穿根法解不等式及习题

穿根法解不等式及习题
穿根法解不等式及习题

穿根法解不等式

穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。

一、原理

穿根法解不等式时,一般先将其化为形如:

f(x)=(x-x1)(x-x2)…(x-x n)>0 (或<0)

的标准形式,主要考察f(x)的符号规律。

在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。

(一)一次不等式

标准形式:f(x)=x-x1>0 (或<0)

我们将x-x1=0的根x1标在序轴上,可以发现:x1右边的点都是

大于x1的点,即是x-x1>0的解;而x1左边

的点都是小于x1的点,即是x-x1<0的解。

所以可以如图标注,图中+、- 用以表示

f(x)=x-x1的符号。

我们还可以以动态的思想来考察该问题。当一点x=a 从x1右侧向x1左侧移动时,f(x)=x-x1经历了由正到0又到负的符号变换。由此也可得出f(x)的符号可以如图标注的结论。

(二)二次不等式

标准形式:f(x)=(x-x1)(x-x2) >0 (或<0)

(1) x1≠x2时,不妨设x1

将f(x)=0的二根x1、x2标在序轴上,则可以发现:处于(-∞, x1),

(x2,+∞)内的点满足f(x) >0,处于(x1,x2)内的

点满足f(x) <0。

当我们动态考察该问题时,我们也可

以发现:当点x=a在x2右方时,x-x1、x-x2均正,故有f(x) >0;而当点x=a从x2右侧移动到左侧时,x-x2变为负值,而x-x1符号不变,所以有f(x)必然变号,此时由正变负;而再当点x=a从x1右侧移动到左侧时,x-x1由正变负,而x-x2符号不变,所以f(x)又一次变号,此时由负变正。

总之,无论从哪个方面看,f(x)的符号都可以如图标注。

(2) x1=x2时,即形如f(x)=(x-x1)2时

显然,(-∞,x1)与( x1 ,+∞)都是f(x) >0的解。

而若动态的考察此问题,则有

点x=a 从x1右侧移动向左侧移动时,

由于平方项内的x-x1由正到0又到负,所以f(x)经历了由正到0又回

到正的过程。故而f(x)在x1两侧符号同正,只有在x=x1处为0。(三)高次不等式

标准形式:f(x)=(x-x1)(x-x2)…(x-x n)>0 (或<0),x1≤x2≤……≤x n

(1)x1

动态考察f(x)的符号,则有当点x=a在x n右方时,x-x i (i=1,2,…,n)均大于0,故而f(x) >0;而当点x=a从x n右侧移动到左侧时,x-x n符号变化,而其余任一x-x i均不变号,所以有f(x)由正变负;类似可得:对任一i,当点x=a从x i右侧移动到左侧时,x-x i符号变化,而其余

每个x-x j(j≠i)都

不变号,所以有

f(x)必然变号,或

由正变负,或由负变正。就这样,由于每过一个x i都恰有一个因式x-x i变号,所以我们可以从最右上方开始画一条依次穿过各根的线,这正是穿根法的原理和名称由来。

(2)x1≤x2≤……≤x n且有等号成立时

其标准形式可写为

f(x)=(x-x1)m1(x-x2) m2…(x-x n) mn >0 (或<0),

x1

号也不变,原正仍为正,原负仍为负。这里值得一提的是,每当x=x i 成立,即有f(x)= 0。所以,使用穿根法当遇到m i为奇,则穿根线在根x i穿过序轴;当遇到m i为偶,则穿根线与根x i接触即回,好像被序轴弹了回去。此称为“奇穿偶回”。

二、步骤

(一)一元高次不等式

对于不等式f(x) >0,其中f(x)为x的高次多项式,用穿根法解的步骤如下:

(1)整理——原式化为标准型把f(x)进行因式分解,并化简为下面的形式:

f(x)=(x-x1)m1(x-x2) m2…(x-x n) mn >0(或<0),

m i∈N*(i=1,2,…,n)(2)标根——在序轴上标根将f(x)=0的n个不同的根x1,x2,……x n按照大小顺序标在序轴上,将序轴分为n+1个区间。

(3)画线——画穿根线从最大根右上方开始,按照大小顺序依次经过每个根画一条连续曲线,作为穿根线。遇奇次根穿过序轴,遇偶次根弹回,即“奇穿偶回”。

(4)选解——写出解集如例图,在序轴上方的曲线对应的区间为f(x)>0解集,在序轴下方的曲线对应的区间为f(x)<0解集。

(二)分式不等式

一、先将不等式整理成f(x)/g(x)>0或f(x)/g(x)<0的形式,其中,f(x)、g(x)为整式。

二、f(x)·g(x)>0 ·g(x) <0

即将分式不等式转化为整式不等式再处理。

(三)含等号的整式、分式不等式

对于整式不等式,要注意写解集时将各个根包括进去。一般只需将开区间符号改为闭区间符号,同时注意必要时合并区间。

对于分式不等式,尤其要注意分母非0。

f(x)/g(x)≥·g(x)≥0 且g(x)≠0

f(x)/g(x)≤f(x)·g(x)≤0且g(x)≠0

这样就要求在标根时,将能够使不等式成立的根标为实点,否则标为虚点。

(四)注意

分式不等式和高次不等式在化简时每一步变形都应是不等式的等价变形。对于变形中出现的形如x2+px+q=0的因式,若其△≥0,则继续分解。若△<0,则直接消去,因为此时该式恒大于0。

