人教版初二数学下册一次函数复习

合集下载

最新人教版数学八年级下册第十九章《一次函数复习》优质教学课件

最新人教版数学八年级下册第十九章《一次函数复习》优质教学课件
b<0
图象过二、三 、四象限
一次函数的增减性
对于一次函数y=k x + b (k ≠ 0),有: ⑴ 当k>0时,y随x的增大而_________。 ⑵ 当k<0时,y随x的增大而_________。
增大
减小
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到. 当b>0时,向上平移; 当b<0时,向下平移.
七、正比例函数与一次函数图象之间的关系
怎样画一次函数y=kx+b的图象?
1、两点法
y=x+1
2、平移法
八、用待定系数法求函数解析式
先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法, --待定系数法
1、已知直线y=kx+b平行与直线y=-2x,且与y轴交于点(0,-2),则k=___,b=___. 此时,直线y=kx+b可以由直线y=-2x经过怎样平移得到?
解:(1)设购进A种T恤x件,则购进B种T恤(200-x)件, 由题意得: w=(80-50)x+(65-40)(200-x) w=5x+5000
答:w关于x的函数关系式为w=5x+5000;
九、一次函数的应用
九、一次函数的应用
2. 某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图.(1)第20天的总用水量为多少米?(2)求y与x之间的函数关系式. (3)种植时间为多少天时,总用水量达到7000 米3?
注意点:
(1)从函数图象中获取信息
-2
-2
练习:
2、若一次函数y=x+b的图象过点A(1,-1),则b=__________。

人教版初中八年级数学下册第19章《一次函数》复习课(公开课)ppt课件

人教版初中八年级数学下册第19章《一次函数》复习课(公开课)ppt课件

7.如下图,两摞相同规格的碗整齐地放在桌面上,请根据图中的数据信息,解答 下列问题: (1)求整齐摆放在桌面上的碗的高度y(cm)与碗的个数x(个)之间的函数关系式;
(2)把这两摞碗整齐地摆成一摞时,碗的高度是多少?
11cm
14cm
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””

新人教版数学八年级下册一次函数总复习

新人教版数学八年级下册一次函数总复习

1 2
.
x-2.B.
2
A(-4,0) O
x
2.把直线y=2x-1向上平移2各单位,所得直
线的解析式是:
.
分析:由“上加下减”的原则可知,直线 y=2x-1向上平移2个单位,所得直线解析 式为y=2x-1+2,即y=2x+1.
直线解析式为:y=2x+1
知识点 4 一次函数与方程(组)、不等式的关系
1.下图是函数y=2x-6和y=-x+3的函数图象, 根据图象回答问题:
y
(1) 根 据 y=2x-6 的 图 象 , 写出不等式2x-6>0的解集; y=-x+3
3
y=2x-6
O3
x
x>3
-6
1.下图是函数y=2x-6和y=-x+3的函数图象, 根据图象回答问题:
(2) 根 据 y=2x-6 和 y=-x+3的图象,写出等 式2x-6=-x+3的解;
x-2≠1 ,
所以自变量x的取值范 围为x≥1且x≠2.
知识点 2 一次函数的图象及性质
y=kx+b
b>0 k>0 b=0
b<0 b>0 k<0 b=0 b<0
图象经过的 象限
y和x的变化
一、二、三 一、三
一、三、四
y随x的增大 而增大
一、二、四 二、四
二、三、四
y随x的增大 而减小
1.一次函数y=(m-2)x+3m-3的图象经过第一、 二、四象限,求m得取值范围.
当z≥0时,a≤66.4; 当z<0时,a>66.4. ∴当每月物业管理费不超过66.4元时,方案二更 优惠, ∴老王的说法不正确.

八年级数学下册同步复习PPT课件第十九章一次函数单元复习(人教版)

八年级数学下册同步复习PPT课件第十九章一次函数单元复习(人教版)

