土的基本物理力学指标
土的三项基本物理指标

土的三项基本物理指标土是我们日常生活和工程建设中经常接触到的一种物质。
要了解土的性质,就需要关注一些重要的物理指标。
其中,土的三项基本物理指标分别是土的密度、土的含水率和土的孔隙比。
首先来说说土的密度。
土的密度简单来讲,就是单位体积土的质量。
它反映了土的密实程度。
密度越大,说明土颗粒之间排列得越紧密;密度越小,则土颗粒之间的空隙相对较大。
在实际工程中,土的密度对于计算地基承载力、判断填土的压实程度等都具有重要意义。
比如说,在修建道路时,如果填土的密度不够,就容易出现下沉、塌陷等问题。
土的密度又分为天然密度、干密度和饱和密度。
天然密度就是土在天然状态下单位体积的质量。
干密度则是把土中的水分全部去除后,单位体积土的质量。
饱和密度是指土在饱和状态下单位体积的质量。
测定土的密度,常用的方法有环刀法、灌砂法和灌水法等。
环刀法适用于细粒土,操作相对简单。
灌砂法和灌水法适用于测定粗粒土和巨粒土的密度。
接下来谈谈土的含水率。
土的含水率指的是土中水的质量与土粒质量之比,用百分数表示。
含水率的大小直接影响着土的物理力学性质。
比如,含水率高的土,其强度往往较低,压缩性较大。
在工程中,准确测定土的含水率对于判断土的状态(如坚硬、可塑、流塑等)以及计算土的干密度等都非常重要。
常见的测定土含水率的方法有烘干法、酒精燃烧法等。
烘干法是测定含水率的标准方法,但需要较长的时间。
酒精燃烧法速度较快,但精度相对较低,适用于现场快速测定。
最后说说土的孔隙比。
孔隙比是指土中孔隙体积与土粒体积之比。
它反映了土中孔隙的大小和数量。
孔隙比越大,说明土中的孔隙越多,土越疏松;孔隙比越小,土越密实。
孔隙比在评价土的压缩性和渗透性方面有着重要的作用。
压缩性高的土,孔隙比较大;渗透性好的土,孔隙比通常也相对较大。
要确定土的孔隙比,需要先测定土的密度、含水率等指标,然后通过计算得出。
总的来说,土的密度、含水率和孔隙比这三项基本物理指标,是我们认识和研究土的性质的重要依据。
土力学实验指导书

实验一 土的三项基本物理性指标的测定一、实验目的土的三项基本物理性指标是指土粒比重ds 、土的含水量w 和密度ρ,一般由实验室直接测定其数值。
在测定这三个基本指标后,可以换算出其余各个指标。
二、实验原理和方法 1.土粒相对密度ds土粒质量与同体积的4℃时纯水的质量比,称为土粒比重(无量纲),亦称土粒相对密度,即式中 ρs ——土粒密度,即土粒单位体积的质量,g/cm 3;ρw1——4℃时纯水的密度,等于1g/cm 3或1t/ m 3。
一般情况下,土粒相对密度在数值上就等于土粒密度,11ds w ss w s V m ρρρ==但两者的含义不同。
土粒比重决定于土的矿物成分,一般无机矿物颗粒的比重为2.6~2.8;有机质为2.4~2.5;泥炭为1.5~1.8。
土粒(一般无机矿物颗粒)的比重变化幅度很小。
土粒比重可在试验室内用比重瓶法测定。
通常也可按经验数值选用,一般土粒土粒相对密度参考值见下表。
土粒相对密度参考值2.土的含水量w土中水的质量与土粒质量之比,称为土的含水量,用百分数表示,即%100⨯=swm m ω含水量w 是标志土含水程度(湿度)的一个重要物理指标。
天然土层的含水量变化范围很大,它与土的种类、埋藏条件及所处的自然地理环境等有关。
土的含水量通常采用“烘干法”测定。
从含水量的定义可知,实验的关键是怎样测得一块土中所含水份质量以及颗粒质量。
所谓烘干法便是为此设计的一种实验方法。
先称小块原状土样的湿土质量,然后置于烘箱内维持100~105℃烘至恒重,再称干土质量,湿、干土质量之差与干土质量的比值,就是土的含水量。
计算公式为:%1000221⨯--=m m m m ω 式中: W ——含水量(%) m 1——盒加湿土质量(g ) m 2——盒加干土质量(g )m 0——铝盒的质量(g ),按盒号查表可得,由实验室提供。
3.土的密度ρ土单位体积的质量称为土的密度,g/cm 3。
在天然含水量情况下的密度称为天然密度,即Vm =ρ 测定密度的目的是为了了解土体内部结构的密实情况。
土的三项基本物理性质指标