三、应用范例

例1解不等式:(x-1)2(x+1)(x-2)(x+4)<0

具体步骤:

1 将(x-1)2(x+1)(x-2)(x+4)=0的根记入演算数据区。其中,由于1

是偶次根,在其下加一点以区别于其它奇次根。

2 画有向直线作为序轴,在序轴上由小到大、由左到右标根。每

标一根,在数据区相应根下打一标记表示已取。标偶次根时,在序轴该根位置上方或下方加一点,即偶次根标重(cong)点。

3 从最大根2的右上方开始画穿根线,首先让线穿过根2,当接着

到1时,由于1是偶次根,附近有重点,故线被弹回。然后线又依次穿过根-1和-4。如图。

4穿根线与序轴围成的区域,序轴上方标“+”号,表示f(x)在该区间取正值。序轴下方标“-”号,表示f(x)在该区间取负值。

5 所有的根均不能使不等式成立,故各根均标上虚点。

6 写出解集,一般用区间方式列出。

解:用穿根法作图

如右,可知原不等

式解集为:

(-∞,-4)∪(-1,1)∪(1,2)

例2解不等式:(x+2)(x+1)2(x-1)3(x-2)≤0

解:用穿根法作图

如右。(注意“奇

穿偶回”,每个根

都标为实点。)

可知原不等式解集为:(-∞,-2]∪{-1}∪[1,2]

说明:也可将原不等式转化为(x+2)(x+1)2(x-1)(x-2)≤0以后,再用穿根法做。

例3解不等式:(x-1)(x-2)(x-3)(x-4)>120

解:将原不等式变形:

[(x-1)(x-4)][(x-2)(x-3)]-120>0

(x2-5x+4)(x2-5x+6)-120>0

(x2-5x)2+10(x2-5x)-96>0

(x2-5x+16)(x2-5x-6)>0

(x2-5x+16)(x-6)( x+1)>0

∵x2-5x+16恒大于零,于是得与原不等式同解的不等式

(x-6)( x+1)>0

对此也可用穿根法解决,如图

所以,原不等式的解集是:(-∞,-1)∪(6,+∞)

例4解不等式:(3x-5)/( x2+2x-3) ≤2

解:原不等式(3x-5-2x2-4x+6)/(x2+2x-3)≤0

(2x2+4x-6-3x+5)/(x2+2x-3)≥0

(2x2+x-1)/(x2+2x-3)≥0

(x+1)(2x-1)/(x+3)(x-1)≥0

(x+1)(2x-1)(x+3)(x-1)≥0 且(x+3)(x-1)≠0

如图,用穿根法,注意区分实点和虚点,可得原不等式解集为:(-∞,-3)∪[-1,1/2]∪(1,+ ∞)

例5解关于x的不等式:(x-1)(x-t)<0

解:1) t<1时,如图用穿根法,可得原不等式解集为:(t,1)

2)t=1

3)t>1时,如图用穿根法,可得原不等式解集为:(1,t)

例6 若a≠±1,解关于x的不等式

(x-a)/(x+1)(x-1)≤0

解:1) a<-1时,如图用穿根法,

∴原不等式解集为:(-

∞,a)∪(-1,1)

2)-1

法,

∴原不等式解集为:

(-∞, -1)∪[a,1)

3)a>1时,如图用穿根法,

∴原不等式解集为:

(-∞, -1)∪(1, a]

说明:解整式、分式不等式注意事项,可记以下口诀:移项调号,分

解排序,奇穿偶回,分母非零,参数讨论,小心等号。

习题:

1、 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x 解下列分式不等式:

2、 解下列分式不等式:(1)22123+-≤-x x ; (2)12

731422<+-+-x x x x 3、 解不等式242+<-x x

4、 解不等式0412562

2<-++-x x x x 5、 解不等式x x x x x <-+-+222322

解不等式(知识点、题型详解)

不等式的解法 1、一元一次不等式ax b > 方法:通过去分母、去括号、移项、合并同类项等步骤化为ax b >的形式,若0a >,则b x a > ;若0a <,则b x a < ;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈?。 【例1-1】(1)21 33 ax -> 解:此时,因为a 的符号不知道,所以要分:a =0,a >0, a <0这三种情况来讨论. 由原不等式得a x >1, ①当a =0时,? 0>1.所以,此时不等式无解. ② 当a >0时,? x > a 1, ③当a <0时,?x -+-a b x b a 。 解:R a ∈,012>+-a a ∴ 01)1(32 2<+-++-a a x a a 的解为3 1- +b a ∴ 解b a b a x 23)(6+-- < 由题意b a b a 23) (631+--=- ∴ 043>=b a 代入所求:062>--b bx ∴ 3-,12,x x 是 方程2 0ax bx c ++=的两实根,且12x x <,则其解集如下表:

