炼钢原理

炼钢原理
炼钢原理

【本章学习要点】本章学习炼钢炉渣的来源、组成和作用,钢中元素氧化的规律及铁、硅、锰的氧化情况,硫对钢性能的影响,炉渣脱硫的基本反应和条件,氧在钢中的危害及脱氧的任务,元素的脱氧能力及各种脱氧方法的的特点,钢中气体、夹杂物对钢性能的影响,减少钢中气体和减少钢中夹杂物的途径。

第一节炼钢炉渣

一、炉渣的来源、组成和作用

1.炉渣的来源

炉渣又叫熔渣,是炼钢过程中产生的。炉渣的主要来源有:

1) 由造渣材料或炉料带入的物质。如加入石灰、白云石、萤石等,金属材料中的泥沙

或铁锈,也将使炉渣中含有(FeO)、(SiO2)等。这是炉渣的主要来源。

2) 元素的氧化产物。含铁原料中的部分元素如Si、Mn、P、Fe等氧化后生成的氧化物,如Si02、Mn0、Fe0、P205等。

3) 炉衬的侵蚀和剥落材料。由于高温、化学侵蚀、机械冲刷等方面原因使炉衬剥落,则耐火材料进入渣中。

4)合金元素脱氧产物及炉渣脱硫产物。如用Al脱氧化生成的(Al2O3),用Si脱氧

生成的(SiO2),以及脱硫产物(CaS)等。

2.炉渣的组成

化学分析表明,炼钢炉渣的主要成分是:Ca0、Si02、Fe203、Fe0、Mg0、P205、Mn0、CaS等,这些物质在炉渣中能以多种形式存在,除了上面所说的简单分子化合物以外,还能形成复杂的复合化合物,如2Fe0·Si02、2Ca0·Si02、4Ca0·P205等。

3.炉渣的作用

炼钢过程中熔渣的主要作用可归纳成如下几点:

1)通过调整炉渣的成分、性质和数量,来控制钢液中各元素的氧化还原反应过程,如脱碳、脱磷、脱氧、脱硫等;

2)吸收金属液中的非金属夹杂物;

3)覆盖在钢液上面,可减少热损失,防止钢液吸收气体;

4)能吸收铁的蒸发物,能吸收转炉氧流下的反射铁粒,可稳定电弧炉的电弧;

5)冲刷和侵蚀炉衬,好的炉渣能减轻这种不良影响,延长炉衬寿命。

由此可以看出:造好渣是实现炼钢生产优质、高产、低消耗的重要保证。因此实际生产中常讲:炼钢就是炼渣。

二、炉渣的化学性质和物理性质

熔渣的化学性质主要是指熔渣的碱度、氧化性和还原性。

熔渣的物理性质主要是指炉渣的熔点和黏度。

为了准确描述反应物和产物所处的环境,规定用“[ ]”表示其中的物质在金属液中,“( )”表示在渣液中,“{ }”表示在气相中。

1.炉渣的化学性质

(1)熔渣的碱度炉渣中常见的氧化物有酸、碱性之分,其分类如下:

碱度是指炉渣中碱性氧化物与酸性氧化物浓度的比值,用“R”来表示。

碱度是判断熔渣碱性强弱的指标。去磷、去硫以及防止金属液吸收气体等都和熔渣的

碱度有关,因此碱度是影响渣、钢反应的重要因素。

由于熔渣中Ca0和Si02的数量最多,约为渣量的60%以上,所以在熔渣含磷不高时,常以Ca0与Si02浓度之比表示熔渣的碱度,即:

R

若炉渣中含磷量较高,也可以表示为:

R

根据碱度高低,熔渣可分为三类:

1) R<1酸性渣

2) R=1 中性渣

R<1.5低碱度渣

3) R>1碱性渣 R=1.8~2.2 中碱度渣

R>2.5高碱度渣

(2)熔渣的氧化性炉渣的氧化性是指熔渣所具备的氧化能力的大小。它对炼钢过程中的成渣速度、去磷、去硫、喷溅、金属收得率和终点钢水含氧量等均有重大影响。

根据炉渣的分子理论,Fe0能同时存在于渣—钢之中,并在渣—钢之间建立一种平衡(FeO)/ [FeO],所以一般认为渣中的氧是通过Fe0传递到钢液中的。因而熔渣中的FeO含量便可代表熔渣所具备的氧化能力的大小,即熔渣的氧化性通常用渣中氧化亚铁总量乏(Fe0)表示。

渣中氧化铁含量即渣的氧化性,它对熔渣的反应能力及物理性能有重要的影响。转炉熔渣Fe0过低,造渣困难,炉渣的反应能力低。熔渣Fe0过高,又会造成喷溅,增加金属损失及炉衬侵蚀。因此,渣中氧化铁的含量应适当,在转炉冶炼过程中,一般控制在10%~20%为好。

(3)熔渣的还原性熔渣的还原性和氧化性是炉渣的同一种化学性质的两种不同说法。

在碱性电弧炉还原期操作中,要求炉渣具有高碱度、低氧化性、流动性好的特点,以达到钢液脱氧、去硫和减少合金元素烧损的目的。所以应降低渣中的Fe0,提高渣的还原性。

电弧炉还原期出钢时,一般要求渣中的Fe0质量分数应小于0.5%,以满足出钢时对渣还原性的要求。

2.熔渣的物理性质

(1)熔渣的黏度黏度是表示熔渣内部各部分质点间移动时的内摩擦力的大小。黏度的单位是泊(P),1P=0.1Pa·S(帕·秒)。

黏度与流动性正好相反,黏度低则流动性好。

冶炼时,若熔渣的黏度过大,则物质在钢液及熔渣之间的传递缓慢,不利于炼钢反应的迅速进行;但若黏度过小,又会加剧炉衬的侵蚀。所以在炼钢时,希望获得适当黏度的炉渣。

影响熔渣黏度的主要因素是熔渣成分和温度。凡是能降低炉渣熔点的成分均可以改善熔渣的流动性,降低渣的黏度;熔池温度越高,渣的黏度越小,流动性越好。实际操作中,黏度的调节主要是靠控制渣中的Fe0、碱度和加入萤石等来实现的。

(2)熔渣的熔点熔渣是多元组成物,成分复杂,当它由固相转变成液相时,是逐渐进行的,不存在明显的熔点,其熔化过程有一个温度范围。通常熔渣的熔点是指炉渣完全转变成均匀液体状态时的温度。

不同的氧化物和复合氧化物的熔点是不同的,炉渣中各种氧化物的熔点见表8—1。

表8—1 炉渣中各种氧化物的熔点

炉渣中最常见的氧化物大部分都有很高的熔点。炼钢温度下,这些氧化物很难熔化。但实际上,它们相互作用生成了各种复杂化合物,这些化合物的熔点低于原氧化物的熔点,从而降低了熔渣的熔点。降低炉渣熔点的主要措施是:加入一定的助熔剂,如矿石(Fe203)、萤石(CaF2)等,以便形成低熔点的多元系化合物。