∴9=C点9,坐解标得为x(=0,11-. 1).
(12)判 把x断=△0A代B入Cy是=什么x+形2状,?解并得说y=明2理由;
y则3关<于y1x<的y不2 等式x+1≥mx+B.n的解集为________.
当OC是底边,P为顶角的顶点时,PO=PC,作CK⊥y轴于点K,
(2)求该函数的图象与两坐标轴的交点坐标,并画出该函数
∴C点坐标为(0,-1).
(1)AD=___2 __3 ___; ∵点C(3,4),A(-3,0)在一次函数y=kx+b的图象上,
∴C点坐标为(0,-1).
3 x>4
D.
y x ∵PC=t,PK=4-t,KC=3,
A. y=-x
B. y=-3x-5
C. y=-x+2
D. y=4x+6
7.一次函数y=kx+b的图象如图所示,则方程kx+b=0的 解为( B ) A. x=2 B. x=-1 C. y=2 D. y=-1
8.如图,已知函数y=2x+b与函数y=kx-3的图象交于点P, 则不等式kx-3>2x+b的解集是___x_<_4___.
在(2)函求数△BOC的面积中;,自变量x的取值范围是( )
(y23)>当yx1=>0y时2 ,y=2×0-1=D-. 1,
B(2.)若该月交水费9元,则用水多少吨?
D(2.)当y=9时,代入y=0.
谢谢! 解∴与:xA轴B交2=点3坐2+标2为2=( 13,0),
如∵点图C,(3△,A4B),C和A(△-B3D,E0都)在是一边次长函为数2y的=等kx边+三b角的形图,象且上A,、B、E在同一条直线上,连接CE,AD,以A为原点,AE所在直线为x轴,建立如图所示的平面直角坐标系. (当1)O求C这是个底一边次,函P为数顶的角解的析顶式点;时,PO=PC,作CK⊥y轴于点K,

人教版数学八年级下册第十九章一次函数《-一次函数》)精选全文

人教版数学八年级下册第十九章一次函数《-一次函数》)精选全文

探究新知 观察以上出现的四个函数解析式,它们是不是正比例函
数,那么它们共同的特征如何表示呢? (1) c = 7 t - 35 (2) G = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
一般地,形如y=kx+b (k, b 是常数,k≠0)的函数,叫 做一次函数.
(2)当x=2.5时, y=3×2.5 - 9= -1.5.
课堂检测
能力提升题
我国现行个人工资、薪金所得税征收办法规定:月收入低于
5000元的部分不收税;月收入超过5000元但低于8000元的部分 征收3%的所得税……如某人月收入5360元,他应缴个人工资、 薪金所得税为:(5360-5000)×3%=10.8元. (1)当月收入大于5000元而又小于8000元时,写出应缴所得税
连接中考
根据记录,从地面向上11km以内,每升高1km,气温降低6℃; 又知在距离地面11km以上高空,气温几乎不变.若地面气温为m (℃),设距地面的高度为x(km)处的气温为y(℃) (1)写出距地面的高度在11km以内的y与x之间的函数表达式; (2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻, 她从机舱内屏幕显示的相关数据得知,飞机外气温为﹣26℃时, 飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;
答:画正比例函数y=kx(k≠0)的图像,一般地, 过原点和点(1,k). 【思考】能用这种方法作出一次函数的图象吗?
素养目标
3. 能灵活运用一次函数的图象与性质解答有关 问题. 2.能从图象角度理解正比例函数与一次函数的 关系.
1. 会画一次函数的图象,能根据一次函数的图 象理解一次函数的增减性 .