初中数学专题 不等式及其解集试题及答案

第九章不等式与不等式组 9.1 不等式 9.1.1 不等式及其解集 要点感知1 用__________表示大小关系的式子,叫做不等式,用__________表示不等关系的式子也是不等式. 预习练习1-1 下列式子中是不等式的有__________. ①3<4;②2x2-3>0;③5y2-8;④2x+3=7;⑤3x+1<7. 1-2 “b的1 2 与c的和是负数”用不等式表示为__________. 要点感知2使不等式__________的未知数的__________叫做不等式的解. 预习练习2-1以下所给的数值中,是不等式-2x+3<0的解的是( ) A.-2 B.-1 C.3 2 D.2 2-2 不等式3x<9的解的个数有( ) A.1个 B.3个 C.5个 D.无数多个 要点感知3一个含有未知数的不等式的__________,组成这个不等式的解集.求不等式的解集的过程叫做__________. 预习练习3-1(20**·宿迁)如图,数轴所表示的不等式的解集是__________. 知识点1 不等式 1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( ) A.2个 B.3个 C.4个 D.5个 2.“数x不小于2”是指( ) A.x≤2 B.x≥2 C.x<2 D.x>2 3.用不等式表示: (1)x的2倍与5的差不大于1; (2)x的1 3 与x的 1 2 的和是非负数; (3)a与3的和不小于5; (4)a的20%与a的和大于a的3倍. 知识点2 不等式的解集 4.下列说法中,错误的是( )

A.x=1是不等式x<2的解 B.-2是不等式2x-1<0的一个解 C.不等式-3x>9的解集是x=-3 D.不等式x<10的整数解有无数个 5.用不等式表示如图所示的解集,其中正确的是( ) A.x>-2 B.x<-2 C.x≥-2 D.x ≤-2 6.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则( ) A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<13 7.在下列各数:-2,-2.5,0,1,6中,不等式2 3 x>1的解有__________;不等式- 2 3 x>1的 解有__________. 8.由于小于6的每一个数都是不等式1 2 x-1<6的解,所以这个不等式的解集是x<6.这种说法 对不对? 9.x与3的和的一半是负数,用不等式表示为( ) A.1 2 x+3>0 B. 1 2 x+3<0 C. 1 2 (x+3)<0 D.1 2 (x+3)>0 10.下面给出5个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( ) A.2个 B.3个 C.4个 D.5个 11.下列说法正确的是( ) A.2是不等式x-3<5的解集 B.x>1是不等式x+1>0的解集 C.x>3是不等式x+3≥6的解集 D.x<5是不等式2x<10的解集 12.下列不等式中,4,5,6都是它的解的不等式是( ) A.2x+1>10 B.2x+1≥9 C.x+5≤10 D.3-x>-2 13.(20**·长春改编)不等式x<-2的解集在数轴上表示为( )

学习资料不等式及其解集教学设计.doc

《9.1.1不等式及其解集》教学设计 课程名称《 9.1.1不等式及其解集》 授课人教学对象七年级科目数学课时安排1课时 一、教材分析 1教材的地位和作用 本章是新人教版七年级下册第九章的教学内容,此部分内容是在学生继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是进一步探究现实生活中的数量关系、培养学生分析问题和解决问题能力的重要内容,也是今后学习一元二次方程、函数、以及进一步学习不等式知识的基础。通过实际问题中一元一次不等式的应用,进一步增强学生学数学、用数学的意识,体会学数学的价值和意义;相等与不等是研究数量关系的两个重要方面,用不等式表示不等的关系,是代数基础知识的一个重要组成部份,它在解决各类实际问题中有着广泛的应用 1.2本节课的教材内容 本节课的内容主要介绍不等式及不等式的解的概念及解集的表示方法,是研究不等式的导入课,通过实例引入,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望;经历、感受概念形成的过程,使学生正确抓住不等式的本质特征,为进一步学习不等式的性质、解法及简单应用起到铺垫作用. 1.3 学情分析 (1) 学生对实际生活中的不等量关系、数量大小的比较等知识,在小学阶段已有所了解。 (2) 学生已初步具备了“从实际问题中抽象出数学模型,并回到实际问题解释和检验”的数学建模能。 (3) 学生已初步具备探究和比较的能力 二、教学目标及难重点(知识与技能,方法和过程,情感态度与价值观) 教学目标: 2.1知识与技能:了解不等式概念,并理解不等式的解、解集,能够正确表示不等式的解集;经历把实际问题抽象为不等式的过程,能够列出不等关系式。使学生进一步理解归纳和类比的数学方法,以及从具体到抽象获取知识的思维方式;初步体会不等式是刻画现实世界中不等关系的一种有效数学模型。 2.2数学思考:感受生活中的数学问题,发展学生的观察、归纳、猜测、验证能力,领悟数学与现实世界的必然联系。 2.3解决问题:通过经历不等式的得出过程,积累数学活动经验。通过分组活动探索不等式的解与解集,体会在解决问题过程中与他人合作的重要性。 2.4情感态度与价值观:认识通过观察、实验、类比可以获得数学结论,体验数学活动充满着探索性和创造性。在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,学会分享别人的想法和结果,并重新审视自己的想法,能从交流中获益。 教学重点:不等式相关概念的理解和不等式的解集的表示。 教学难点:正确理解不等式解集的意义。 三.教学策略选择与设计 教法:根据本节课教学内容和七年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,揭示事物发展从“特殊”到“一般”再到“特殊”的辩证规律;既提高了学生的学习兴趣,增强了信心,