第二节铁、硅、锰的氧化

在炼钢过程中,氧供入金属熔池后,元素随即开始氧化。无论是氧气顶吹转炉或是其它炼钢方法,元素的氧化速度可以不同,但都是按一定的次序进行的。一般地讲,硅、锰最先被大量氧化,而碳随后被迅速氧化,磷的氧化基本上可与碳同时进行。

元素氧化具有不同次序的原因,是由于各元素与氧的亲和力不同,与氧亲和力强的元素可以夺取更多的氧,首先开始大量氧化;反之,与氧亲和力弱的元素则夺得较小的氧,它的氧化就慢些。

1、当温度T<1400℃时,元素的氧化顺序是:

Si Mn C P Fe

2、当1400℃<T<1530℃时元素的氧化顺序是:

Si C Mn P Fe

3、当T>1530℃时,元素的氧化顺序是:

C Si Mn P Fe

铁和氧的亲和力小于Si、Mn、P与氧的亲和力,但由于金属液中铁的浓度最大,质量分数为90%以上,所以铁最先被氧化,生成大量的Fe0,并通过Fe0使其与氧亲和力大的Si、Mn、P等被迅速氧化。

在转炉中,Si、Mn、P、Fe在冶炼初期的大量氧化,使熔池温度迅速上升,为碳的迅速氧化提供了有利条件;同时也对炉渣的碱度和流动性等产生了较大的影响。

一、铁的氧化

铁的氧化反应是一个极其重要的氧化反应,它是其他元素进行氧化反应的基础。向金属液供氧的方式有两种:一是直接供氧,即吹入氧气;二是间接供氧,且加入矿石。因此铁的氧化方式也有两种:直接氧化和间接氧化。

直接氧化是指钢液中的元素直接和氧分子进行接触,而被氧化的反应,如:

间接氧化反应是指金属液中的元素直接和氧原子或Fe0接触而被氧化的反应,如:

[Fe]+[O]=[FeO] (放热)

铁被氧化后,其反应产物Fe0一部分进入炉渣,一部分继续存留在金属液中,并在金属液—熔渣之间建立动态平衡,它应服从分配定律,即

在一定温度下,为一常数,称为氧在炉渣和金属液中的分配系数。

二、硅的氧化

1.硅的氧化反应式

在碱性炼钢法中,Si的氧化对成渣过程、炉衬的侵蚀等都有重要的影响。

理论上Si的氧化反应也有直接氧化和间接氧化之分,但实际上,金属液中的Si、Mn

元素很难直接与气态氧反应,所以金属液中Si、Mn、P元素的氧化均以间接氧化反应为主。

硅的间接氧化反应式如下:

Si的氧化产物只溶于渣,不溶于钢液。

2.Si氧化反应的主要特点

Si氧化反应的主要特点如下:

1) 由于Si与氧的亲和力很强,所以在冶炼初期,金属液中的Si便已基本氧化完毕。例如:转炉吹氧3min后,Si基本上全被氧化。同时,由于Si的氧化产物Si02,在炉渣中完全被碱性氧化物如Ca0等结合,无法被还原出来,因此硅的氧化是十分完全彻底的,最后只有微量的硅残留在钢液中。

2) Si氧化反应是一个强烈的放热反应,低温有利于Si氧化反应的迅速进行。Si是转炉吹炼过程中重要的发热元素。目前在转炉生产中,为了减少渣量,降低热损失,并提高金属收得率,已在广泛推广使用低Si铁水(叫[Si]<0.3%),由降低铁水[Si]所失去的部分化学热,正在靠其他方法来解决,如提高铁水温度等。

三、锰的氧化

1.Mn的间接氧化反应式

[Mn]+(FeO)=(MnO)+(Fe) 放热

[Mn]+[FeO]=(MnO)+[Fe] 放热

Mn的氧化产物只溶于渣,不溶于钢液。

2.Mn氧化的特点

Mn氧化有以下特点:

1)Mn的氧化反应是放热反应,低温有利于Mn的氧化,故Mn的氧化主要在冶炼前期进行。

2)由于氧化产物Mn0是碱性氧化物,故碱性渣中不利于Mn的氧化。因此Mn不可能向Si那样完全被氧化。

3)当熔池温度升高后,Mn的氧化反应会逆向进行,发生Mn的还原,即产生“回锰”现象,使钢液中的“余锰”增加。

第二节碳的氧化

碳的氧化反应是贯穿整个炼钢过程的一个最重要的反应,它是完成诸多炼钢任务的一个重要手段。

一、碳的氧化反应

1.氧气流股与金属液间的C—O反应

该反应放出大量的热,是转炉炼钢的重要热源。在转炉炼钢的氧流冲击区及电炉、平炉炼钢采用氧管插入钢液吹氧脱碳时,氧气流股直接作用于钢液,均会发生此类反应。脱碳示意图分别如图8—1和图8—2所示。流股中的气体氧{02}与钢液中的碳原子[C]直接接触,反应生成气体产物一氧化碳{CO},脱碳速度受供氧强度的直接影响,供氧强度越大,脱碳速度越快。

图8—1 熔池吹氧示意图(吹氧脱碳操作)

图8—2 氧气顶吹转炉氧射流与熔池相互作用示意图

2.金属熔池内部的C—O反应

[C]+[FeO]={CO}+[Fe] +7600J

该反应为弱放热反应,温度降低有利于反应的进行。在转炉和电炉炼钢吹氧脱碳时,气体氧{02}会使金属熔池内铁原子[Fe]大量氧化成[FeO],金属液中的[C]与[FeO]接触反应,从而起到间接脱碳的作用。

3.金属液与渣液界面的C—O反应

在转炉泡沫渣和采用矿石脱碳的电炉渣内均含有大量的(Fe0),渣中的(FeO)通过渣—钢接触界面向钢液中扩散,然后与钢液中的碳原子反应生成一氧化碳气体。反应式如下:

[C]+(FeO)={CO}+[Fe] -75100J

所谓泡沫渣是转炉炼钢吹氧脱碳时钢液—熔渣—炉气三相物质混合乳化而形成的乳浊液。在泡沫渣中,钢液被粉碎成很细小的小液滴,使钢—渣的接触界面积大大增加,这是泡沫渣中脱碳速度很快的原因。

电炉采用矿石脱碳的基本条件是:

1)Fe0要多,以满足氧化性要求。即必须保证一定的矿石加入量;

2)熔池温度要高,因为矿石熔化及(FeO)进入钢液中是强吸热反应;

3)炉渣流动性要好,以满足扩散要求;