人教版八年级数学下学期期末重难点知识专题04一次函数重难点知识1(解析版).doc

人教版八年级数学下学期期末重难点知识专题04一次函数重难点知识1(解析版).doc

学校班级姓名1【本文档由书林工作坊整理发布,谢谢你的下载和关注!】【本文档由书林工作坊整理发布,谢谢你的下载和关注!】2专题04 一次函数期末总复习重难点知识一遍过1一、基础知识点综述基础讲解基 础 知 识函数与变量一般地,如果在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.常见自变量取值范围:00100y x x y x xy x x =≥=≠=≠ ()() ()常量:其值在变化过程中始终保持不变的量叫常量. 变量:其值在变化过程中会发生变化的量叫变量. 正比例函数 解析式 y =kx (k ≠0)形状一条过(0,0)、(1,k )的直线 坐标系中位置k >0时过一、三象限;k <0时过二、四象限 增减性k >0时,y 随x 的增大而增大;k <0时,y 随x 的增大而减小一次函数解析式 y =kx +b (k ≠0)形状一条过(0,b )、(bk-,0)的直线 坐标系中位置k >0,b >0时过一、二、三象限;k >0,b <0时过一、三、四象限;k <0,b >0时过一、二、四象限;k <0,b <0时过二、三、四象限增减性k >0时,y 随x 的增大而增大;k <0时,y 随x 的增大而减小【本文档由书林工作坊整理发布,谢谢你的下载和关注!】3基 础 知 识一次函数图象的位置关系 l 1∥l 2,则k 1=k 2,b 1≠b 2;l 1⊥l 2,则k 1·k 2=-1一次函数图象平移 上下平移与b 有关,上加下减;左右平移与x 有关,左加右减一次函数图象的对称y =kx +b 关于y 轴对称的解析式为:y =-kx +b ;y =kx +b 关于x 轴对称的解析式为:y =-kx -b ;一次函数与二元一次方程组方程组的解是两条直线的交点坐标一次函数与不等式会借助图象判断y =0,y <0,y >0时自变量取值范围;会借助图象判断y 1=y 2,y 1<y 2,y 1>y 2时自变量取值范围;求一次函数解析式方法待定系数法上表中,l 1:y 1=k 1x +b 1;l 2:y 2=k 2x +b 2二、典型例题讲解题1. (1)函数11y x x=+-自变量的取值范围是(2)函数()02y x x=--自变量的取值范围是(3)函数214y x x =-+自变量的取值范围是(4)在三角形中,它的一条边是a ,这条边上的高是h ,则其面积S =0.5ah ,当a 为定长时,在此式中变量是,常量是(5)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h (cm )与注水时间t (min )的函数图象大致为( )【答案】(1)x ≥-1且x ≠0;(2)x >0且x ≠2;(3)全体实数;(4)S 、h ;0.5、a ;(5)B ;【本文档由书林工作坊整理发布,谢谢你的下载和关注!】4【解析】解:(1)由10x x +≥⎧⎨≠⎩,解得:x ≥-1且x ≠0;(2)由020x x >⎧⎨-≠⎩,解得:x >0且x ≠2;(3)由2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,得x 为全体实数;(4)由题意知S 随h 的变化而变化,所以S 和h 是变量,a 、0.5是常量;(5)通过分析可知,在注水开始至水面与小玻璃杯水面平齐过程中,水面高度不变,随后增大至最大后不再变化,故选B .题2. (1)正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x +k 的图象过象限;(2)若函数y =(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,则m 的取值范围(3)在平面直角坐标系中,将直线l 1:y =-3x -3平移后,得到直线l 2:y =-3x +2,则应向上平移个单位,或向右平移个单位;(4)已知点A (﹣5,y 1),B (10,y 2)在一次函数y =﹣x +9的图象上,则y 1y 2(5)直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(﹣2,0),且两直线与y 轴围成的三角形面积为4,那么b 1﹣b 2等于(6)一次函数y =(m 2-4)x +(1-m )和y =(m -1)x +m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m =(7)函数y =-2x +4的图象上存在点P ,使得点P 到y 轴的距离等于1,则点P 的坐标为 . (8)过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线123+-=x y 平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是【答案】(1)一、二、三;(2)m <-1;(3)5,53;(4)>;(5)4或-4;(6)-1; (7)(1,2)或(-1,6);(8)(1,4)、(3,1);【解析】解:(1)∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大, ∴k >0,则y =x +k 的图象过一、二、三象限;(2)∵函数y =(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,【本文档由书林工作坊整理发布,谢谢你的下载和关注!】5∴()10430m m +<⎧⎨-->⎩,解得:m <-1;(3)y =-3x -3平移后,得到直线l 2:y =-3x +2,可向上平移5个单位;设向右平移m 个单位,则y =-3(x -m )-3,即-3(x -m )-3=-3x +2,解得:m =53即向右平移53个单位; (4)y =﹣x +9中,y 随x 的增大而减小,因为A (﹣5,y 1),B (10,y 2)在一次函数图象上, 而-5<10,所以y 1>y 2 (5)由题意知:12122S b b =⨯⨯-, 即121422b b =⨯⨯-解得:b 1﹣b 2=4或-4 (6)由题意知:221304010m m m m ⎧-+-=⎪-≠⎨⎪-≠⎩,解得:m =-1; (7)点P 到y 轴的距离等于1,则P 点的横坐标为1或-1, 在y =-2x +4中,当x =1时,y =2;x =-1时,y =6, 即P 点坐标为(1,2)或(-1,6);(8)设直线AB 解析式为y =kx +b ,由题意知:k =32-, 将(﹣1,7)代入得:7=32-×(-1)+b ,解得:b =112, 即直线AB 解析式为:y =32-x +112,整理得:2y +3x =11,由题意知x 、y 均为整数时,有x =1,y =4;x =3,y =1,即符合要求的点的坐标是(1,4)、(3,1). 题3. (1)一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,求k 、b 的值.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】6【答案】见解析.【解析】解:①当k >0时,由当1≤x ≤4时,3≤y ≤6得: x =1,y =3;x =4,y =6,代入y =kx +b 得:346k b k b +=⎧⎨+=⎩,解得:12k b =⎧⎨=⎩ ②当k <0时,由当1≤x ≤4时,3≤y ≤6得: x =1,y =6;x =4,y =3,代入y =kx +b 得:643k b k b +=⎧⎨+=⎩,解得:17k b =-⎧⎨=⎩即k =1,b =2或k =-1,b =7.(2)如图3-1,函数y =2x 和y =ax +4的图象相交于点A (m ,4),则不等式2x <ax +4的解集为图3-1【答案】x <2.【解析】解:因为函数y =2x 和y =ax +4的图象相交于点A (m ,4), 所以当y =4时,x =2,由图象知:不等式2x <ax +4的解集为x <2.