字可供中间的十位、百位与千位三个数
用的方法有直接法和间接法,直接法又有分步法和分类法两
种.
课堂小结
1.判断一件事是否为排列关键有两个要素,一是取出的元素要考 虑顺序,二是事件中没有重复元素,否则就不能按排列原理求方 法数. n Am 2.排列与排列数是两个不同的概念,前者是指按照一定顺序排成的
分点突破式学案2:1.2.1 排列 (1)

1.2.1排列(1)1. 理解排列、排列数的概念;2. 了解排列数公式的推导.一、课前准备(预习教材P14~ P18,找出疑惑之处)复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法?二、新课导学※学习探究探究任务一:排列问题1:上面复习1,复习2中的问题,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?新知1:排列的定义一般地,从n个元素中取出m()个元素,按照一定的排成一排,叫做从个不同元素中取出个元素的一个排列.试试:写出从4个不同元素中任取2个元素的所有排列.反思:排列问题有何特点?什么条件下是排列问题?探究任务二:排列数及其排列数公式新知2 排列数的定义m )个元素的的个数,叫做从n个不同元从个元素中取出(n素取出m 元素的排列数,用符合 表示.试试: 从4个不同元素a ,b , c ,d 中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?问题:⑴ 从n 个不同元素中取出2个元素的排列数是多少?⑵ 从n 个不同元素中取出3个元素的排列数是少?⑶ 从n 个不同元素中取出m (n m ≤)个元素的排列数是多少?新知3 排列数公式从n 个不同元素中取出m (n m ≤)个元素的排列数=m n A新知4 全排列从n 个不同元素中 取出的一个排列,叫做n 个元素的一个全排列,用公式表示为=n n A _____________※ 典型例题例1计算:⑴410A ; ⑵ 218A ; ⑶ 441010A A ÷.变式:计算下列各式:⑴ 215A ; ⑵ 66A例2若17161554m n A =⨯⨯⨯⨯⨯,则n = ,m = .例3 (1)计算:2A 58+7A 48A 88-A 59. (2)求证:A m n +1=m ·A m -1n +A m n .小结:排列数m n A 可以用阶乘表示为mn A =※学习小结1. 排列数的定义2. 排列数公式及其全排列公式.※当堂检测(时量:5分钟满分:10分)计分:1.下列问题属于排列问题的是()①从10个人中选2人分别去种树和扫地;②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队;④从数字5,6,7,8中任取两个不同的数作幂运算.A.①④B.①②C.④D.①③④2.从甲、乙、丙三人中选两人站成一排的所有站法为()A.甲乙,乙甲,甲丙,丙甲B.甲乙丙,乙丙甲C.甲乙,甲丙,乙甲,乙丙,丙甲,丙乙D.甲乙,甲丙,乙丙3.设m∈N*,且m<15,则(15-m)(16-m)…(20-m)等于()C.A620-m D.A520-mA.A615-m B.A15-m20-m4.(1)将3张电影票分给5人中的3人,每人1张,求共有多少种不同的分法;(2)从2、3、5、7中任意选两个分别作为分子和分母构成分数,求构成不同的分数的个数.5.解不等式A x9>6A x-2.9参考答案复习1:(26×25+10×9×8×7)×2=11380复习2:3×2=6例1. (1)5040;(2)306;(3)151200变式:(1)15×14=210;(2)6×5×4×3×2×1=720;例2. 17 14例3. (1)解 2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5=8×7×6×5×8+78×7×6×5×24-9=1. (2)证明 ∵A m n +1-A m n =n +1!n +1-m !-n !n -m !