人教版七年级数学下册《不等式及其解集》拔高练习

《不等式及其解集》拔高练习 一、选择题(本大题共5小题,共25.0分) 1.(5分)不等式组的解集在数轴上表示正确的是()A.B. C.D. 2.(5分)如图,数轴上表示的是某不等式组的解集,那么这个不等式组可能是() A.B.C.D. 3.(5分)据天气预报2018年4月12日大田县的最高气温是32℃,最低气温是21℃,则当天大田县气温t(℃)的变化范围是() A.t>21B.t<32C.21<t<32D.21≤t≤32 4.(5分)若不等式组的解为x<m,则m的取值范围为()A.m≤1B.m=1C.m≥1D.m<1 5.(5分)若关于x的不等式mx+1>0的解集是x<,则关于x的不等式(m ﹣1)x>﹣1﹣m的解集是() A.x B.x C.x D.x 二、填空题(本大题共5小题,共25.0分) 6.(5分)已知关于x的不等式(5a﹣2b)x>3b﹣a的解集是x<,则6ax>7b 的解集是. 7.(5分)不等式组的解集是3<x<a+2,若a是整数,则a等于. 8.(5分)若关于x的不等式(2m﹣n)x+3m﹣4n<0的解集是x>,则关于x 的不等式(m﹣4n)x+2m﹣3n<0的解集是.

9.(5分)若不等式组没有解,则m的取值范围是. 10.(5分)已知不等式式组无解,则a的取值范围为. 三、解答题(本大题共5小题,共50.0分) 11.(10分)定义新运算:对于任意有理数a,b,都有a*b=b(a﹣b)﹣b,等式右边是通常的加法、减法及乘法运算,例如:2*5=5×(2﹣5)﹣5=﹣20.(1)求2*(﹣5)的值; (2)若x*(﹣2)的值大于﹣6且小于9,求x的取值范围,并在如图所示的所画的数轴上表示出来. 12.(10分)在数轴上表示下列不等式 (1)x<﹣1 (2)﹣2<x≤3. 13.(10分)在数轴上表示下列不等式: (1)x>2 (2)﹣2<x≤1. 14.(10分)已知不等式≤. (1)求该不等式的解集; (2)该不等式的所有负整数解的和是关于y的方程2y﹣3a=6的解,求a的值.15.(10分)已知关于x的不等式≤的解是x≥,求m的值.

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数得系数为正。 使用方法: ①在数轴上标出化简后各因式得根,使等号成立得根,标为实点,等号不成立得根要标虚点。 ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“〉”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) 错误!≤1 解: (1) 原不等式等价于(x +4)(x+5)2(x —2)3>0 (2) 根据穿根法如图 不等式解集为 {x x< 1 3 或\f( 1 , 2 )【例2】 解不等式:(1)2x 3-x 2—15x 〉0;(2)(x+4)(x+5)2(2—x)3<0。 【分析】 如果多项式f(x)可分解为n 个一次式得积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法"求解,但要注意处理好有重根得情况、 解:(1)原不等式可化为

x(2x+5)(x-3)〉0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)得阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x〈—4或x >2}、 【说明】 用“穿根法”解不等式时应注意..............:.①各一次项中......x .得.系数必为正.....;.②对于偶次或奇次重根可参照.............(.2.).得解法转化为不含重.........根得不等式.....,.也可直接用“穿根法.........",..但注意...“奇穿偶不穿”.........其法如图.... (5..-.2.). .. 二. 数轴标根法”又称“数轴穿根法” 第一步:通过不等式得诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前得系数为 正数) 例如:将x^3—2x^2—x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x —2)(x-1)(x+1)=0得根为:x 1=2,x 2=1,x 3=—1 第三步:在数轴上从左到右依次标出各根。 例如:—1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”得右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根、 第五步:观察不等号,如果不等号为“〉",则取数轴上方,穿根线以内得范围;如果不等号为“<”则取数轴下方,穿根线以内得范围。x得次数若为偶数则不穿过,即奇过偶不过。 例如:

9.1.1 不等式及其解集(教案)

第九章不等式与不等式组 9.1不等式 9.1.1不等式及其解集 【知识与技能】 1.掌握不等式的概念; 2.理解不等式的解、解集;会在数轴上表示不等式的解集; 3.掌握一元一次不等式的概念; 4.会列出简单实际问题中的不等式. 【过程与方法】 从实例出发,引出不等式的概念,类比于方程的解理解不等式的解.进而理解不等式的解集,并学会在数轴上表示不等式的解集,类比于一元一次方程的概念理解一元一次不等式的概念. 【情感态度】 不等式是现实世界中普遍存在的关系,体验数学来源于实际生活又反过来服务于实际生活,提高同学们学习兴趣. 【教学重点】 不等式的概念,不等式的解、解集的概念,在数轴上表示不等式的解集. 【教学难点】 理解不等式的解集及在数轴上表示不等式的解集. 一、情境导入,初步认识 问题1 一辆匀速行驶的汽车在11:20距离A地50km,要在12:00之前驶过A地,车速满足什么条件? 解:设车速是x千米/时,本题可从两个方面来表示这个关系: (1)汽车行驶50千米的时间<_______. (2)汽车2/3小时(即40分钟)走过的路程______50.从而得到两个表示大小关系的式子: ①_______________,②_______________. 不等式的定义是:___________________. 问题2 在2 50 3 x>中,当x=76,x=75,x=72,x=70时,不等式是否成 立?76,75,72,70哪些是不等式的解,哪些不是?不等式2 50 3 x>的解有多少? 它的所有解组成解的集合,怎样表示它的解集? 【教学说明】 同学们可以分组讨论,然后交流成果.最后解决问题,形成新知.对问题2教师要时时点拨,要参与学生之间去讨论,在用数轴表示x>75时,要使用空心圆圈,务必要强调这一点. 二、思考探究,获取新知 思考1 什么叫不等式?什么叫不等式的解、解集?什么叫解不等式?什么叫一元一次不等式? 思考2 怎样在数轴上表示不等式的解集?