(3)甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s (千米),甲行驶的时间为t (小时),s 与t 之间的函数关系如图3-2所示.有下列结论:①出发1小时时,甲、乙在途中相遇; ②出发1.5小时时,乙比甲多行驶了60千米; ③出发3小时时,甲、乙同时到达终点; ④甲的速度是乙速度的一半. 其中正确结论是.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】7图3-2【答案】①②④.【解析】解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a 千米/小时, 则120140a=+,解得:a =80,∴乙开汽车的速度为80千米/小时, ∴甲的速度是乙速度的一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×(80-40)=60(千米),故②正确; 乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误; ∴正确的结论是①②④.题4. 如图4-1所示,在平面直角坐标系xOy 中,矩形ABCD 的AB 边在x 轴上,AB =3,AD =2,经过点C 的直线y =x ﹣2与x 轴、y 轴分别交于点E 、F .(1)求:①点D 的坐标;②经过点D ,且与直线FC 平行的直线的函数表达式;(2)直线y =x ﹣2上是否存在点P ,使得△PDC 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M ,使得以点M 、D 、C 、E 为顶点的四边形是平行四边形,请直接写出点M 的坐标.图4-1【答案】见解析.【解析】解:(1)①设点C的坐标为(m,2),∵点C在直线y=x﹣2上,∴2=m﹣2,解得m=4,即点C的坐标为(4,2),∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∴点D的坐标为(1,2);②设经过点D且与FC平行的直线函数表达式为y=x+b,将D(1,2)代入y=x+b,得b=1,∴经过点D且与FC平行的直线函数表达式为y=x+1;(2)存在.∵△EBC为等腰直角三角形,∴∠CEB=∠ECB=45°,∵DC∥AB,∴∠DCE=∠CEB=45°,∴△PDC是以P、D为直角顶点的等腰直角三角形,如图4-2所示,图4-2①当∠D=90°时,延长DA与直线y=x﹣2交于点P1,8【本文档由书林工作坊整理发布,谢谢你的下载和关注!】【本文档由书林工作坊整理发布,谢谢你的下载和关注!】9∵点D 的坐标为(1,2), ∴点P 1的横坐标为1,把x =1代入y =x ﹣2得,y =﹣1,即P 1(1,﹣1);②当∠DPC =90°时,作DC 的垂直平分线与直线y =x ﹣2的交点即为点P 2, 点P 2的横坐标为52, 将x =52代入y =x ﹣2得,y =12,即P 2(52,12), 综上所述,符合条件的点P 的坐标为(1,﹣1)、(52,12); (3)当y =0时,x ﹣2=0,解得x =2, ∴OE =2,∵以点M 、D 、C 、E 为顶点的四边形是平行四边形, ①若DE 是对角线,则EM =CD =3, OM =EM ﹣OE =3﹣2=1, 点M 的坐标为(﹣1,0),②CE 是对角线,则EM =CD =3,OM =OE +EM =2+3=5, 点M 的坐标为(5,0),③CD 是对角线,则平行四边形的中心坐标为(52,2), 设点M 的坐标为(x ,y ), 则2522x +=,22y=, 解得x =3,y =4,此时,点M 的坐标为(3,4),综上所述,点M 的坐标为(﹣1,0),(5,0)(3,4).题5. 小华和爸爸上山游玩,爸爸乘电缆车,小华步行,两人相约在山顶的缆车终点会合.已知小华行走到缆车终点的路程是爸爸乘缆车到山顶的线路长的2倍,爸爸在小华出发后50min 才乘上电缆车,电缆车的平均速度为180m /min .设小华出发x (min )行走的路程为y (m ),图5-1中的折线表示小华在整个行走过程中y (m )与x (min )之间的函数关系.(1)小华行走的总路程是_____m ,他途中休息了_____min ; (2)当50≤x ≤80时,求y 与x 的函数关系式;【本文档由书林工作坊整理发布,谢谢你的下载和关注!】10(3)当爸爸到达缆车终点时,小华离缆车终点的路程是多少?图5-1【答案】(1)3600,20;(2)(3)见解析. 【解析】解:(2)①当50≤x ≤80时, 设y 与x 的函数关系式为y =kx +b , 根据题意,当x =50时,y =1950; 当x =80时,y =3600,得:195050360080k bk b =+=+⎧⎨⎩解得k =55,b =-800,∴函数关系式为:y =55x -800;(3)缆车到山顶的线路长为3600×2=1800米, 缆车到达终点所需时间为1800÷180=10分钟 小颖到达缆车终点时,小亮行走的时间为10+50=60分钟, 把x =60代入y =55x ﹣800,得y =55×60﹣800=2500, ∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.题6. 某校运动会需购买A 、B 两种奖品.若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并确定最少费用W 的值.【答案】见解析.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】11【解析】解:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得:60329553x y x y =+=+⎧⎨⎩, 解得:1015x y ==⎧⎨⎩.答:A 奖品的单价是10元,B 奖品的单价是15元;(2)由题意,得W =10m +15(100-m )=-5m +1500∴()150051150310m m m -≤≤-⎧⎨⎩, 解得:70≤m ≤75.∵m 是整数,∴m =70,71,72,73,74,75.在W =-5m +1500中,∴-5<0,∴W 随m 的增大而减小,∴m =75时,W 最小=1125.∴应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元.题7. 在平面直角坐标系xOy 中,直线y =kx +4(k ≠0)与y 轴交于点A .(1)如图,直线y =-2x +1与直线y =kx +4(k ≠0)交于点B ,与y 轴交于点C ,点B 的横坐标为-1.①求点B 的坐标及k 的值;②直线y =-2x +1与直线y =kx +4与y 轴所围成的△ABC 的面积等于;(2)直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),若-2<x 0<-1,求k 的取值范围.【答案】见解析.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】12【解析】解:(1)①∵直线y =-2x +1过点B ,点B 的横坐标为-1,∴y =2+1=3,即B (-1,3),∵直线y =kx +4过B 点,∴3=-k +4,解得:k =1;②∵k =1,∴直线AB 的解析式为:y =x +4,∴A (0,4),在y =-2x +1中,当x =0时,y =1,∴C (0,1),∴AC =4-1=3, ∴△ABC 的面积为:12×1×3=32; 故答案为:32; (2)∵直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),-2<x 0<-1,∴当x 0=-2,则E (-2,0),代入y =kx +4得:0=-2k +4,解得:k =2,当x 0=-1,则E (-1,0),代入y =kx +4得:0=-k +4,解得:k =4,故k 的取值范围是:2<k <4.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