4)炉底要经常维护,以便于C0气泡在粗糙的炉底和炉壁处形成。

二、碳氧反应在炼钢过程中的作用

把钢液中的碳含量氧化降低到所炼钢号的规格内。这是炼钢的任务之一。

碳氧反应时产生大量的C0气泡,这些气泡从钢液中排出时,对熔池有一种强烈的搅拌作用,它均匀了钢液的成分和温度,改善了各种化学反应的动力学条件,有利于炼钢中各种化学反应的进行。

碳氧反应产物C0气泡,对于钢液中的N、H相当于一个小真空室,钢液中的气体很容易扩散到这些上浮的C0气泡中,并随之排除到大气之中,所以脱碳反应是去除钢中气体所必需的手段之一。

非金属夹杂物上浮的速度主要取决于非金属夹杂物的大小。碳氧反应对熔池的搅拌作用促进了非金属夹杂物的碰撞长大,从而显著地提高了上浮速度。另外,C0气泡表面也可粘附一部分非金属夹杂物使其上浮入渣。所以,碳氧反应是去除钢中夹杂物所必需的手段之一。

碳的氧化反应放出大量的热,是氧气转炉炼钢的重要热源。同时,由于C0气泡的大量产生,使转炉内产生大量的泡沫渣,增加了钢—渣接触面积,有助于反应速度的提高。

第四节脱磷

一、磷对钢性能的影响

磷在钢中以磷化铁的形式存在,一般用[P]表示。它对钢性能的具体影响是:

1)能恶化钢的焊接性能;

2)降低钢的塑性和韧性,使钢产生冷脆性,即在低温条件下钢的冲击韧性明显降低;

3)能提高易切削钢的切削性能;

4)能改善钢液的流动性,提高钢液的铸造性能;

5)能提高合金钢耐大气和海水的腐蚀能力;

6)能提高电工用硅钢的导磁率。

对绝大多数钢种而言,[P]是一种有害元素。

二、脱磷反应的基本条件和方法

将钢中的磷脱除到要求的范围内,是炼钢的任务之一。

1.脱磷的基本反应

2[P]+5(FeO)+4(CaO)=(4CaO·P2O5)+5[Fe] 放热

从反应式中可以看出:较低的温度、高(FeO)、高(CaO)有利于脱磷反应的进行。

2.脱磷的基本条件和方法

1)炉渣的碱度要适当高,流动性要好。研究结果认为,脱磷时的炉渣碱度控制在2.5~3最好。

2)适当提高炉渣的氧化性,即渣中的氧化铁要高。

3)适当的温度。尽管低温有利于放热反应的进行,但低温不利于石灰的熔化,不利于扩散反应的进行,从而最终还将影响到脱磷反应速度。所以,为了获得最佳的脱磷效果,熔池应有适当的温度,不能太高也不能太低。

4)大渣量是提高脱磷效果的有效方法之一。对于电炉来说,采用自动流渣的方法,放旧渣、造新渣就是大渣量的另一种操作形式。

三、回磷

回磷是指冶炼后期钢液中磷含量比中期有所回升,以及成品钢中的含磷量比冶炼终点钢水含磷量高的现象。

1.回磷的原因

1) 炉温过高会使脱磷反应逆向进行。

2) 冶炼终了以及出钢时,向炉内或钢包内加入铁合金等脱氧,会使渣中的∑(FeO)

大大降低,同时,脱氧产物如等也会使炉渣碱度大大降低,使脱磷反应逆向进行。

3)铁合金本身带入一定数量的磷。

在上述几种原因中,以∑(FeO)的降低对回磷影响最为显著,而碱度和温度的影响要小些。

2.防止回磷的办法

对于电炉而言,防止还原期回磷的主要措施是扒净氧化渣。

对于转炉而言,防止钢包回磷的主要措施是防止下渣,即防止炉渣进入到钢包中。生产中常用的办法是:

1)出钢前向炉内加入石灰稠化终渣,同时,进行挡渣出钢。

2)出钢过程中,向钢包内投入少量石灰粉,稠化钢包内的渣,保持碱度。

第五节脱硫

一、硫对钢性能的影响

硫在钢中多以硫化物形式存在,如FeS、MnS等,硫对钢性能产生以下影响:

1)使钢产生热脆现象。所谓热脆现象是指钢坯或钢锭在高温条件下(如1100℃)进行轧制时,会产生断裂的现象。

2)对钢的力学性能产生不利影响。

3)使钢的焊接性能降低。

4)能改善易切削钢的切削性能。

5)使钢的耐腐蚀性能降低。

由于硫对绝大多数钢种而言是有害的,所以脱硫是炼钢的主要任务之一。

二、炉渣脱硫

1.炉渣脱硫的基本反应式

[FeS]= (FeS)

+) (CaO)+(FeS)=(CaS)+(FeO)

(CaO)+[FeS]=(CaS)+(FeO) (吸热)

从反应式中可以看出,脱硫的基本条件是:高碱度、高温、低氧化性。

2.影响脱硫反应的基本条件分析

(1)炉渣碱度研究结果表明:炉渣碱度在3.0~3.5之间最好,过高会使黏度增加,不利硫在钢—渣之间的扩散,过低则不符合脱硫要求。

(2)氧化性炉渣氧化性对脱硫的影响较为复杂,从脱硫反应式中可以看出,渣中的还原性越强,即∑(FeO)越低越有利于脱硫反应。但实际生产中氧气转炉的氧化渣中也能去除一部分硫,其主要原因是:∑(FeO)的存在改善了渣的流动性,能促进石灰的熔化,有利于高碱度渣的形成,从而部分改善了脱硫条件。

尽管氧化渣中也能脱硫,但在其他条件如搅拌、温度、碱度等完全相同的条件下,氧化渣的去硫效果还是远远低于还原渣的。

(3)温度高温有利于吸热反应的进行,即有利于去硫反应的顺利进行。

(4)钢—渣搅拌情况去硫是钢—渣界面反应,加强钢—渣搅拌扩大反应界面积有利于去硫。例如电炉(还原期)出钢时,采用钢—渣混出的方法,使钢液和炉渣强烈混合,钢—渣界面大大增加,充分发挥了电炉还原渣的脱硫能力,使脱硫反应能够迅速进行。

(5)渣量增加渣量可以减少(CaS)的相对浓度,可促进去硫反应。

三、气化去硫

根据硫的平衡及炉气分析得知,氧气转炉炼钢过程中钢液的硫一部分是以气体状态去除的,其去硫量一般占总去硫量的10%~40%。

由于硫和氧的亲和力比碳、硅和氧的亲和力都低,在金属液中有碳存在时,硫的直接氧化的可能性很小,所以气化去硫是通过炉渣进行的。气化去硫的反应式如下:

从上式也可以看出:硫必须首先从钢液中进入熔渣,才有可能气化去除。所以钢—渣间的去硫反应是气化去硫的基础。另外还可以看出:高碱度渣对气化去硫不利。

实践证明:只要造成流动性良好的碱性渣,就会有一定的气化去硫效果。实践操作还表明:炉渣氧化性增大,能强化气化去硫。

第六节脱氧

一、脱氧的原理和任务

1.氧的危害

各种炼钢方法中,都是利用氧化法来去除钢中的大部分杂质元素和有害物质。这就使氧化后期钢中溶入了过量的氧。例如氧气转炉终点ω[C]<0.1%时,钢中氧ω[O]一般为0.035%~0.069%,而此成分下固体钢中最多只能溶解

0.003%的氧。这些多余的氧在钢液凝固时将逐渐从钢液中析出,形成夹杂物或气泡,严重影响钢的性能,其具体表现是:

1)严重降低钢的力学性能,尤其是塑性和韧性。

2)大量气泡的产生影响浇注的正常进行,将会破坏锭或坯的合理结构,严重影响钢锭质量,甚至造成废品。

3)钢中的氧能加剧硫的热脆危害。

2.脱氧的原理和任务

炼钢过程中脱氧的原理是:利用对氧的亲和力比Fe大的元素,如Mn、Si、Al

等,把钢液中的氧夺走,形成不残留在钢液中的脱氧产物如Mn0、、

等并上浮到渣中。能用来对钢液脱氧的元素或合金叫脱氧剂。

脱氧的目的在于降低钢中的氧含量,脱氧的任务是:

1)降低钢液中溶解的氧,把氧转变成难溶于钢液的氧化物如Mn0、等。

2)将脱氧产物排出钢液之外。否则钢液中的氧只是改变了存在形式,总含氧量并没有降低,氧对钢的危害依然存在。

3)脱氧时还要完成调整钢液成分和合金化的任务。

二、各种元素的脱氧能力

1.对脱氧元素的要求

1)脱氧元素与氧的亲和力应大于Fe与氧的亲和力,即脱氧产物(MeO)在钢液中应比FeO稳定。

2)脱氧产物MeO在钢液中溶解度应非常低,否则便以另一种形式保留在钢中,未达到脱氧的目的。

3)脱氧产物的密度应小于钢液密度,且熔点应较低,在钢液中应以液态形式存在,这样脱氧产物才容易集聚长大,并能迅速地上浮到熔渣中,完成脱氧任务。

4)未与氧结合的剩余脱氧元素,应该对钢的性能无不良影响,甚至还应产生有利影响。 2.元素的脱氧能力

元素的脱氧能力是指在一定温度和一定浓度的脱氧元素呈平衡的钢中溶解的氧含量。显然和一定浓度的脱氧元素呈平衡的氧含量越低,这种元素的脱氧能力越强。在1600℃时,元素的脱氧能力按以下顺序增强:Cr、Mn、V、P、Si、C、B、Ti、Al、Mg、Ca。其中最常用的是Mn、Si、Al。

3.常用的脱氧剂

(1)Mn 它的脱氧能力较低,但几乎所有的钢都用Mn来脱氧,因为它可以增加

Si和A1的脱氧作用。此外(MnO)可以与其他的脱氧产物如等形成低熔点化合物,有利于从钢液中排出。冶炼沸腾钢时,只用锰脱氧。

(2)Si Si是一种较强的脱氧元素,它是镇静钢中不可缺少的脱氧元素之一。Si的脱氧能力高于Mn。

Si的脱氧能力受温度影响而发生变化,温度越高,Si的脱氧能力越弱。

Si的脱氧产物熔点高(1700度),不易从钢液中上浮排出,所以应与Mn一起使用。

(3)A1 A1是钢中常用的而且是非常强的脱氧元素,它是镇静钢中不可缺少的脱氧元素之一。

A1的脱氧产物熔点很高(2050℃),形成很细小的固体颗粒,颗粒表面与钢液间界面张力大,易于上浮,所以常用来做终脱氧剂。

目前炼钢生产中常用的块状脱氧剂有:锰铁、硅铁、铝、硅锰合金等。电弧炉还原期炉渣脱氧时常用的粉状脱氧剂有:碳粉、碳化硅粉、硅铁粉等。真空脱碳时,钢液中[C]是脱氧剂。

使用块状脱氧剂时,一般用复合脱氧剂最好,因为复合脱氧剂的脱氧能力以及脱氧产物的上浮能力都很强。若无复合脱氧剂而单独使用各脱氧剂时,应注意脱氧剂的加入顺序,一般情况是先弱后强,即先用锰铁脱氧,再用硅铁脱氧,最后用铝脱氧。因为先加锰铁后形成的Mn0可提高Si、Al的脱氧效果,同时也有利于几种脱氧产物形成低熔点化合物,从而有利于脱氧产物的上浮。

三、脱氧方法

钢液的脱氧方法有三种:沉淀脱氧法、炉渣脱氧法和真空脱氧法。

1.沉淀脱氧法

沉淀脱氧法又叫强制脱氧法或直接脱氧法。它是把块状脱氧剂,如锰铁、硅铁和铝饼等加入钢液内,直接使钢液脱氧。其反应式可表示为:

[FeO]+[Me]=[Fe]+[MeO]

[MeO]=(MeO)

式中 Me——脱氧元素;

Me0——脱氧产物。

这种脱氧方法的优点是操作简便,脱氧速度快,节省时间,成本低。其缺点是部分脱氧产物来不及上浮而进入熔渣中,残留在钢液内污染了钢液,影响了钢液的纯净度,使提高钢的质量受到一定的限制。因此,假若不采取炉外精炼等其他措施,靠这种方法脱氧的转炉就不能生产某些质量要求很严格的钢种,而只能生产一些常用钢种。

转炉多采用沉淀脱氧法。

2.炉渣脱氧法

炉渣脱氧法习惯上又叫扩散脱氧。它是把粉状脱氧剂,如碳粉、碳化硅或硅铁粉撒在渣液面上,形成还原渣间接使钢液脱氧。其反应式可表示为:

(FeO)+[Me]=[Fe]+(MeO)

[FeO]=(FeO)

由于在一定温度下,,为一常数,(FeO)的降低必然引起钢液中的[FeO]向渣中扩散转移,从而间接地使钢液脱氧。由于[O]的扩散速度比较慢,在实际生产中氧在渣—钢间的这一分配过程并未达到平衡。但这种方法仍可将钢中的[O]的质量分数降至0.005%~0.01%的水平。

扩散脱氧法明显的优势是钢液不易被脱氧产物所玷污,能提高钢的纯洁度。其缺点是脱氧过程慢,还原时间长。

碱性电弧炉炼钢的还原期多采用扩散脱氧法。

3.真空脱氧法

所谓真空脱氧法是指将已炼成的钢液,置于真空条件下,打破原有的[C]、[O]平衡关系,使碳氧反应继续进行,利用钢液中[C]进行脱氧。反应式可表示为:

[FeO]+[C]=[Fe]+{CO}

在真空中,由于C0分压的降低,打破了[C]与[0]的平衡关系,引起碳脱氧能力的急剧增强,甚至可以超过硅和铝,真空脱氧能力随着真空度的增加而增加。

对于低碳钢,[O]的质量分数可降至0.003%~0.015%;而高碳钢,[O]的质量分数可降至0.0007%--0.002%。与此同时,钢中碳的质量分数相应下降了0.003%~0.007%。

真空脱氧法的最大特点是它的产物C0不留在钢液中,不玷污钢液,而且C0上浮的过程中还有去气体和去非金属夹杂物的作用。

生产实践表明,真空处理能显著地提高钢的质量,除一些必要的设备投资外,工艺并不十分复杂,故这种方法在许多合金钢的生产中已被广泛采用。

真空脱氧多作为转炉和电炉的炉外精炼手段,以进一步提高钢的质量。

第七节钢中的气体

本节所指的气体是指能溶解于钢中的氢和氮。

一、钢中气体对钢性能的影响

1.氢对钢性能的影响

氢在钢中基本上有害无利。随着钢的强度的提高,氢对钢的危害性则更为严重。但在一般情况下,要完全除去钢中的氢几乎是不可能的。

氢在钢中的不良影响主要有以下几方面:

1)使钢产生“氢脆”。氢能使钢的塑性和韧性明显降低,即产生“氢脆”现象。对于高强度钢来讲,“氢脆”的影响更严重。

钢中的“氢脆”属于滞后破坏。表现在应力作用下,经过一段时间钢突然发生脆断。

2)使钢产生“白点”。所谓“白点”是指在钢材断面上呈银白色的斑点。其实质是一个有锯齿形边缘的微小气泡,又叫发裂。它的产生与氢脆不同,它是钢从高温冷却到室温时产生的。“白点”也使钢的塑性和韧性明显降低。

3)产生石板断口。其主要原因是:氢含量高的地方会出气泡,在气泡的周围易出现C、P、S和夹杂物的偏析,这些缺陷在钢材热加工时被拉长,但不能焊合,于是形成石板断口。

4)产生氢腐蚀。在高温高压作用下,钢中的氢即高压氢会使钢产生网络状裂纹,严重时还可以鼓泡,这种现象称氢腐蚀。

2.氮对钢性能的影响

氮对钢的性能有利有弊。氮对钢的不良影响是:

1)引起钢的时效硬化。在低碳钢中,氮能引起钢的时效硬化现象,表现为钢的强度、硬度随时间的推移而增大,而塑性则有所下降。只有当[N]的质量分数小于0.0006%时,才能免除时效硬化的可能。

2)氮会使钢产生“蓝脆”。淬火钢在250~400℃回火后,塑韧性不仅不增大,反而下降,这个温度范围的钢呈蓝色,故叫“蓝脆”。

3)氮和氢综合作用使钢产生缺陷。氮和氢的综合作用会使镇静钢锭产生结疤和皮下气泡,使轧钢生产中出现裂纹和发纹,影响钢的质量。

氮对钢有益的一面是:

1)钢中的氮能和Al、Ti等形成A1N、TiN等高熔点的细小颗粒。均匀弥散分布的AlN、TiN等能细化晶粒,从而提高钢的强度和塑性,对改善焊接性能也有良好作用。

2)能提高钢的强度和耐磨性。实际生产中常用渗氮的方法来改善钢表面的耐磨性,同时也能使钢表面的抗蚀性和疲劳强度有所改善。

二、钢中气体的来源

钢中的氢来自原料、耐火材料、炉气和空气中的潮气以及金属料中的铁锈(铁锈是含有结晶水的氧化铁)。

钢中的氮来自铁水、氧气和炉气。

三、减少钢中气体的基本途径

减少钢中气体含量一是减少钢液吸进去的气体;二是增加排出去的气体。

1.减少钢液吸气的基本途径:

1)原材料如石灰、矿石、铁合金、耐火材料等必须进行烘烤或干燥。金属料中的铁锈要少。

2)熔炼过程中,钢液温度不宜过高,因为氢和氮在钢液中的溶解度随温度的升高而升高,同时应尽量减少钢液裸露的时间,防止钢液从炉气中吸收氢、氮。

3)应尽量提高氧气的纯度,防止或减少吹氧时由于氧的不纯给金属液中带入氮。

4)钢水包要烘烤,钢液流经的地方要烘干和密封(如Ar气密封)保护。

2.增加排气的措施

1)氧化熔炼过程中,钢液要进行良好的沸腾去气。

2)采用钢液吹氩,真空处理和真空浇注降低钢液中的气体。

第八节钢中的非金属夹杂物

在冶炼或浇注过程中产生于或混入钢液中,而在其后的热加工过程中分散在钢材中的类似于炉渣的非金属物质叫非金属夹杂物。

它的主要来源是:

1)与生铁、废钢等一起进入炉内的非金属物质。

2)从入炉到浇注的整个过程中,与钢液相接触并卷入钢液的耐火材料。

3)在炉内、盛钢桶内和钢锭模内脱氧过程中所产生的脱氧产物。

一、非金属夹杂物的分类

1.按照化学成分分类

(1)氧化物夹杂

简单氧化物,如Fe0、Mn0、、等。

复杂氧化物,如Fe0·、Mn0·、Mg0·等。

硅酸盐,如2Fe0·、2Mn0·、3Mn0··2等。

(2)硫化物主要是FeS、MnS、(Fe·Mn)S和CaS等。

(3)氮化物若钢中有与氮亲和力大的元素时,会形成氮化物,如AlN、TiN、BN、ZrN 等。

2.按照夹杂物的来源分类

(1)外来夹杂物这类夹杂物是从冶炼到浇注过程中进入钢液的耐火材料或熔渣,滞留在钢中而造成的。一般外来夹杂物的特征是外形不规则,尺寸比较大和分布不均匀。

(2)内生夹杂物(见图8—3) 这类夹杂物是在液态或固态钢内,由于脱氧或凝固过程中进行的物理化学反应而生成的。钢中大部分夹杂物属于这一类。内生夹杂物的颗粒比较小,分布也比较均匀。

图8-3脱氧严物型夹杂物

(a)石英;(b)石英和硅酸盐;(c)大型硅酸盐颗粒(复合)

3.按照变形性能分类(见图8—4)

(1)脆性夹杂物指完全不具有塑性的夹杂物。当钢进行热加工时不会变形,但夹杂物会沿加工方向破碎成串。如Al2O3、Cr2O3、TiN、ZrN等就属于这一类。

(2)塑性夹杂物塑性夹杂物即热加工时能沿加工方向延伸成条带状的夹杂物,如MnS、FeS等。

(3)点状不变形夹杂物呈点状的、不随加工变形而变形的夹杂物叫点状不变形夹杂物。属于这一类的有石英玻璃(Si02)和含Si02较高((Si02)>7%)的硅酸盐等。