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点, 等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿 透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使 “<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或 (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图

不等式解集为 {x x< 1 3 或 1 2 ≤x ≤1或x>2}. 【例2】 解不等式:(1)2x 3-x 2-15x >0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】 如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】 用“穿根法”解不等式时应注意:①各一次项中.....................x .的系..数必为正;②对于偶次或奇次重根可参照..................(2)...的解法转化为不含重根..........的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿”........其法如....图.(5..-.2).. ..

不等式及其解集练习题资料讲解

不等式及其解集练习题 一、填空题: 1.用“<”或“>”填空: ⑴4_____-6; (2)-3_____0;(3)-5_____-1;(4)6+2______5+2;(5)6+(-2)_____5+(-2);(6)6×(-2)______5×(-2). 2.用不等式表示: (1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______; (4)a 是非负数______; (5)a 的2倍比10大______; (6)y 的一半与6的和是负数______; (7)x 的3倍与5的和大于x 的3 1 ______; (8)m 的相反数是非正数______. 3.直接想出不等式的解集: (1) x +3>6的解集 ; (2)2x <12的解集 ; (3)x -5>0的解集 ; (4)0.5x >5的解集 ; 4.当X_______时,代数式2X-5的值为0, 当X_______时,代数式2X-5的值不大于0. 5.不等式的解集在数轴上表示如图所示,则该不等式可能是_____________. 6.当x_______时,代数式2x -5的值为0, 当x_______时,代数式2x -5的值不大于0. 7.不等式-5x ≥-13的解集中,最大的整数解是__ . 8.不等式x+3≤6的正整数解为_______________. 9.不等式-2x <8的负整数解的和是______. 10.一个不等式的解集如图所示,则这个不等式的正整数解是_______________. 4 3210-1 二、选择题: 1.下列不等式的解集,不包括-4的是( ) A.X ≤-4 B.X ≥-4 C.X <-6 D.X >-6 2.不等式x -3>1的解集是( ) A.x >2 B. x >4 C.x >-2 D. x >-4 3.不等式2X <6的非负整数解为( ) A.0,1,2 B.1,2 C.0,-1,-2 D.无数个 4.用不等式表示图中的解集,其中正确的是( ) A. X ≥3 B. X >3 C. X <3 D. X ≤3 5.下列说法中,错误的是( ) A.不等式x <5的整数解有无数多个 B.不等式x >-5的负整数解有有限个 C.不等式-2x <8的解集是x <-4 D.-40是不等式2x <-8的一个解 6.下列说法正确的是( ) A.x =1是不等式-2x <1的解集 B.x =3是不等式-x <1的解集 C.x >-2是不等式-2x <1的解集 D.不等式-x <1的解集是x >-1 7.下列不等式中,正确的是( ). A.4385-<- B.5 1 72< C.(-6.4)2<(-6.4)3 D.-|-27|<-(-3)3 8.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-3 9.如果a 、b 表示两个负数,且a <b ,则( ). A. 1>b a B.1

9.1.1 不等式及其解集教案

9.1.1 不等式及其解集教案1 【教学目标】: 1、了解不等式概念;理解不等式的解集。 2、能用数轴表示不等式的解集。 【教学重点】: 正确理解不等式及不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 【教学难点】: 正确理解不等式解集的意义. 【教学过程】: 一、情境导入,初步认识 问题1 一辆匀速行驶的汽车在11:20距离A地50km,要在12:00之前驶过A地,车速满足什么条件? 解:设车速是x千米/时,本题可从两个方面来表示这个关系: (1)汽车行驶50千米的时间<_______. (2)汽车2/3小时(即40分钟)走过的路程______50.从而得到两个表示大小关系的式子: ①_______________,②_______________. 不等式的定义是:___________________. 问题2 在2 50 3 x>中,当x=76,x=75,x=72,x=70时,不等式是否成立?76,75,72,70哪些是 不等式的解,哪些不是?不等式2 50 3 x>的解有多少?它的所有解组成解的集合,怎样表示它的解集? 【教学说明】 同学们可以分组讨论,然后交流成果.最后解决问题,形成新知.对问题2教师要时时点拨,要参与学生之间去讨论,在用数轴表示x>75时,要使用空心圆圈,务必要强调这一点. 二、思考探究,获取新知 思考1 什么叫不等式?什么叫不等式的解、解集?什么叫解不等式?什么叫一元一次不等式? 思考2 怎样在数轴上表示不等式的解集? 【归纳结论】 1.定义:用“<”或“>”或“≠”表示大小关系的式子,叫做不等式. 不等式的解集:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集. 解不等式:求不等式的解集的过程叫做解不等式. 一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.