人教版初中八年级数学下册第19章《一次函数》复习ppt课件

人教版初中八年级数学下册第19章《一次函数》复习ppt课件

(1)李华出发时与张强相距 千米. (2)李华行驶了一段路后,自行车发生1故0 障,进行修理,
所用的时间是 小时.
(3)李华出发后 小时与张强相遇.
1
C
(4)若李华的自行车不发3生故障,保持出发时的速度前
进, 小时与张强相遇,相遇点离李华的出发点
千米.在图中表示出这个相遇1 点C.
15
探究1
重庆市2013年7月1日开始实行电价阶梯收 y
____.
4
5.直线l1: y1 k与1x直 线b l2:
所示,则关于x的不等式
的解集为 x<,-方2 程组

x 2.
y3
在y同2 一平k面2x直角坐标系中,图象如图 k2xk1xb

的kk 12解x b
y1, y2
如图,l1、l2分别表示张强步行与李华骑车在同一路 上行驶的路程s与时间t的关系.
(2)性质:当k>0时,直线y= kx经过第一,三象限,从左向右上升, 即随着x的增大y也增大;当k<0时,直线y= kx经过第二,四象限,从 左向右下降,即随着 x的增大y反而减小.
5.一次函数的图象及性质. (1)一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的 __________.
第十九章 一次函数
本章知识结构图
某些现实问题中相互联系 建立数学模型 的变量之间
函数
应用
一次函数 y=kx+b(k≠0)
再认识
一元一次方程 一元一次不等式 二元一次方程组
图象:一条直线
性质: k>0,y随x的增大而增大; k<0,y随x的增大而减小.
1. 一次函数的概念.