土的三项基本物理性质指标土的物理力学基本指标知识点主要分为:质量密度;孔隙比;孔隙率;含水量;饱和度;界限含水量;液限;塑限;塑性指数;液性指数;渗透系数;内摩擦角与黏(内)聚力等。
土的物理力学基本指标土的三相(固体颗粒、水和气)组成特性,构成了其许多物理力学特性。
相同成分和结构的土中,土的三相之间具备相同的比例。
土的三相共同组成的重量和体积之间的比例关系相同,则土的重量性质(重、轻情况)、不含水性(含水程度)和孔隙性(规整程度)等基本物理性质各不相同,并随着各种条件的变化而发生改变。
比如对同一成分和结构的土,地下水位的增高或减少,都将发生改变土中水的含量;经过压实,其孔隙体积将增大。
这些情况都可以通过适当指标的具体内容数字充分反映出。
土的物理力学基本指标主要有: ①质量密度;②孔隙比;③孔隙率;④含水量;⑤饱和度;⑥界限含水量:黏性土由一种物理状态向另一种物理状态转变的界限状态所对应的含水量;⑦液限:土由流动状态转入可塑状态的界限含水量,是土的塑性上限,称为液性界限,简称液限;⑧塑限:土由可塑状态转为半固体状态时的界限含水量为塑性下限,称为塑性界限,简称塑限;⑨塑性指数:土的液限与塑限之差值;⑩液性指数:土的天然含水量与塑限差值与塑性指数之比值;⑾渗透系数:土被水透过称为土的渗透性,水在土孔隙中流动则为渗流。
在一定水力梯度下,渗流速度反映土的渗透性强弱,渗透系数是渗流速度与水力梯度成正比的比例系数;⑿内摩擦角与黏(内)聚力:土的抗剪强度由滑动面上土的黏聚力(阻挡剪切)和土的内摩阻力两部分组成,摩阻力又与法向应力成正比,其中内摩擦角反映了土的摩阻性质。
因而内摩擦角与黏聚力是土抗剪强度的两个力学指标。
土的物理力学性质及其指标

土的物理力学性质及其指标1. 体积重是指土壤单位体积的质量,通常用单位是千克/立方米(kg/m^3)或兆帕(MPa)表示。
体积重是土壤力学性质的重要参数,它直接影响土体的承载能力和稳定性。
体积重的大小与土壤颗粒密度、含水量和孔隙度有关。
2.孔隙比是指土壤中孔隙体积与总体积的比值,即孔隙度。
孔隙比能够反映土壤孔隙结构和孔隙连通性,对土壤的透水性、保水性和通气性等性质有重要影响。
孔隙比的大小与土壤颗粒颗粒的形态、大小和堆积密度等因素有关。
3.毛细吸力是指土壤孔隙中水分上升或下降所受到的作用力。
毛细吸力与土壤含水量、孔隙度、土壤颗粒大小和水表面张力等因素有关。
毛细吸力对土壤水分运移和供水能力有着重要影响,也是评价土壤保水能力和透水性的重要指标。
4.剪切强度是指土壤在剪切应力作用下的抗剪能力。
剪切强度是土体抗剪破坏的重要参数,直接影响土壤的稳定性和承载力。
土壤的剪切强度与土壤颗粒间的内聚力、黏聚力和有效应力等有关。
此外,还有一些与土壤物理力学性质相关的指标,如孔隙水压力、压缩系数、孔隙率等。
5.孔隙水压力是指土壤孔隙中水分所受到的压力。
它与土壤含水量、孔隙度和毛细吸力等因素有关。
孔隙水压力对土壤水分状态和土壤力学性质具有重要影响。
6.压缩系数是指土壤在外力作用下体积变化与应力之间的关系。
压缩系数反映土壤的压缩性质,与土壤的固结和液化等问题密切相关。
7.孔隙率是指土壤孔隙体积与总体积的比值,即孔隙系数。
孔隙率能够反映土壤孔隙结构和蓄水性能,也是评价土壤质地和透水性的一项重要指标。
这些物理力学性质和指标是描述土体力学性质和水分运移特性的重要参数,对土壤科学研究、土壤工程设计和农田管理等具有重要的理论和实际意义。
各土层物理力学性能指标