数轴标根法又称数轴穿根法或穿针引线法

“数轴标根法”又称“数轴穿根法”或“穿针引线法” 是高次不等式的简单解法 当高次不等式f(x)>0(或<0)的左边整式、分式不等式φ(x)/h(x)>0(或<0)的左边分子、分母能分解成若干个一次因式的积(x-a1)(x-a2)…(x -an)的形式,可把各因式的根标在数轴上,形成若干个区间,最右端的区间f (x)、φ(x)/h(x)的值必为正值,从右往左通常为正值、负值依次相间,这种解不等式的方法称为序轴标根法。 为了形象地体现正负值的变化规律,可以画一条浪线从右上方依次穿过每一根所对应的点,穿过最后一个点后就不再变方向,这种画法俗称“穿针引线法”,如图1(图片自上而下依次为图一,二,三,四)。 步骤 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x前的系数为正数) 例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。 第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。x的次数若为偶数则不穿过,即奇过偶不过。 例如: 若求(x-2)(x-1)(x+1)>0的根。

在数轴上标根得:-1 1 2 画穿根线:由右上方开始穿根。 因为不等号为“>”则取数轴上方,穿跟线以内的范围。即:-12。(如图四) 奇过偶不过 就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过 (X-1)^2. 0点的。但是对于X奇数幂项,就要穿过0点了。还有一种情况就是例如: 当不等式里出现这种部分时,线是不穿过1点的。但是对于如(X-1)^3的式子,穿根线要过1点。也是奇过偶不过。可以简单记为“奇穿过,偶弹回”。(如图三,为(X-1)^2) 注意事项 运用序轴标根法解不等式时,常犯以下的错误: 出现形如(a-x)的一次因式时,匆忙地“穿针引线”。 例1 解不等式x(3-x)(x+1)(x-2)>0。 解 x(3-x)(x+1)(x-2)>0,将各根-1、0、2、3依次标在数轴上,由图1可得原不等式的解集为{x|x<-1或03}。 事实上,只有将因式(a-x)变为(x-a)的形式后才能用序轴标根法,正确的解法是: 解原不等式变形为x(x-3)(x+1)(x-2)<0,将各根-1、0、2、3依次标在数轴上,,原不等式的解集为{x|-1

关于不等式与不等式组练习试题包括答案x

第九章不等式与不等式组 测试1不等式及其解集 学习要求: 知道不等式的意义;知道不等式的解集的含义;会在数轴上表示解集. (一)课堂学习检测 一、填空题: 1?用“V”或“>”填空: (1)4 _____ —6; (2) — 3 _____ 0; G) — 5 ______ — 1 ; @)6+2 ________ 5+ 2; (5)6 + ( - 2) _________ 5+(—2); (6) _____________ 6 X (一 2) 5 X (- 2). 2. 用不等式表示: (l) _________________ m — 3是正数 ___________________ ; (3)x 不大于2 _______ ; (5)8的2倍比10大 ________ : (7) x 的3倍与5的和大于x 的1 (8) m 的相反数是非正数 _______ 3. 画出数轴,在数轴上表示出下列不等式的解集: (2)x2 — 4. (3) 二、选择题: ⑵y+5是负数 _________ ; (4) a 是非负数 _______ ; (6)y 的一半与6的和是负数

4?下列不等式中,正确的是() (B)J 丄 7 5 8 4

5?“a的2倍减去b的差不大于一3”用不等式可表示为() (A)2 a- b<- 3 C )2 a — bW — 3 三、解答题:?)2( a- b) <~ 3 ?)2( a- b) W- 3 6.利用数轴求出不等式一2< xW4的整数解.

-、填空题: ⑴一一: ⑵-5 ; 1112 (3) 1-31⑷ a2+ 1 (5)0 1 x 1 + 4:(6) a+ 2 a. 3 “%的_与5的差不小于一4的相反数”,用不等式表示为 2 二、选择题: 9.如果&、b表示两个负数,且a b是有理数,下列各式屮成立的是 (A)若a> b,则a2> b2 C)若b,则丨a I H I b I 12.I a I + a的值一定是(). (A)大于零小于零 三、判断题: 13.不等式5-x> 2的解集有无数多个. 14.不等式x>- 1的整数解有无数多个. 15.不等式 - 2 X 4-的整数解有0、23 16.若a> b> 0> …ab c,则一0. C (B) 一2V xW 4 0) — 2W xW 4 ()? ?)若a2> b2,则a> b 0)若丨a I H I b I ,贝ij dHb C)不大于零0)不小于零 () () 1、2、 3、4. () () 四、解答题: (二)综合运用诊断

高次不等式的解法

高次不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4 (2) 变形为 (2x-1)(x-1) ≥0 根据穿根法如图

不等式解集为 {x x<1 3 或 1 2 ≤x≤1或x>2}. 【例2】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“穿根法”解不等式时应注意:①各一次项中 .....................x.的系 .. 数必为正;②对于偶次或奇次重根可参照..................(2) ...的解法转化为不含重根 .......... 的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿” ........其法如 ....图.(5..-.2)....

《不等式及其解集》教学设计

《不等式及其解集》教学设计 授课教师:广州市晓园中学数学科胡海宁 一、教学目标 1.知识与技能: 了解不等式及一元一次不等式概念。理解不等式的解、解集,能正确表示不等式的解集。 2.过程与方法: (1)通过类比等式的对应知识,探索不等式的概念和解,体会不等式与等式的异同,初步掌握类比的思想方法。 (2)经历把实际问题抽象为不等式的过程,能够列出不等关系式。初步体会不等式(组)是刻画现实世界中不等关系的一种有效数学模型,培养学生的建模意识。 3.情感态度与价值观: 通过对不等式概念及其解集等有关概念的探索,培养学生的知识迁移能力和建模意识,加强同学之间的使用与交流。 二、教学重点、难点 1.重点:不等式、不等式的解、解集的概念、不等式解集的表示。 2.难点:不等式解集的理解与表示。 三、教学过程 教学环节教师活动学生活动设计意 图 导思:问题导入引导探究 引言:自然界和社会存在中,两量之间, 存在着等量关系,但更多的是——不等量关系。 举例:请同学们说出下列两量之间的关系: 1、a表示正数,b表示负数 2、汽车的速度m(千米/时),低于80(千米/ 时) 3、李明的体重48(千克)不等于王平的体重 51(千克) 4、a2是一个非负数. 5、m+1不大于0. 6、高速路上汽车速度x(千米/时),不得超过120 (千米/时) 【小组讨论】 回答:1.a>b 2.m<80 3.48≠51 4. a2≥0 5. m+1≤0 6.x≤12 通过实例 创设情 境,培养 学生的观 察能力, 激发他们 的学习兴 趣。