(新人教版八年级数学下册)《一次函数》 小结与复习

(新人教版八年级数学下册)《一次函数》 小结与复习
1. 常量与变量 数值发生变化的量 叫变量,
数值始终不变的量 叫常量. 2. 函数定义: 在一个变化过程中,如果有两个变量 x 与 y,并且 对于 x 的每一个确定的值,y 都有唯一确定的值与其 对应,那么我们就说 x 是自变量,y 是 x 的函数.
3. 函数的图象:对于一个函数,如果把自变量与函数 的每对对应值分别作为点的横坐标和纵坐标,那么坐标 平面内由这些点组成的图形,就是这个函数的图象.
k ≠ 0),这时 y 叫做 x 的正比例函数
2.分段函数 当自变量的取值范围不同时,函数的解析式也
不同,这样的函数称为分段函数.
3.一次函数的图象与性质
字母系 函数 数取值 图象
(k>0 )
y=kx
+b
(k ≠ 0)
b>0 b=0 b<0
经过的象限
函数 性质
第一、二、三象限 y 随
第一、三象限
x增 大而
第一、三、四象限 增大
函数
字母系 数取值 (k<0 )
图象
b>0
y=kx+b
(k≠0) b=0
b<0
经过的象限
函数 性质
第一、二、
四象限
y随x
第二、四象限
增大 而
第二、三、 减小
四象限
4.用待定系数法求一次函数的解析式 求一次函数解析式的一般步骤: (1)先设出函数解析式; (2)根据条件列关于待定系数的方程(组); (3)解方程(组)求出解析式中未知的系数;
x 取值范围
(3) 一次函数与二元一次方程组
一般地,任何一个二元一次方程都可以转化
为一次函数 y = kx + b( k、b 为常数,且 k ≠ 0)的
形式,所以每个二元一次方程都对应一个一次函

人教版初中八年级数学下册第十九章《一次函数》知识点复习(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》知识点复习(含答案解析)

一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236+B .6C .33+D .42.一次函数y=-3x-2的图象和性质,表述正确的是( ) A .y 随x 的增大而增大 B .函数图象不经过第一象限 C .在y 轴上的截距为2D .与x 轴交于点(-2,0)3.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .4.下列图象中,不表示y 是x 的函数的是( )A .B .C.D.,两地相距240千米.早上9点甲车从A地出发去B地,20分钟后,乙车从5.已知A BB地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示,则下列描述不正确的是()A.甲车的速度是60千米/小时B.乙车的速度是90千米/小时C.甲车与乙车在早上10点相遇D.乙车在12:00到达A地6.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.7.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C .D .8.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .59.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定10.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <11.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .12.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+13.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个14.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m <<15.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案二、填空题16.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____.17.如图1,在△ABC 中,AB >AC,D 是边BC 上一动点,设B,D 两点之间的距离为x,A,D 两点之间的距离为y ,表示y 与x 的函数关系的图象如图2所示.则线段AC 的长为_____,线段AB 的长为______.18.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.19.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.20.某生物小组观察一植物生长,得到植物高度y (位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴)请你算一下,该植物的最大高度是________厘米.21.如图,在平面直角坐标系中,(0,2)A ,(4,2)B ,点P 是x 轴上任意一点,当PA PB 有最小值时,P 点的坐标为________.22.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…,按如图所示的方式放置.点A 1、A 2、A 3、…,和点C 1、C 2、C 3,…,分别在直线y =kx +b (k>0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 2021的坐标是_________________.23.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.24.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.25.在平面直角坐标系中,一次函数4y x =+的图象分别与x 轴,y 轴交于点A ,B ,点P 在一次函数 y x =的图象上,则当ABP ∆为直角三角形时,点P 的坐标是___________.26.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.三、解答题27.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.28.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式; (2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.29.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标; (2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积. 30.如图,直线EF 与x 轴、y 轴分别交于点E (-8,0),F (0,6).(1)求直线EF 的函数表达式;(2)若点A 的坐标为(-6,0),点P (m ,n )在线段EF 上(不与点E 重合) ①求△OPA 的面积S 与m 的函数表达式; ②求当△OPA 的面积为9时,点P 的坐标;③求当△OPA 的面积与△OPF 的面积相等时,点P 的坐标.参考答案。