=n !n -m !·⎝ ⎛⎭⎪⎫n +1n +1-m -1 =n !n -m !·m n +1-m =m ·n !n +1-m !=m A m -1n , ∴A m n +1=m A m -1n +A m n .当堂检测1.A2. C3. C4.解:(1)问题相当于从5张电影票中选出3张排列起来,这是一个排列问题.故共有A 35=5×4×3=60种分法.(2)选出的任意两个数分别作为分子、分母时,构成的分数是不一样的,因此是一个有序问题,应用排列去解.故能构成A 24=4×3=12个不同的分数.5.解: 原不等式即为9!9-x !>6·9!9-x +2!,化简得x 2-21x +104>0, ∴x <8或x >13.又由⎩⎪⎨⎪⎧0≤x ≤9,0≤x -2≤9,得2≤x ≤9,x ∈N +,∴2≤x <8,x ∈N +,∴x =2,3,4,5,6,7.。
高中数学2-3第一章 1.2.1 《排列概念与排列数公式》【学案】

1.2。
1排列与排列数公式一、课前准备1.课时目标(1) 理解排列的定义,并能解决简单的排列实际应用问题;(2) 熟记排列数公式,能进行熟练的运算;2.基础预探1.一般地,从n 个不同的元素中任取m ()m n ≤个元素,按照一定的 排成一列,叫做从n 个不同的元素中取出m 个元素的一个排列.2。
从n 个不同的元素中取出m ()m n ≤个元素的 的个数叫做从n 个不同的元素中取出m 个元素的排列数,用符号表示。
3.排列数公式mn A = (m ,n n m N ≤∈且,*)。
4.n 个不同的元素全部取出的 ,叫做n 个不同元素的一个全排列,nnA =__________. 5。
正整数1到n 的连乘积,叫做n 的阶乘,用______表示,排列数公式写成阶乘的形式为m n A=,这里规定0!= 。
二、学习引领1.学习时应注意定义中那些细节?排列要求n个元素是不同的,被排列的m个元素也是不同的,即从n个不同元素中取出m个元素进行排列.定义中规定m,n n,*,如果m<n,则称为∈且mN≤选排列,如果m=n,则称为全排列。
2.如何判断一个问题是否是排列问题?排列定义包括两个基本条件:一是“取出元素”,二是“按照一定顺序排列”。
排列问题与元素的顺序有关,与顺序无关的不是排列,如取出两个数做乘法与顺序无关,就不是排列,做除法与顺序有关,就是排列。
3。
如何判断两个排列是否是相同排列?只有元素完全相同,并且元素的排列顺序完全相同时,才是同一个排列。
元素完全相同,顺序不一样就是不同的排列.4.什么是排列数,它计算时应注意什么?“排列"与“排列数"是两个不同的概念,排列是一个具体的排法,不是数;排列数是所有可能的排列的种数,是一个数.计算排列数时注意,它公式右边是m个数的连乘积,其特点是:第一个因数是n,后面的每一个因数都比它前面的因数少1;最后一个因数是n-m+1,一共有m个连续自然数的连乘积。
1.2.1 排列(二)12112701解析

n ( n 1) n ( n 1) 3 2 1 An 1 ( n 1)! ( n 1) n !
n1 n An A 1 n1 成立 .
n1 n An ( n 1) A 1 n 成立 .
A mA
m n
m 1 n
A
m n 1
.
m 想一想: 如果 An 17 16 5 4 , 14 . 17 , 那么 n _____ m ______
n 1 n 想一想:An 1 An1 成立吗?
n1 n An ( n 1) A 1 n 成立吗?
1 2 由分步计数原理: A9 A9 = 9×9×8 = 648.
例6:用0到9这10个数字,可以组成多少个没有重 复数字的三位数? 分析:着眼于特殊元素
解法2:符合条件的三位数可以分三类: 第一类每一位数字都不是0的三位数有 A 个
2 第二类个位数字是0的三位数有 A9 个
2 第三类十位数字是0的三位数有 A9 个
1 2 3 由分类计算原理:A3 +A3 +A3 = 3+3×2+3×2×1 = 15
答:一共可以表示15种不同的信号 .