导学1分析归纳探究新知 (一)不等式的概念 通过上面的实际例子师生共同归纳得出不等式 的完整概念。 用不等号“>”,“<”,“≥”,“≤”,“≠”表示大小 关系的式子,我们把它们叫做不等式. 运用新知: 思考:下列式子中哪些是不等式? ①-1﹤3 ②-x+2=4 ③3x ≠4y ④ 6 ﹥2 ⑤2x -3 ⑥2m ﹤n 例:【讲解】用不等式表示:(导P85 3) (1)a比6小; (2)x与1的和大于2 ; (3)a的2倍小于b ; (4)x的2倍与y的差不小于0; (5)a是正数; 巩固练习:用不等式表示: (导P85 8) 1. x的4倍与7的差大于3; 2. a、b两数的平方和大于4; 3. x与y差不等于0; 4.a、b两数的和不小于6; 5.y的倒数与1的和大于x的一半. 小结:常用不等关系 不等于:大于:不大于: 小于:不小于: 超过:不超过:至少:至多:正数: 负数: 非正数: 非负数: 学生仔细观察并归 纳出不等式的概 念。 【学生讲解】 讲解为什么②⑤不 是不等式。 【回答】 (1)a<6; (2)x+1>2; (3)2a<b; (4)2x-y≥0; (5)a>0 【小组轮流回答】 1. 4x-7>3; 2.a2+b2>4,; 3.x-y≠0 4. a+b≥6; 5. 【小组讨论得到常 用的不等关系】 引导学 生仔细观 察并归纳 出不等式 的意义。 在甄别 不等式的 过程中, 加深对不 等式意义 的理解。 运用新 知,通过 列不等 式,进一 步加深对 不等式的 理解。 学生 小结常用 的不等关 系,巩固 常用不等 关系 导学2类比探究不等式的解、不等式的解集 我们曾经学过“使方程两边相等的未知数的值就 是方程的解”,同样,能使不等式成立的未知数的 值叫做不等式的解. 判断下列数中哪些是不等式2x+1>6的解: -4 , -1 , 0 , 2.5, 2.6, 10 ,100 (导P85 4) 思考:①你还能找出这个不等式的其他解 吗?请举出例子。 ②这个不等式有多少个解呢? 含有未知数的不等式的所有解组成这个不 等式的解集。 学生回顾方程的解 同学积极思考,回 答老师提出的问题 预设回答: ①有其他的解,例 如:3、4、5…… ②有无数个解。 注意:不等式的解 让学 生通过计 算、动手 验证、动 脑思考, 初步体会 不等式解 的意义以 及不等式 解与方程 解的不同 之处。 x y2 1 1 1 > +

专题8-数轴穿根法

专题:数轴穿根法 “数轴穿根法”又称“数轴标根法” 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前的系数为正数) 例如: (x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x 1=2,x 2=1,x 3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根。 第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。 例如: 若求(x-2)(x-1)(x+1)>0的解。 因为不等号威“>”则取数轴上方,穿根线以内的范围。即:-12。 穿根法的奇过偶不过定律: “奇穿过,偶弹回”。 还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是注意,解不能让原来分式下面的式子等于0 专项训练: 1、解不等式0)3)(1)(12(>--+x x x 解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。 2)因式)12(+x 、)1(-x 、)3(-x 的根分别是 1 - 、1、3。在数轴上把它们标出(如图1)。 3)从最大根3的右上方开始,向左依次 穿线(数轴上方有线表示数轴上方有函数 图象,数轴下方有线表示数轴下方有函数图象,此线并不表示函数的真实图象)。 4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为0)3)(1)(12(<--+x x x 的解集。 ∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,2 1 (+∞- 。 在上述解题过程中,学生存在的疑问往往有:为什么各因式中未知数的系数为正;为什

《不等式及其解集》同步练习题.doc

9.1.1《不等式及其解集》同步练习题(1) 知识点: 1、不等式:含有符号“<、>、≥、≤、≠”的式子 2、不等式的解:使含有未知数的不等式成立的值 3.不等式解集及其数轴表示法 ⑴ 不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8. (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.如: 同步练习: 1.用 连接的式子叫做不等式; 2.当x = 3时,下列不等式成立的是 ( ) A 、x +3>5 B 、x +3>6 C 、x +3>7 D 、x +3>8 3.下列说法中,正确的有 ( ) ①4是不等式x +3>6的解,②x +3<6的解是x <2③3是不等式x +3≤6的解,④x >4是不等式x +3≥6的解的一部分 A 、1个 B 、2个 C 、3个 D 、4个 4.图中表示的是不等式的解集,其中错误的是( ) A 、x ≥- 2 B 、x <1 C 、x ≠0 D 、x <0 5.下列说法中,正确的是 ( ) A 、x=3是不等式2x>5的一个解 B 、x=3是不等式2x>5的解集 C 、x=3是不等式2x>5的唯一解 D 、x=2是不等式2x>5的解 6.x 与3的差的2倍小于x 的2倍与3倍的差,用不等式表示为 ( ) A 、2(x-3)<(x-3) B 、2x-3<2(x-3) C 、2(x-3)<2x-3 D 、2x-3<1/2(x-3) 7.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A 、13cm B 、6cm C 、5cm D 、4cm 9.1.1《不等式及其解集》同步练习题(1)答案: 1.符号“<、>、≥、≤、≠” 2-7 ABDACB 0010-1 -2