八下一次函数知识点总结

八下一次函数知识点总结

八下一次函数知识点总结一次函数知识点总结(人教版八年级下册)一、函数的概念。

1. 变量与常量。

- 在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。

例如,在行程问题中,速度v不变时,路程s = vt,其中t(时间)和s(路程)是变量,v是常量。

2. 函数的定义。

- 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

例如,y = 2x+1,对于x的每一个值,都能通过这个式子确定唯一的y值。

二、一次函数的概念。

1. 一次函数的定义。

- 形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。

当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是特殊的一次函数。

2. 确定一次函数的条件。

- 需要确定k和b的值。

通常会给定函数图象上的两个点的坐标,将其代入y = kx + b中,得到关于k和b的方程组,解方程组即可求出k和b。

三、一次函数的图象与性质。

1. 一次函数的图象。

- 一次函数y = kx + b(k,b是常数,k≠0)的图象是一条直线。

通常通过找两点来画直线,例如,当x = 0时,y=b,得到点(0,b);当y = 0时,kx + b=0,解得x =-(b)/(k)(k≠0),得到点(-(b)/(k),0)。

- 正比例函数y = kx(k为常数,k≠0)的图象是过原点(0,0)的直线。

2. 一次函数的性质。

- 增减性。

- 当k>0时,y随x的增大而增大。

例如,y = 2x+1,k = 2>0,随着x的增大,y的值也增大。

- 当k<0时,y随x的增大而减小。

例如,y=-3x + 2,k=-3<0,随着x的增大,y的值减小。

- 倾斜程度。

- k的绝对值越大,直线越靠近y轴,即直线越陡;k的绝对值越小,直线越靠近x轴,即直线越平缓。

(完整版)人教版八年级下册数学一次函数知识点归纳及练习,推荐文档

(完整版)人教版八年级下册数学一次函数知识点归纳及练习,推荐文档

一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。

二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量 x 与 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为 0 的一切实数。

(3)用寄次根式表示的函数,自变量的取值范围是全体实数。

用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。

)注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。

六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如 y=kx(k 为常数,且 k≠0)的函数叫做正比例函数.其中 k 叫做比例系数。

一般地,形如y=kx+b (k,b 为常数,且 k≠0)的函数叫做一次函数.当 b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数 y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线 y= kx 。

第十九章一次函数知识梳理及培优训练人教版2024—2025学年八年级下册

第十九章一次函数知识梳理及培优训练人教版2024—2025学年八年级下册

()()()321000.0k ⎪⎩⎪⎨⎧<=><b b b 第十九章一次函数知识梳理及培优训练人教版2024—2025学年八年级下册 一、知识梳理:1.一次函数的概念:函数(,为常数,)叫做的一次函数。

(1)作为一次函数自变量的最高次数是1,且其系数,这两个条件缺一不可。

(2)函数()中可以为任意常数, 当时,一次函数就成正比例函数(为常数,且) 因此正比例函数是一次函数的特例,但一次函数不一定是正比例函数。

2 一次函数的图象:(重点,请牢记)(1)正比例函数y=kx 的图象是经过(0,0),(1,k )的一条直线; (2)一次函数y=kx+b 的图象是经过(0,b )(—k/b ,0)的一条直线.3、一次函数的性质:(重点,请牢记) b=0 b<0 b>0k>0经过第一、三象限经过第一、三、四象限经过第一、二、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第二、四象限经过第二、三、四象限经过第一、二、四象限图象从左到右下降,y 随x 的增大而减小4.两直线的位置关系设直线11b x k y +=(01≠k )与22b x k y +=(02≠k )则: (1)21k k =且21b b ≠ ⇔两直线 (2)21k k ≠ ⇔两直线(3)21k k =且21b b = ⇔两直线 (4)121-=k k ⇔两直线()()()321000.0k ⎪⎩⎪⎨⎧<=>>b b b图1 二、例题讲解【一】函数和一次函数的定义 (1)、下列各图中表示y 是x 的函数图像的是 ( )2.函数y=(k 2-1)x+3是一次函数,则k 的取值范围是( )A.k ≠1B.k ≠-1C.k ≠±1D.k 为任意实数. 3.2(3)9y m x m =-+-是正比例函数,则m= 4.已知关于x 的函数y=(m+3)x |m+2|是正比例函数,求m 值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习: 一次函数的复习教案
一、教学目标1.知识与技能:能利用表达式求三角形的面积,能利用相似求点坐标,利用待定系数法求直线表达式。