各土层物理力学性能指标土层物理力学性能指标是描述土层在受力下的物理学性能的参数,主要包括强度指标、变形指标和渗流指标。
以下将详细介绍各土层物理力学性能指标。
一、强度指标:1.抗压强度:表示土体抵抗垂直压缩力的能力。
一般分为极限抗压强度和终端抗压强度两种。
极限抗压强度是土体在快速加载下失效破坏的抗压强度,终端抗压强度是土体在无限时间加载下失效破坏的抗压强度。
2.抗剪强度:表示土体抵抗剪切力的能力。
常用的指标有剪切强度、内摩擦角和剪胀特性。
剪切强度是土体在剪切加载下失效破坏的抗剪强度;内摩擦角是土体抗剪切力的一个重要参数,描述土体内部颗粒间的摩擦阻力;剪胀特性是土体在剪切加载下发生的体积变化。
3.抗拉强度:表示土体抵抗拉力的能力。
土体的抗拉强度较弱,一般可忽略。
二、变形指标:1.压缩性:土体在承受一定应力后发生的压缩变形。
常见的指标有压缩模量和压缩指数。
压缩模量是描述土体吸水压缩性质的指标;压缩指数是描述土体吸水压缩特性的指标。
2.鼓包性:土体在受到一定的水平应力作用下发生的体积膨胀。
常见的指标有鼓包应力和鼓包系数。
鼓包应力是描述土体水平膨胀特性的指标;鼓包系数是描述土体鼓包性质的指标。
3.剪切变形:土体在受到剪切应力作用下的变形行为。
常用的指标有剪切模量和剪切变形密度。
剪切模量是描述土体剪切变形特性的指标;剪切变形密度是描述土体变形程度的指标。
三、渗流指标:1.渗透性:土体内部孔隙中水分运动的能力。
常用指标有渗透系数和渗透率。
渗透系数是描述土体渗透性的指标;渗透率是描述土体渗透性的指标。
2.孔隙度:表示土体中有效孔隙体积与全体积之比。
孔隙度是描述土体渗透性和储水性的重要参数。
3.渗透容限:土体在承受应力下发生的渗透变形。
渗透容限是描述土体渗透性变形特性的指标。
以上是各土层物理力学性能指标的详细介绍。
不同土层具有不同的力学性能指标,了解和研究土层的物理力学性能指标对于工程设计和建设具有重要意义。
土力学第五讲

测定emax、 emin时人为因素影响较大
Dr 主要应用于填方质量的控制,对于天然土尚难应用
华北电力大学 可再生能源学院
11
现场试验法
标准贯入试验
静力触探试验 63.5kg的钢锤,提升76cm,使 贯入器贯入土中30cm所需要的 锤击数N63.5--标准贯入试验(先
打入土中15cm不计数) 砂类土的密实度
2
换算关系式推导
md ( 1 + w ) r d r r s w s w r = = ? V 1 + e 1 + e ( 1 + w )
干密度计算:
md r r 1 r r s sw d d r = = = Þ = = d V1 + e1 + w 1 + ed r r sw s
孔隙比:
d ( 1 + w ) r d r r s w s w e = -1e = -1 =s-1 r r r d d
同样的e=0.35,对砂1处于最密实状态,而对砂2未达到最密实。 缺点:用一个指标e无法反映土的粒径级配的因素 华北电力大学 可再生能源学院
9
方法的评价 优点:应用方便简捷 缺点:无法反映土的粒径级配的好与坏
华北电力大学 可再生能源学院
10
相对密实度法
emax e Dr emax emin
2.分类 根据土的密实度进行划分,粉土的密实度以孔隙比为划分标准:e≥0.85为稍密; 0.7≤e<0.85为中密;e<0.7为密实。
3.工程性质 粉土的性质介于砂类土与粘性土之间。它既不具有砂土透水性大、容易 排水固结、抗剪强度较高的优点,又不具有粘性土防水性能好、不易被水
冲蚀流失、具有较大粘聚力的优点。在许多工程问题上,表现出较差的性
各土层物理力学性能指标