元高次不等式的解法

元高次不等式的解法 The manuscript was revised on the evening of 2021

一元高次不等式的解法 步骤:正化,求根,标轴,穿线(奇过偶不过),定解 穿根法(零点分段法)(高次不等式:数轴穿根法: 奇穿,偶不穿)解题方法:数轴标根法。 解题步骤: (1)首项系数化为“正” (2)移项通分,不等号右侧化为“0” (3)因式分解,化为几个一次因式积的形式 (4)数轴标根。 求解不等式:)0)(0(0022110><>++++--a a x a x a x a n n n n 解法:①将不等式化为0123()()()()0n a x x x x x x x x ---->形式,并将各因式中的x 系数化“+”(为了统一方便) ②求根,并将根按从小到大的在数轴上从左到右的表示出来; ③由右上方穿线,经过数轴上表示各根的点。(即从右向左、从上往下:看x 的次数:偶次根穿而不过,奇次根一穿而过)。注意:奇穿偶不穿。 ④若不等式(x 系数化“+”后)是“0>”,则找“线”在x 轴上方的区间;若不等式是“0<”,则找“线”在x 轴下方的区间: 注意:“≤或≥”标根时,分子实心,分母空心。 例1: 求不等式223680x x x --+>的解集。 解:将原不等式因式分解为:(2)(1)(4)0x x x +--> 由方程:(2)(1)(4)0x x x +--=解得1232,1,4x x x =-==,将这三个根按从小到大顺序在数轴上标出来,如图 由图可看出不等式223680x x x --+>的解集为:{}|21,4x x x -<<>或 (1)()()()()00,f x f x g x g x >??> ()() ()()(2)00;f x f x g x g x

人教版七年级数学下册9.1.1不等式及其解集教案

精品基础教育教学资料,请参考使用,祝你取得好成绩! 9.1不等式 9.1.1不等式及其解集 1.了解不等式的概念; 2.会用不等式表示简单问题的数量关系;(重点) 3.理解不等式的解、解集及解不等式.(难点) 一、情境导入 有一群猴子,一天结伴去摘桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,那么最后一只猴子分得的桃子不够5个.你知道有几只猴子,几个桃子吗? 二、合作探究 探究点一:不等式的概念 下列各式中:①-3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.不等式的个数有() A.5个B.4个C.3个D.1个 解析:③是等式,④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共4个.故选B. 方法总结:本题考查不等式的判定,一般用不等号表示不相等关系的式子是不等式.解答此类题的关键是要识别常见不等号:>,<,≤,≥,≠.如果式子中没有这些不等号,就不是不等式. 探究点二:列简单不等式 根据下列数量关系,列出不等式: (1)x与2的和是负数; (2)m与1的相反数的和是非负数; (3)a与-2的差不大于它的3倍; (4)a,b两数的平方和不小于它们的积的两倍. 解析:(1)负数即小于0;(2)非负数即大于或等于0;(3)不大于就是小于或等于;(4)不小于就是大于或等于.

解:(1)x +2<0; (2)m -1≥0; (3)a +2≤3a ; (4)a 2+b 2≥2ab . 探究点三:不等式的解与解集 【类型一】 对不等式解的理解 下列不是不等式5x -3<6的一个解的是( ) A .1 B .2 C .-1 D .-2 解析:分别把四个选项中的值代入不等式,能使不等式成立的数分别为5×1-3=2<6,5×(-1)-3=-8<6,5×(-2)-3=-13<6,而5×2-3=7>6不能使不等式成立,故选B. 方法总结:判断某个数值是否为不等式的解的方法:可直接将数值代入不等式的左右两边看不等式是否成立.如果成立,则是不等式的解;反之,则不是. 【类型二】 对不等式解集的理解 下列说法中,正确的是( ) A .x =2是不等式x +3<4的解 B .x =3是不等式3x <7的解 C .不等式3x <7的解集是x =2 D .x =3是不等式3x >8的解 解析:A 不正确,因为当x =2时,x +3<4不成立;B 不正确,因为不等式3x <7的解集是x <73 ,当x =3时,不等式3x <7不成立;C 不正确,因为不等式3x <7有无数多个解,而x =2只是其中一个解,因此只能说x =2是3x <7的解,而不能说不等式3x <7的解集是x =2;D 正确,因为当x =3时,不等式3x >8成立.故选D. 方法总结:不等式的解可以有无数个,一般是某个范围内的所有数.未知数取解集中任何一个值时,不等式都成立;未知数取解集外任何一个值时,不等式都不成立. 三、板书设计 1.不等式的概念 2.用不等式表示数量关系 3.不等式的解、解集 本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过等,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方

相关文档
最新文档