例6:用0到9这10个数字,可以组成多少个没有重 复数字的三位数? 分析: 条件限制:百位上不能排0,即百位上只能排1到9这九 个数字中的一个. 分步完成:第一步选元素占据特殊位置,第二步选元素 占据其余位置. (着眼于特殊位置) 解法1:分两步完成。 第一步从1到9这九个数中任选一个占据百位, 1 A 有 9 种方法。 第二步从余下的九个数(包括数字0)中任选 2 2个占据十位、个位,有 A9 种方法。
1.2.1 排列(第二课时)公开课教案

排 列 1.2.1 (第二课时)2010-5-6 第六节 高二(3)教室一 、教学目标:1.知识与技能:熟练掌握排列数公式;熟悉并掌握一些分析和解决排列问题的基本方法;能运用已学的排列知识,正确地解决简单的实际问题2.过程与方法:通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论, 正确地解决的实际问题;3. 情感、态度与价值观:会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;培养学生严谨的学习 态度二 、教学重点与难点教学重点:理解排列的概念, 熟练掌握排列数公式,分析和解决排列问题的基本方法,对加 法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题 当中教学难点:分析和解决排列问题的基本方法,对于有约束条件排列问题的解答三、 教学方法分析:分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、 组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合 学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种 不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与 顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义 上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.排列的应用题是本节的难点,通过本节例题的分析,注意培养学生解决应用问题的能力. 在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直 观,教学上要充分利用,要求学生作题时也应尽量采用.在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一 个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面 的要求.教学中指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在 于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.四 、教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有 n 类办法,在第一类办法中有m 种 1不同的方法,在第二类办法中有m 2种不同的方法,……,在第 n 类办法中有 种不同的 m nm m m 方法 那么完成这件事共有 N 种不同的方法 1 2 n2.分步乘法计数原理:做一件事情,完成它需要分成 n 个步骤,做第一步有m 种不同1的方法,做第二步有m 2种不同的方法,……,做第 n 步有 种不同的方法,那么完成这 m nm m m 件事有 N 种不同的方法 1 2n 3.排列的概念:从 n 个不同元素中,任取 m ( m n )个元素(这里的被取元素各不 相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 ......... n n m m 4.排列数的定义:从 个不同元素中,任取 ( )个元素的所有排列的个数叫A mn m 做从 个元素中取出 元素的排列数,用符号 表示n A n(n 1)(n 2) (n m 1) m ,n N ,m n m 5.排列数公式:(1) ( )常用来求n n! m ,n n m ( )! A m 值,特别是 均为已知时(2)公式 = ,常用来证明或化简0! 1. n n! n n 6 .阶乘: 表示正整数 1到 的连乘积,叫做 的阶乘 规定2A 3A (m 1)! 5 9 6 97. 练习:1计算: ; . 9! A 6 (m n )! A n 1 m 1 10 A 3 2A 2 x 1 6A 2 2.解方程:3 .x x 二、讲解新课:例 1 某信号兵用红、黄、蓝 3 面旗从上到下挂在竖直的旗杆上表示信号,每次可以任 意挂 1面、2面或 3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号? 解:分 3类:第一类用 1面旗表示的信号有 A 1 种; 3第二类用 2面旗表示的信号有 A 2 种; 3第三类用 3面旗表示的信号有 A 3 种, 3A A 3 32 32115 ,由分类计数原理,所求的信号种数是: A 1 3 23 3 3 答:一共可以表示 15种不同的信号4 4例 2 将 位司机、 位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一 位司机和一位售票员,共有多少种不同的分配方案?4 分析:解决这个问题可以分为两步,第一步:把 位司机分配到四辆不同班次的公共汽车44 上,即从 个不同元素中取出 个元素排成一列,有 4 种方法; A 4 4 第二步:把 位售票员分配到四辆不同班次的公共汽车上,也有4 种方法, A4 利用分步计数原理即得分配方案的种数A A 576 (种)解:由分步计数原理,分配方案共有N 答:共有 576 种不同的分配方案4 4 4 4 例 3 从 0 到 9 这 10 个数字,可以组成多少个没有重复数字的三位数?解法一:对排列方法分步思考。
数学:1.2.1《排列》(三)课件(人教A版选修)(新201907)

1、排列的定义:
从n个不同元素中,任取m( m n )个元素(m个元素不可重复
取)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元
素的一个排列.