各土层物理力学性能指标土层物理力学性能指标是描述土体固体物理性质的指标,可以用来评价土体的稳定性、抗冲刷性、渗透性等,常用指标包括体积重、单位重、孔隙比、含水率、饱和度、压缩性和剪切性能等。
1.体积重:体积重是指单位体积土体所受重力的大小。
体积重与土壤颗粒的密度有关,一般通过测定单位体积土样的质量和体积来计算。
体积重的大小直接关系到土壤的承载力和稳定性。
2.单位重:单位重是指单位体积土体的质量。
它是体积重的倒数,单位是kN/m3、单位重通常用来计算土体的水力学性质、液化性、动力响应等。
3.孔隙比:孔隙比是指土体中孔隙体积与总体积之比,是衡量土质疏松程度和渗透性的重要指标。
孔隙比越大,土体的渗透性越好。
4.含水率:含水率是指土体中含有的自由水的质量与干土质量之比。
含水率的大小直接影响土体的拟静力稳定性、渗透性、压缩性等。
5.饱和度:饱和度是指研究对象中孔隙中所含水的体积与总体积之比。
饱和度直接影响土体的渗透性、固结性、剪切强度等。
6.压缩性:压缩性是指土体在所受应力作用下体积发生变化的能力。
土壤的压缩性与孔隙分布和组成、饱和度、孔隙比等因素密切相关。
7.剪切性能:剪切性能是指土壤在受到剪切应力作用下的变形能力。
剪切性能是评价土体的抗剪强度和变形特性的重要指标。
除了上述指标外,还有其他一些指标也常用于描述土层的物理力学性能。
例如:-泊松比:泊松比是指材料在受到拉伸或压缩时沿着应变方向的变化与垂直方向的变化之比。
泊松比是评价土体的压缩性和弹性度量的重要指标。
-弹性模量:弹性模量是指材料在受力后恢复原状的能力。
弹性模量是衡量土壤抗剪切性能和变形能力的重要参数。
-液塑限度:液塑限度是指土壤从固态过渡到半固态和可塑态的水分含量范围。
液塑限度对土壤的可塑性和压缩性具有重要作用。
这些土层物理力学性能指标可以根据实际需要在实验室中进行土壤试验,以了解土体的性质,为土方工程、地基处理、地质工程设计等提供依据。
土力学土的物理性质指标

• 土颗粒比重:
指土体在105º-110ºC的温度下烘至恒量时的重量或
质量与土颗粒同体积的4ºC时蒸馏水的重量或质量之比。
Gs
Ws
Vs
Gs
ms
Vs
水的容重=9.81KN/m3,水的密度=1g/cm3
土颗粒的比重与土体中的水和气体无关
土颗粒比重一般介于2.65-2.75之间
• 测定方法:
比重瓶法、浮称法、虹吸筒法
1) 土颗粒体积
8) 浮密度
2) 孔隙体积
9) 湿密度
3) 土颗粒质量
10) 干密度
4) 水的质量
11) 孔隙率
5) 水的体积
12) 饱和度
6) 气体体积
13) 土颗粒的容重
7) 饱和密度
14) 土体的容重
• 已知,
求解-1
• 1)由
可得,
则土颗粒体积为:
• 2)孔隙体积为:
• 3)由
可得,土颗粒质量为:
Ws Vs (KN / m3 )
V
• 浮密度:指土体淹没在水下面的有效密度,这时土颗粒 受到水的浮力作用,其有效质量减小。
ms Vs (g / cm3 )
V • 浮容重与浮密度的关系:
9.81
间接测定指标-5
• 干容重:指干土的容重,这时土体的孔隙中没有水。
d
Ws V
(KN
s 9.81s
直接测定指标-3
• 土体的容重:指单位体积土体的重量。 也称湿容重、
天然容重。 W (KN / m3 )
V • 土体的密度:指单位体积土体的质量。也称湿密度、
天然密度。 m (g / cm3 )
V
• 土体的容重一般介于16.0-19.0KN/m3,
岩土主要物理力学指标参考值