2.过程与方法:通过对已知图形面积求值及解析式问题的探究,使学生理解一次函数图象特征与表达式的联系规律,体会分类思想、数形结合思想
3.情感、态度与价值观:培养学生主动探究,合作交流的意识,激发学生学习数学的热情,体验学数学的乐趣.
二、教学重点与难点:
1、重点:根据函数表达式求三角形的面积最大值,会根据面
积求点坐标或函数表达式。

难点:不规则图形面积的计算,根据面积求点坐标
三、教学方法让学生在自主、合作、探究中学习
四、教学过程
一、导:(创设情景,导入新课)
1、回复定义:
2、画图:
3、性质:师生活动:学生先独立完成,学生口答结果后教师直接导入新课。

设计意图:练习求直线与x 轴y 轴交点坐标,两直线交点坐标,为学习本节内容铺垫。

(出示本节学习目标)设计意图: 学生根椐学习目标使学习更有针对
性。

二、思:(画简易的函数图像)独立完成下面两个题,画函数图像
l : y=2x+6, 2,y=-1/2x+3
三、议:(小组讨论)
1 、一次函数y=2x+6与y轴,x轴交于A, B两点,在直角三角
形ABQ的边上的高0D求0D勺长及D的坐标。

师生活动:教师充分放手,让学生大胆说出自己的见解.发现
有不同意见时,学生进行小组内交流,讨论,然后每小组选一名代表板演解题步骤,针对学生的回答,教师适当补充强调。

设计意图:让学生理解函数表达式求三角形或四边形的面积,培养学生的探究能力和归纳能力。

四、展:
2 、将三角形ABO翻折到ABO勺位置,求0的坐标和0B的解析
师生活动:学生先各自陈述自己的看法,小组内交流,讨论后各小组推荐一名同学同时展示解题过程,互相订正.
设计意图:通过学生展示,加深学生利用函数表达式求三角形或四边形的面积的方法,提高分析问题和解决问题的能力。

五、评:教师作必要的分析讲解
3、将0□向上平移4个单位,得到y=mx+n与y=2x+6交于点M, 求
2x+6>mx+r>4时x的取值范围
师生活动:教师引导学生自我总结,组内交流,代表发言集体订
设计意图:通过教师引导总结,让抽象的知识有趣化,能更有效地启发学生,有助于学理解记忆.
六、运用新知:
变式1:若一次函数的图象交x轴于点A (-6 , 0),交正比例函数的图象于点
B,且点B在第二象限,它的横坐标为-4 ,又知:
S A A°=15,求直线AB的表达式
变式2;已知:点P是一次函数y=-2x+8的图象上一点,如果图象与x 轴交于Q点,且△ OPC的面积等于6,求P点的坐标。

师生活动:变式一学生抢答,
生板演解题过程,其他学生独立完成,并互相订正.
设计意图:通过练习,突破难点,培养学生解决实际问题的能力。

达成目标:已知两个图象间的面积关系求点坐标。

会设点坐标,能通过三角形面积的条件,列出方程求解。

七、检:(当堂检测)
1.y=-2x+2与x轴交于A点,与y轴交于B点,则A的坐标为
(),B点的坐标为(),S △AOB=()
2. 一次函数图象与x轴的正半轴交于点A,与y轴的负半轴交
于点B,与正比例函数的图象交于点C,若0B=4 C点横坐标为6, (1)求一次函数的表达式;
(2) 求厶AOB勺面积;
(3) 求原点O到直线AB的距离
师生活动:让学生在规定时间内独立完成,教师巡视及时了解反馈.采用多种形式检查,如小组互查,子组互查,最后公布答案
设计意图:检测本节所学内容,及时了解学生的掌握程度,同
时培养学生竞争意识,提高学生的解题技巧和学习效率.
O。

相关文档
最新文档