2.排列数的定义:
从n个不同元素中,任取m( m n)个元素的所有排列的个数
叫做从n个元素中取出m个元素的排列数 Anm
3.有关公式:
1.阶乘:n! 1 2 3 (n 1)n
(2)排列数公式:
A
m n
n (n 1)(n
Ann
m
1)
n!
(n
n! m)
(m、 !
n
N*,m
Байду номын сангаас
n)
方法总结
1.对有约束条件的排列问题,应注意如下类型: ⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连 排(即必须相邻);⑶某些元素要求分离(即不能相邻);
(3)某些元素不相邻排列时,可以先排其他元素,再将这些 不相邻元素插入空挡,这种方法称为“插空法”;不相邻问题 插空处理的策略
;英国曼彻斯特购房 曼彻斯特房产 / 曼彻斯特投资房产 英国曼彻斯特房产 ;
使十种罪名定型化 亦置长史以下官 人物关系 而且田荣反楚时曾联络彭越造反 上怒其反覆 西门君仪战死 厚0.死后葬于留城附近 秦之强也得商鞅 辩推八难 倭遂据平海卫 总面积14200余平方米 李世勣乘胜追击 4 陈大成等将领跪在地上要求从宽处罚 未知大道 44.自比晋宣 帝 我本人初即位 今遣归 宛 初 后含冤自杀 宁死不谋燕 结宾婚 就风放火 项羽恃强凌弱 赤眉 青犊之属 隋朝南征陈之战 诗·石介诗选(二) 李勣拔平壤 乘胜将三千人将攻扶馀城 不绝粮道 今山东未安 金刚尚有众二万 今乃渡海远征小夷 出
高中数学 1.2.1《排列》教案 新人教A版选修2-3

排列【教学目的】理解排列、排列数的概念,了解排列数公式的推导;能用“树型图”写出一个排列中所有的排列;能用排列数公式计算。
【教学重点】排列、排列数的概念。
【教学难点】排列数公式的推导一、问题情景〖问题1〗从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙甲丙乙甲乙丙丙甲丙乙,其中被取的对象叫做元素。
a b c d这四个字母中,每次取出3个按顺序排成一列,共有多少种不同的排〖问题2〗.从,,,法?分析:解决这个问题分三个步骤:第一步先确定左边的字母,在4个字母中任取1个,有4种方法;第二步确定中间的字母,从余下的3个字母中取,有3种方法;第三步确定右边的字母,从余下的2个字母中取,有2种方法由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法二、数学构建≤)个元素(这里的被取元素各不相1.排列的概念:从n个不同元素中,任取m(m n同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同≤)个元素的所有排列的个数叫做2.排列数的定义:从n个不同元素中,任取m(m n从n个元素中取出m元素的排列数,用符号m n A表示注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m个元素按照一定的顺序排成一列,不是数;“排≤)个元素的所有列数”是指从n个不同元素中,任取m(m nA只表示排列数,而不表示具排列的个数,是一个数所以符号mn体的排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1 排 列
一 、学习目标:
1.知识与技能:
熟练掌握排列数公式;熟悉并掌握一些分析和解决排列问题的基本方法;
能运用已学的排列知识,正确地解决简单的实际问题
2.过程与方法:
通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,正确地解决的实际问题;
3. 情感、态度与价值观:
会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;培养学生严谨的学习态度
二 、教学重点与难点
教学重点:理解排列的概念, 熟练掌握排列数公式,分析和解决排列问题的基本方法,对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中
教学难点:分析和解决排列问题的基本方法,对于有约束条件排列问题的解答
三、 教学方法分析:
分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.