岩土主要物理力学指标参考值
1、稳定性指标参考值:
1.1压缩模量:水泥改良的砂、砾状粘结土的压缩模量一般在100-
500kPa,粉状粘结土的压缩模量在200-1000kPa,蠕变模量在101-500kPa。
1.2抗拉强度:水泥改良的砂、砾状粘结土的抗拉强度一般在0.1-
2.0kPa,粉状粘结土的抗拉强度在0.2-4.0kPa,蠕变强度在0.3-5.0kPa。
1.3抗剪强度:水泥改良的砂、砾状粘结土的抗剪强度一般在0.1-
2.5kPa,粉状粘结土的抗剪强度一般在0.2-7.0kPa,蠕变强度一般在
0.4-7.5kPa。
1.4抗冲击强度:水泥改良的砂、砾状粘结土的抗冲击强度一般在
0.1-2.5kPa,粉状粘结土的抗冲击强度一般在0.2-7.0kPa,蠕变强度一
般在0.3-8.0kPa。
2、抗损伤指标参考值:
2.1抗湿胀系数:水泥改良的砂、砾状粘结土的抗湿胀系数一般在
0.1-2.5,粉状粘结土的抗湿胀系数一般在0.2-5.0,蠕变系数一般在
0.3-6.0。
2.2抗冻结强度:水泥改良的砂、砾状粘结土的抗冻结强度一般在
0.1-2.5MPa,粉状粘结土的抗冻结强度一般在0.2-7.0MPa,蠕变强度一
般在0.4-7.5MPa。
2.3抗集水能力:水泥改良的砂、砾状粘结土的抗集水能力一般在
0.2-1.5kPa,粉状粘结土的抗集水能力一般在0.4-3.0kPa。
土的三个基本物性指标试验

⼟的三个基本物性指标试验⼟的三个基本物性指标试验第⼀节⼟粒⽐重试验(⽐重瓶法)⼀、试验⽬的测定⼟粒⽐重,为计算⼟的孔隙⽐、饱和度以及为⼟的其他物理⼒学试验(如颗粒分析的密度计法试验、压缩试验等)提供必要的数据。
⼆、基本原理⼟粒⽐重是指⼟在温度100~105oC下烘⾄恒重时的质量与同体积纯⽔在4oC时质量的⽐值。
⼟粒的质量可⽤精密天秤测得。
⼟粒的体积⼀般应⽤排出与⼟粒同体积之液体的体积⽅法测得,通常⽤⽐重瓶法。
此法适⽤于粒径⼩于5mm或者含有少量5mm颗粒的⼟。
粒径⼤于5mm的⼟,则⽤虹吸筒法。
对于砂⼟,可⽤⼤型的李⽒⽐重瓶法,其原理均与⽐重瓶法相似。
在⽤⽐重瓶法测定⼟粒体积时,必须注意,所排开的液体体积必须能代表固体颗粒的真实体积。
⼟中含有⽓体,试验时必须把它排尽,否则影响测试精度。
可⽤煮沸法或抽⽓法排除⼟内⽓体。
所⽤的液体⼀般为纯⽔。
若⼟中含有⼤量的可溶盐类、有机质、胶粒时,则可⽤中性液体,如煤油、汽油、甲苯和⼆甲苯,此时必须⽤抽⽓法排⽓。
三、仪器设备1、⽐重瓶:容量为100cm3或50cm3, 有短颈式与长颈式两种(图2-1);2、分析天秤:称量200g,最⼩分度值0.001g;3、恒温⽔槽;准确度应为±1oC;4、砂浴:能调节温度;5、真空抽⽓设备(图2-2);6、温度计:测定范围为0~50oC,精确⾄0.5oC;7、其它:烘箱、纯⽔、中性液体、⼩漏⽃、⼲⽑⼱、⼩洗瓶、磁钵及研棒、孔径为2mm 筛等。
图2-1 ⽐重瓶a-短颈式b-长颈式图2-2 抽⽓装置⽰意图1-压⼒表2-真空缸3-⽐重瓶接真空泵四、操作步骤 1、⼟样的制备取有代表性的风⼲⼟样约100g, 充分研散,并全部过2mm 的筛。
将过筛风⼲⼟及洗净的⽐重瓶在100~105oC 下烘⼲;取出后置于⼲燥器内,冷却⾄室温称量后备⽤。
2、测定⼲⼟的质量称烘⼲⼟15g , 通过漏⽃装⼊已知质量的烘⼲⽐重瓶中,然后在分析天平上称得瓶加⼟的质量(精确⾄0.001g ),减去瓶的质量即得⼟粒质量m s 。
土的经验参数(物理指标、压缩、变形模量、剪切强度)

土的经验参数(物理指标、压缩、变形模量、剪切强度)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN有关土的经验参数一、原状土物理性质指标变化范围原状土物理性质指标变化范围,见表3-3-28。
注:粘砂土3<I p≤7;砂粘土 7<I p≤17二、土的平均物理、力学性质指标,见表3-3-29。
土的平均物理、力学性质指标,见表3-3-29。
注:①平均比重采取:砂——2.66;粘砂土——2.70;砂粘土——2.71;粘土——2.74;②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。
C u为中间值时E 0 值按内插法确定;③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。
1060d d 32三、土的压缩模量一般范围值土的压缩模量一般范围值,见表3-3-3-。
注:砂粘土7<I p≤7;粘土I p>17四、粘性土剪强度参考值粘性土抗剪强度参考值,见表3-3-31。
注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17五、土的侧压力系数(ξ)和泊松比(u)参考值注:粘土I p>17;粉质粘土10<I p≤17;I p≤10五、变形模量于压缩模量的关系变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。
因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。
变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。
压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。
两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。
土力学知识点总结PDF

土力学知识点总结PDF土力学是土木工程领域中的一个重要分支,它研究土体物理性质、力学性质和变形规律等内容。
土力学知识的掌握对于土木工程的设计、施工和管理具有重要意义。
本文将对土力学的相关知识进行总结,包括土体力学性质、土体压缩、土体强度等内容。
一、土体力学性质1. 土的物理性质:土体的物理性质包括密度、孔隙度、含水率等指标。
其中密度是土体的质量和体积之比,孔隙度是土体含水空隙的体积占总体积的比重,含水率是土体中水分的质量占总质量的比值。
2. 土的力学性质:土的力学性质包括固体土体和饱和土体的力学性质。
固体土体的力学性质由其颗粒间的摩擦力和粘聚力决定,而饱和土体的力学性质受到孔隙水的影响。
3. 土的变形规律:土体在外力作用下会发生变形,其变形规律可以用黏弹性理论进行描述。
土体的压缩变形和剪切变形是土体力学研究的重要内容。
二、土体压缩1. 土体压缩的原因:土体在受到外力作用时会发生压缩变形,其原因主要包括土颗粒间的调配和孔隙水的排出。
2. 土体压缩指标:土体压缩的指标包括压缩系数和压缩模量。
压缩系数表示单位压力下土体的体积变化量与初始体积的比值,压缩模量表示单位压力下土体的应变与应力之比。
3. 土体压缩计算:土体压缩的计算可以采用理论模型和实测数据相结合的方法。
一般通过试验和实测数据来确定土体的压缩系数和压缩模量,然后进行压缩计算。
三、土体强度1. 土体的强度指标:土体的强度指标包括内摩擦角和粘聚力。
内摩擦角是土体颗粒之间的摩擦阻力,粘聚力是土体颗粒间粘聚的力量。
2. 土体强度计算:土体的强度计算可以采用摩擦角和粘聚力的理论模型,通过实验和实测数据来确定土体的强度指标,然后进行强度计算。
4. 土体的抗剪强度:土体在受到剪切应力作用时会发生剪切破坏,其抗剪强度是土体的重要力学性质。
抗剪强度通过直剪试验来确定,它是土体强度的重要指标之一。
四、土体稳定性分析1. 土体的稳定性分析:土体在承受外部荷载作用下可能发生破坏,其稳定性分析是土力学研究的重要内容。
土力学土的物理性质指标

间接测定指标-3
? 饱和容重:指土体处于饱和状态时的容重,或指饱和
土体的容重,这时土体的孔隙中全部充满水。
? sat
?
Ws
? Vv??
V
(KN / m3 )
? 饱和密度:指土体处于饱和状态时的密度,或指饱和
土体的密度,这时土体的孔隙中全部充满水。
? sat
?
ms
? Vv ? ?
V
(g / cm3 )
密度介于1.5-1.8g/cm3之间。 ? ? 9.81?
? 土体的容重与密度的关系: ? 测定方法:
蜡封法、环刀法、灌砂法、灌水法
直接测定指标-4
? 土体的含水率:
反映土体含水的多少。等于土体在105o-110oC的温
度下烘至恒量时所失去的水份的重量或质量与土颗粒
的重量或质量之比。
? ? W? (%)
W ? Ws ? W?
m ? ms ? m?
重量和质量之间的关系
? 重量与质量的区别: 重量:是考虑地球引力影响后自重值,单位:N、KN 质量:是没有考虑地球引力影响的值,单位:g、kg 重量与质量的关系:w=9.81m
? 容重和密度的区别: ? 容重:指单位体积的重量,单位:KN/m3
密度:指单位体积的质量,单位:g/cm3 容重和密度的关系:?=9.81?
? 测定方法:
比重瓶法、浮称法、虹吸筒法
直接测定指标-2
? 土颗粒的容重:指土颗粒的重量与土颗粒的体积之比。
?sBiblioteka ?Ws Vs(KN / m3 )
? 土颗粒的密度:指土颗粒的质量与土颗粒的体积之比
?s
?
ms Vs
(g / cm3 )
夯实土的物理力学指标