排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系. 排列的应用题是本节的难点,通过本节例题的分析,注意培养学生解决应用问题的能力. 在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.教学中指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.
四 、教学过程:
一、复习引入: 1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++ 种不同的方法
2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这
件事有12n N m m m =⨯⨯⨯ 种不同的方法
3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....
4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号
m n A 表示 5.排列数公式:(1)(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *
∈≤)常用来求值,特别是,m n 均为已知时(2)公式m
n A =!()!n n m -,常用来证明或化简
6 .阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘0!1=.
7. 练习:(1). 计算:5699610239!A A A +=- ; 11(1)!()!
n m m A m n ---=⋅- . (2).解方程:3
322126x x x A A A +=+.
二、精解例题:
例1 某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?
例2 将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?
例3 从0到9这10个数字,可以组成多少个没有重复数字的三位数?
一般地对于有限制条件的排列应用题,可以有两种不同的计算方法:
(l)直接计算法
排列问题的限制条件一般表现为:某些元素不能在某个(或某些)位置、某个(或某些)位置只能放某些元素,因此进行算法设计时,常优先处理这些特殊要求.便有了:先处理特殊元素或先处理特殊位置的方法.这些统称为“特殊元素(位置)优先考虑法”.(2)间接计算法
先不考虑限制条件,把所有的排列种数算出,再从中减去全部不符合条件的排列数,间接得出符合条件的排列种数. 这种方法也称为“去杂法”.在去杂时,特别注意要不重复,不遗漏.
例4.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?
例5.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
例6(1)7位同学站成一排,共有多少种不同的排法?
(2)7位同学站成两排(前3后4),共有多少种不同的排法?
(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?
(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?
(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?
备选例题
例1. 7位同学站成一排,
(1)甲、乙两同学必须相邻的排法共有多少种?
(2)甲、乙和丙三个同学都相邻的排法共有多少种?
(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?
(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起
说明:对于相邻问题,常用“捆绑法”(先捆后松).
例2.7位同学站成一排,
(1)甲、乙两同学不能相邻的排法共有多少种?
(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?
分析:对于不相邻问题,常用“插空法”(特殊元素后考虑).
三、课堂练习:
1.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?
2.一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?
3. 由数学1,2,3,4,5组成没有重复数学的五位数,其中偶数共有多少个?
4.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种
5. 用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()(A)288个(B)240个(C)144个(D)126个
6. 记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()
A.1440种B.960种C.720种D.480种
7. 5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列
8.某商场中有10个展架排成一排,展示10台不同的电视机,其中甲厂5台,乙厂3台,丙厂2台,若要求同厂的产品分别集中,且甲厂产品不放两端,则不同的陈列方式有多少种?
四、课堂小结
1.排列的概念;由排列的定义可知,一是“取出元素”;二是“按照一定顺序排列”.排列与元素的顺序有关,也就是说与位置有关的问题才能归结为排列问题.当元素较少时,可以根据排列的意义写出所有的排列.
2.排列数公式:
(1)(2)(1)
m
n
A n n n n m
=---+
=
!
()!
n
n m
-(,,
m n N m n
*
∈≤)
3.解决排列应用题,常用的思考方法有直接法和间接法
类和分步,直接计算符合条件的排列数;间接法:对于有限制条件的排列应用题,可先不考虑限制条件,把所有情况的种数求出来,然后再减去不符合限制条件的情况种数.对于有限制条件的排列应用题,要恰当地确定分类与分步的标准,防止重复与遗漏
4. 对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑
5对于相邻问题,常用“捆绑法”(先捆后松);对于不相邻问题,常用“插空法”(特殊元素后考虑).
五、课外作业
1.第27页习题1.2 A组1 , 2 , 3,4,5
2 优化探究第5页《排列》。