夯实土的物理力学指标
夯实土的物理力学指标是衡量土壤夯实程度和稳定性的重要参数。
下面是一些常见的夯实土的物理力学指标:
1.干密度(Dry Density):干密度是指土壤在干燥状态下单位
体积的质量。
单位一般为kg/m³。
干密度越大,代表土壤
夯实程度越高。
2.湿度(Moisture Content):湿度是指土壤中含水量的百分
比。
湿度的变化会影响土壤的夯实效果和稳定性。
3.孔隙比(Porosity):孔隙比是指土壤中的孔隙体积与总体
积之间的比例。
孔隙比越大,表示土壤中的孔隙空间越多,夯实效果越差。
4.压缩性(Compressibility):压缩性是指土壤在受力作用下
的压缩变形程度。
对于夯实土来说,压缩性应尽量小,以
确保土壤具有较好的稳定性。
5.剪切强度(Shear Strength):剪切强度是指土壤在受到剪
切力作用下抵抗剪切破坏的能力。
夯实土的剪切强度应足
够高,以保证土壤不易发生变形和破坏。
为了夯实土壤并控制指标,可以采取以下措施:
•选择合适的夯实方法和夯实工艺,如碾压、振动夯等。
•控制夯实过程中的水分添加量和湿度,避免土壤过于湿润导致夯实困难。
•根据实际情况,进行土壤调配和土工试验,确定合适的配
比和控制指标。
注意,夯实土的物理力学指标是不同的土壤工程项目的关键指标,可以根据具体的工程需求和土壤特性来确定。
ch2 土的物理力学指标及分类

土工原理
水利工程学院
例题分析 【例】某砂土试样,试验测定土粒相对密度Gs=2.7,含水量
ω=9.43%,天然密度ρ=1.66/cm3。已知砂样最密实状态时称 得干砂质量ms1=1.62kg,最疏松状态时称得干砂质量 ms2=1.45kg。求此砂土的相对密度Dr,并判断砂土所处的密 实状态
ms 2 1.45 g / cm 3 V Gs w 1 0.86
相对密实度
土工原理
Dr
emax e 0.42 ∈(1/3,2/3] 中密状态 emax emin
水利工程学院
d min
2.7 土的工程分类 一、分类的目的和原则
土的分类体系就是根据土的工程性质差异将土划分 成一定的类别,目的在于通过通用的鉴别标准,便于在 不同土类间作有价值的比较、评价、积累经验。
sat w sat d
土工原理
水利工程学院
三、换算指标
(1)土的孔隙率
定义:土中孔隙所占总体积之比,用百分数表示。 物理意义:表示土中孔隙大小的程度。
Vv n 100% V
单位: % 范围:粘性土和粉土:(30~60);砂土: (25~45)。
e Gs (1 ) 2.7(1 0.0943 ) 1 1 0.78 1.66
【解答】 砂土在天然状态下的孔隙比
砂土最小孔隙比
d max
m s1 1.62g / cm3 V
砂土最大孔隙比
d min
emax
emin
Gs w
d max
1 0.67
【解答】 m 187 167 100% 11.98%
土的物理状态指标

土的物理状态指标土的物理指标1.4.1土的三相比例指标因为土是三相体系,不能用一个单一的指标来说明三相间量的比例关系,需要若干个指标来反映土中固体颗粒、水和空气之间的量关系。
在土力学中,通常用三相草图来表示土的三相组成图1-10为了确定土的三相比例指标,需要通过试验室测定土的重力密度、含水量和土粒比重,有关实验方法参见《土工试验规程》,这里不予讲述。
得到这三个基本指标图1-10土的三相草图后,其它指标就可通过三相草图的关系得到。
(1)土的重度(g)土的重度定义为土单位体积的重量,单位为(kN/m3)。
其定义式为:(2)土粒比重(d s)土粒比重定义为土粒的质量与同体积纯蒸馏水在4℃时的质量之比,其定义式为:土粒的比重给出的是矿物组合体的密度,由于土中矿物成分相对比较稳定,故土的比重一般变化不大或土的稠度。
1、无粘性土(粗粒土)的密实程度无粘性土的密实度与其工程性质有着密切的关系,呈密实状态时,强度较大,可作为良好的天然地基;呈松散状态时,则是不良地基。
对于同一种无粘性土,当其孔隙比小于某一限度时,处于密实状态,随着孔隙比的增大,则处于中密、稍密直到松散状态。
无粘性土的这种特性,是因为它所具有的单粒结构决定的。
以下介绍与无粘性土的最大和最小孔隙比、相对密实度等有关的密实度指标。
无粘性土的最小孔隙比是最紧密状态的孔隙比,用符号e min表示;其最大孔隙比是土处于最疏松状态时的孔隙比,用符号e max表示。
e min一般采用“振击法”测定;e max一般用“松砂器法”测定。
对于不同的无粘性土,其e min与e max的测定值也是不同的,e max与e min之差(即孔隙比可能变化的范围)也是不一样的。
一般土粒粒径较均匀的无粘性土,其e max与e min之差较小;对不均匀的无粘性土,则其差值较大。
无粘性土的天然孔隙比e如果接近e max(或e min),则该无粘性土处于天然疏松(或密实)状态,这可用无粘性土的相对密实度进行评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计地 震分组 第一组 第二组 第三组 Ⅰ
特征周期值(s) 场地类别 Ⅱ 0.35 0.40 0.45 Ⅲ 0.45 0.55 0.65 Ⅳ 0.65 0.75 0.90 0.25 0.30 0.35
等效剪切 波速(m/s) vse>500 500≥vse>250 250≥vse>140 vse≤140 土的类型 坚硬土或岩石 中硬土 中软土 软弱土
Ⅰ 0 <5 <3 <3
场地类别 Ⅱ Ⅲ
Ⅳ
≥5 3~50 >50 3~15 >15~80 >80 土的类型划分和剪切波速范围 岩 土 名 称 和 性 状 稳定岩石、密实的碎石土
土层剪切波速范围(m/s) vs>500 500≥vs>250 250≥vs>140 vs≤140
中密、稍密的碎石土,密实、中密的砾、粗、 中砂,fak>200的粘性土和粉土,坚硬黄土 稍密的砾、粗、中砂,除松散外的细、粉砂, fak≤200的粘性土和粉土,fak>130填土,可塑黄土 淤泥和淤泥质土,松散的砂,新近沉积的粘性土 和粉土,fak≤130的填土和流塑黄土
注:fak为由载荷试验等方法得到的地基承载力特征值(kpa); vs为岩土剪切波速。
碎石土的密实度 重型圆锥动力触探击数N63.5 密实度 N63.5≤5 5<N63.5≤10 10<N63.5≤20 N63.5>20 松散 稍密 中密 密实
砂土的密实度 标准贯入试验实测击数N 密实度 N63.5≤10 10<N63.5≤15 15<N63.5≤30 N63.5>30 松散 稍密 中密 密实
碎石土的密实度 重型圆锥动力触探击数N120 密实度 N63.5≤3 3<N63.5≤6 6<N63.5≤11 11<N63.5≤14 N63.5Hale Waihona Puke 14 松散 稍密 中密 密实 很密
粘性土的状态 液性指数IL 状态 IL≤0 0<IL≤0.25 0.25<IL≤0.50 0.50<IL≤0.75 0.75<IL≤1 IL>1 坚硬 硬塑 硬可塑 软可塑 软塑 流塑
粉土的密实度 孔隙比e e<0.75 0.75≤e≤0.90 e>0.9 地基土的压缩性 压缩系数a1-2(Mpa-1) a1-2<0.1 0.1≤a1-2<0.5 a1-2≥0.5
密实度 密实 中密 稍密
粉土的湿度 含水量ω ω<20 20≤ω≤30 ω>30
湿度 稍湿 湿 很湿
压缩性 低压缩性 中压缩性 高压缩性