图8—4锻压延伸的夹杂物、夹渣

(a)点状氧化铝,铝酸盐;(b)变形硫化物;(C)变形的复合夹

杂物

4.按尺寸大小分类

(1)超显微类夹杂物即小于lμm的夹杂物。这类夹杂物都是内生夹杂物。

(2)显微夹杂物即小于l00μm的夹杂物,又称微观夹杂物。它们以内生夹杂物为主。

(3)大型夹杂物即大于l00μm的夹杂物,也称宏观夹杂物,它们多为外来夹杂物。

二、非金属夹杂物对钢性能的影响

钢中的非金属夹杂物破坏了金属基体的连续性,使钢的塑性、韧性和疲劳强度降低,也使钢的冷、热加工性能变坏。

但某些特殊场合下,夹杂物也能起到好的作用。如细小的Al2O3夹杂能细化晶粒,硫化物夹杂能改善钢的切削性能等。

三、降低钢中非金属夹杂物的途径

降低钢中非金属夹杂物有以下途径:

1)使用洁净的炉料,钢液接触和流经的地方也要洁净;

2)提高耐火材料的材质,减少其侵蚀损坏而混入钢液;

3)氧化熔炼过程中,钢液应进行良好的沸腾,以清除钢液中的非金属夹杂物;

4)采用正确的脱氧操作方法,使脱氧产物易于上浮入渣;

5)浇注前钢液在钢包中镇静适当的时间,以利非金属夹杂物充分上浮;

6)采用钢液吹氩,真空处理和真空浇注,减少钢液中的非金属夹杂物。

复习思考题

1.炼钢炉渣的来源是什么?

2.炼钢炉渣的组成和作用是什么?

3.什么是炉渣碱度、炉渣氧化性?

4.什么是直接传氧?什么是间接传氧?

5.锰的氧化有何特点?

6.碳氧反应的作用是什么?

7.写出脱磷反应式及脱磷的条件。

8.“回磷”的原因是什么?如何防止回磷?

9.硫对钢性能有何影响?

10.写出脱硫反应式及脱硫的条件。

11.氧对钢性能有何影响?脱氧的任务是什么?

12.什么是沉淀脱氧法、扩散脱氧法和真空脱氧法?各有什么特点?

13.钢中气体对钢性能有何影响?

14.钢中气体的来源是什么?如何减少钢中气体?

15.钢中夹杂物对钢性能有何影响?

16.非金属夹杂物可以如何分类?

17. 降低钢中非金属夹杂物的途径有哪些?

转炉炼钢工艺流程

转炉炼钢工艺流程 转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高 200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 电炉.转炉系统炼钢生产工艺流程简图 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , Mn0,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅

与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理; (2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3?5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3?5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);

转炉工作原理及结构设计要点

攀枝花学院本科课程设计 转炉工作原理及结构设计 学生姓名: 学生学号: 院(系): 年级专业: 指导教师: 二〇一三年十二月

转炉工作原理及结构设计 1.1 前言 1964年,我国第一座30t氧气顶吹转炉炼钢车间在首钢建成投产。其后,上钢一厂三转炉车间、上钢三厂二转炉车间等相继将原侧吹转炉改为氧气顶吹转炉。20世纪60年代中后期,我国又自行设计、建设了攀枝花120t大型氧气顶吹转炉炼钢厂,并于1971年建成投产。进入20世纪80年代后,在改革开放方针策的指引下,我国氧气转炉炼钢进入大发展时期,由于氧气转炉炼钢和连铸的迅速发展,至1996年我国钢产量首次突破1亿t,成为世界第一产钢大国。 1.2 转炉概述 转炉(converter)炉体可转动,用于吹炼钢或吹炼锍的冶金炉。转炉炉体用钢板制成,呈圆筒形,内衬耐火材料,吹炼时靠化学反应热加热,不需外加热源,是最重要的炼钢设备,也可用于铜、镍冶炼。转炉按炉衬的耐火材料性质分为碱性(用镁砂或白云石为内衬)和酸性(用硅质材料为内衬)转炉;按气体吹入炉内的部位分为底吹、顶吹和侧吹转炉;按吹炼采用的气体,分为空气转炉和氧气转炉。转炉炼钢主要是以液态生铁为原料的炼钢方法。其主要特点是:靠转炉内液态生铁的物理热和生铁内各组分(如碳、锰、硅、磷等)与送入炉内的氧进行化学反应所产生的热量,使金属达到出钢要求的成分和温度。炉料主要为铁水和造渣料(如石灰、石英、萤石等),为调整温度,可加入废钢及少量的冷生铁块和矿石等。 1.2.1 转炉分类 1.2.1.1 炼钢转炉 早期的贝塞麦转炉炼钢法和托马斯转炉炼钢法都用空气通过底部风嘴鼓入钢水进行吹炼。侧吹转炉容量一般较小,从炉墙侧面吹入空气。炼钢转炉按不同需要用酸性或碱性耐火材料作炉衬。直立式圆筒形的炉体,通过托圈、耳轴架置于支座轴承上,操作时用机械倾动装置使炉体围绕横轴转动。 50年代发展起来的氧气转炉仍保持直立式圆筒形,随着技术改进,发展成顶吹喷氧枪供氧,因而得名氧气顶吹转炉,即L-D转炉(见氧气顶吹转炉炼钢);用带吹冷却剂的炉底喷嘴的,称为氧气底吹转炉(见氧气底吹转炉炼钢)。

转炉炼钢工艺标准经过流程

转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种

转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min 后火焰微弱,停吹); (5)倒炉,测温、取样,并确定补吹时间或出钢; (6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。 上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹3-5分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。 吹炼过程中的供氧强度:

转炉炼钢原理汇总

2.2 转炉炼钢的原理2.2.1 转炉炼钢原理简介:这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200 摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300 摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化( FeO, SiO2 , MnO ) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15 分钟左右。如果空气是从炉低吹入,那就是低吹转炉。2.2.2 转炉冶炼的具体原理『(1)熔池元素氧化规律Si 的变化规律开吹时[ Si ]大量氧化,并结合为( 2 FeO ? SiO2 ),随石灰溶解转变为稳定化合物( 2CaO ? SiO2 ) Mn 的变化规律吹炼初期迅速氧化,中后期被[ C ]还原,后期由于渣中氧化性提高,[ Mn ]被再次氧化. C 的变化规律熔池中氧与碳生成CO }{气泡上浮,[% C ]×[% O ]=m(常数0.002~0.0025),[ C ]与[ O ] 成反比.吹炼初期由于[ Si ]、[ Mn ]的氧化,脱碳速度小,中期脱碳速度最快,后期[ C ]浓度低,脱碳速度下降. P 的变化规律低温、适宜的高碱度、高氧化性利于脱[P],吹炼前期应使石灰快速成渣,将( 3FeO ? P2 O5 ) 、置换为( 3CaO ? P2 O5 )和(4CaO ? P2 O5 )稳定化合物,使[P]去除. S 的变化规律高温利于脱[ S ],渣中( CaO ) 活度大,利于脱[ S ],但转炉渣的氧化性高,因此转炉的脱[ S ] 效率低.』[1] (2)转炉中各种元素具体的反应机理1 ○ Si 的变化规律钢液中硅的氧化特点在任何一种炼钢方法中,硅的氧化反应都进行得很激烈。因为硅是易氧化元素,在所有的杂质元素中,硅和氧的亲和力最大,硅的氧化产物是只溶于炉渣的酸性氧化物SiO2 ,它的分解压力比碳、锰、磷的氧化物分解压力都低,从而使得生成的SiO2 很稳定。所以,硅极易被氧化,且氧化时放出大量的热量。在氧气转炉中开吹几分钟内硅即被氧化完毕;在超高功率电炉大量用氧的情况下,在熔化末期或氧化初期,硅几乎氧化完毕;在普通电炉中熔化期硅将被氧化掉70%,少量的残余硅在氧化初期也能降低到最低限度;硅的氧化反应的反应产物容易从反应区排出。硅的氧化反应(1)硅的氧化反应方程式当金属炉料未被炉渣覆盖,或氧流直接吹入金属熔池时,炉料中的硅被气态氧直接氧化[ Si ] + {O2 } = ( SiO2 ) + 740645 J (1)当炉渣形成后或金属液滴和气泡与渣接触时,硅的氧化主要在炉渣与金属界面上进行2( FeO) + [ Si ] = ( SiO2 ) + 2[ Fe] + 341224 J (2)金属液中的[Si]和[O]的反应[ Si ] + [O] = ( SiO 2 ) + 817448 J (3)注意:硅的氧化都是较强的放热反应。(2)硅的氧化产物是SiO2 Si 氧化时产生的( SiO2 )起初与( FeO )结合生成硅酸铁( 2 FeO ? SiO2 ):( SiO2 ) + 2( FeO) = (2 FeO ? SiO2 ) (4)在碱性渣炼钢操作中,随着石灰的逐渐熔化, ( 2 FeO ? SiO2 ) 中的FeO 被强碱性的CaO 所置换得到氧化产物硅酸钙:2( FeO ? SiO2 ) + 2(CaO) = (2CaO ? SiO2 ) + 2( FeO) (5)硅酸钙(2CaO·SiO2)很稳定,所以在碱性炼钢操作中,冶炼前期Si 几乎全部被氧化,不会再被还原。硅的还原在酸性炼钢操作中,当熔池温度升高到一定程度后,将发生硅的还原反应。( SiO2 ) + 2[C ] = [ Si ] + 2{CO} (6)从反应式可看出,当有产生CO 气泡核心的条件时,就有可能发生Si 的还原反应。影响硅的氧化和还原反应的因素主要因素是温度、炉渣成分、金属液成分和炉气氧分压。(1) 温度低有利于硅的氧化;(2) 增加CaO、FeO 含量,有利于硅的氧化。(3) 金属液中增加硅元素含量,有利于硅的氧化;(4) 炉气中氧分压越高,越有利于硅的氧化。硅的氧化对冶炼的

电弧炉炼钢的原理和工艺的详细过程

电弧炉炼钢的原理和工艺的详细过程 最佳答案 工艺一般都是老三期干法可分为熔化期氧化期还原期 原理:电炉练刚.电炉练钢是利用电能来作热源进行冶炼. 常用的电路有电弧炉和感应炉两种,而电弧炉练钢占电炉练钢产量的决大部分.一般所说电炉就是指电弧炉. 电炉可全部用废钢做为金属原料,可冶炼力学性能和化学成分要求严格的钢,如特殊工具钢,航空用钢和不锈刚等. 电炉按所有的炉衬分为酸性和碱性两种.目前主要用碱性电炉,这种炉子可以有效地祛除钢中的硫,这是其他练钢方法所及的.随着世界钢铁生产的发展,电炉钢的比例不断提高,目前占世界钢产量的30%左右,尤其以电路-连铸-连扎为特点的电炉短流程工艺的确立,使电炉钢得到了很大的发展.世界上近年来发展的新型电炉主要有超功率电炉,直流电路,双壳电炉,坚炉电炉

等.随着炉外精练工艺的发展,电炉作为初练炉的功能更加突出.电炉-精练炉的联合超作,使电炉的冶炼周期大大缩短,有生产节奏转炉化的趋势,生产效率大大提高.(累啊~~本人就是电炉练钢的本质料全部来源书) 电弧炉熔炼 (1)电弧炉构造及工作原理 电弧炉熔炼是利用石墨电极与铁料(铁液)之间产生电弧所发生的热量来熔化铁料和使铁液进行过热的。生产上普遍使用的是三相电弧炉,其炉体部分的构造示于图1。在电弧炉熔炼过程中,当铁料熔清后,进一步地提高温度及调整化学成分的冶炼操作是在熔渣覆盖铁液的条件下进行。电弧炉依照炉渣和炉衬耐火材料的性质而分为酸性和碱性两种。碱性电弧炉具有脱硫和脱磷的能力。 (2)弧炉熔炼的优缺点及其应用

电弧炉熔炼的优点是熔化固体炉料的 能力强,而且铁液是在熔渣覆盖条件下进行过热和调整化学成分的,故在一定程度上能避免铁液吸气和元素的氧化。这为熔炼低碳铸铁和合金铸铁创造了良好的条件。电弧炉的缺点是耗电能多,从熔化的角度看不如冲天炉经济,故铸铁生产上常采用冲天一电弧炉双联法熔炼。由于碱性电弧炉衬耐急冷急热性差,在间歇式熔炼条件下,炉衬寿命短,导致熔炼成本高,故多采用酸性电弧炉与冲天炉相配合。 图三相电弧炉体剖面简图

炼钢工艺流程

【导读】:转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。本专题将详细介绍转炉炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 转炉冶炼目的:将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。 【相关信息】钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。 转炉冶炼原理简介: 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果氧气是从炉底吹入,那就是底吹转炉;氧气从顶部吹入,就是顶吹转炉。 转炉冶炼工艺流程简介:

电弧炉工作原理

电弧炉工作原理 为了了解电弧炉对电能质量和电能效率影响的产生原因,需要对电弧炉设备的特殊性做一下简单介绍。 1.1电弧炉分类和工作原理 电弧炉是利用电弧能来冶炼金属的一种电炉。工业上应用的电弧炉可分为三类: 第一类是直接加热式,电弧发生在专用电极棒和被熔炼的炉料之间,炉料直接受到电弧热。主要用于炼钢,其次也用于熔炼铁、铜、耐火材料、精炼钢液等。 第二类是间接加热式,电弧发生在两根专用电极棒之间,炉料受到电弧的辐射热,用于熔炼铜、铜合金等。这种炉子噪声大,熔炼质量差,已逐渐被其它炉类所取代。 第三类称为矿热炉,是以高电阻率的矿石为原料,在工作过程中电极的下部一般是埋在炉料里面的。其加热原理是:既利用电流通过炉料时,炉料电阻产生的热量,同时也利用了电极和炉料间的电弧产生的热量。所以又称为电弧电阻炉。 1.2电弧炉的组成设备 炉用变压器 电弧炼钢用变压器应能按冶炼要求单独进行电压电流的调节,并能承受工作短路电流的冲击。 电炉变压器额定电压的选择要考虑许多因素。若一次侧电压取高些,则系统电抗小,短路容量大,可减少闪变,但须增加配电装置费用。若二次电压高些,则功率因素较高,电效率较高,但电弧长,炉墙损耗快,综合效率变低。 一般电炉变压器二次侧均为低电压(几十至几百伏),大电流(几千至几万安)。为保证各个熔炼阶段对电功率的不同需要,变压器二次电压要能在50%~70%的范围内调整,因此都设计成多级可调形式。调整方法有变换、有载调压分接开关等。变压器容量小于10MVA者,可进行无载切换;容量在10MVA以上者,一般应是有载调压方式。也有三相分别设置分接头装置,各相分别进行调整,可以保障炉内三相热能平衡。 与普通电力变压器相比,电炉专用变压器有以下特点:a.有较大的过负荷能力;b.有较高的机械强度;c.有较大的短路阻抗;d.有几个二次电压等级;e.有较大的变压比;f.二次电压低而电流大。 电炉变压器和电弧炉的容量比一般为0.4~1.2MVA/t。电弧炉的电流控制,是由电弧炉变压器高压侧绕组分接头的切换和电极的升降来达到的。 电抗器 为了稳定电弧和限制短路电流,需要约等于变压器容量35%的电抗容量,串入变压器主回路中。大型电弧炉变压器,本身具有满足需要的电抗值,不需外加电抗器;而小于10MVA的变压器,电抗不满足要求,需在一次侧外加电抗器。电抗器的结构特点是:既使通过短路电流,铁芯也不发生磁饱和。 电抗器可装在电炉变压器的内部,称为内附式;也可做成装在变压器外部的独立电抗器,称为外附式。 电炉变压器一般要串联电抗器,使得变压器短路阻抗和电抗器电抗之和达到0.33~0.5标准值(以电炉变压器额定容量为基准)。 容量小于10MVA的电炉变压器,有时在其高压侧装有串联电抗器,以降低短路电流和稳定电弧。对于较大容量的电炉变压器,它本身的漏电抗已足够大,不需再串联电抗器。 高压断路器 炼钢电弧炉对高压断路器的要求是:断流容量大;允许频繁动作;便于维修和使用寿命长。电弧电阻炉负载平稳,连续运行,常用多油或少油式高压断路器,炼钢电弧炉断路器经常跳闸,多选用六氟化硫断路器、电磁式空气断路器、真空断路器等。

转炉炼钢设计-开题报告(终极版)

湖南工业大学 本科毕业设计(论文)开题报告 (2012届) 2011年12月19日

顶底复吹技术,工艺成熟,脱磷效果好,在后续的生产中采用多种精炼方法,其中LF、RH 、CAS—OB、VOD、VAD的应用可以很好的控制钢水的成分和温度,生产纯净钢,不锈钢等,连铸工艺能够实现连续浇铸,提高产量,降低成本,同时随着连铸技术的发展,近终型连铸,高效连铸等多种连铸技术得到应用,大大的提高了铸钢的质量,一定范围内降低了企业的成本。经现代技术和工艺生产出来的如板材,管线钢,不锈钢等的质量得到了很大的保障,市场的信誉度高,市场需求量大。 故设计建造年产310万t合格铸坯炼钢厂是可行的,也是必要的。 2.2 主要研究内容 研究内容包括设计说明书和图纸两个部分。 2.2.1 设计说明书 (1)中英文摘要、关键词 (2)绪论 (3)厂址的选择 (4)产品方案设计 (5)工艺流程设计 (6)转炉容量和座数的确定 (7)氧气转炉物料平衡和热平衡计算 (8)转炉炼钢厂主体设备设计计算(包括转炉炉型、供气及氧枪设计、精炼方法及设备、连铸设备) (9)转炉炼钢厂辅助设备设计计算(包括铁水供应系统、废钢供应系统、出钢出渣设备、烟气净化回收系统) (10)生产规模的确定及转炉车间主厂房的工艺布置和尺寸选择(包括车间主厂房的加料跨、炉子跨、精炼跨、浇注跨的布置形式及主要尺寸的设计确定)(11)劳动定员和成本核算 (12)应用专题研究 (13)结论、参考文献 2.2.2 设计图纸 (1)转炉炉型图 (2)转炉炼钢厂平面布置图 (3)转炉车间主厂房纵向剖面图 2.3 研究思路及方案 (1)根据设计内容,书写中英文摘要、关键词。 (2)查阅专业文献,结合毕业实习,收集当前转炉炼钢工艺技术、车间设

转炉炼钢的一般原理

2转炉炼钢的一般原理 2-1什么是超音速氧射流,什么是马赫数,确定马赫数的原则是什么? 速度大于音速的氧流为超音速氧射流。超过音速的程度通常用马赫数量度,即氧流速度与临界条件下音速的比值,用符号Ma代表。显然,马赫数没有单位。 马赫数的大小决定喷头氧气出口速度,也决定氧射流对熔池的冲击能量。马赫数过大则喷溅大,清渣费时,热损失加大,增大渣料消耗及金属损失,而且转炉内衬易损坏;马赫数过低,会造成搅拌作用减弱,氧气利用系数降低,渣中TFe含量增加,也会引起喷溅。当Ma>2.0时,随马赫数的增长氧气的出口速度增加变慢,要求更高理论设计氧压,这样,无疑在技术上不够合理,经济上也不划算。 目前国内推荐Ma=1.9~2.1。 2-2氧气射流与熔池的相互作用的规律是怎样的? 超音速氧流其动能与速度的平方成正比,具有很高的动能。当氧流与熔池相互作用时,产生如下效果: (1)形成冲击区。氧流对熔池液面有很高的冲击能量,在金属液面形成一个凹坑,即具有一定冲击深度和冲击面积的冲击区。 (2)形成三相乳化液。氧流与冲击炉液面相互破碎并乳化,形成气、渣、金属三相乳化液。 (3)部分氧流形成反射流股。 2-3氧气顶吹转炉的传氧载体有哪些? 氧气顶吹转炉内存在着直接传氧与间接传氧两种途径。直接传氧是氧气被钢液直接吸收,其反应过程是:[Pe]+1/2{O2}=[FeO],[FeO]=[Fe]+[O];间接传氧是氧气通过熔渣传人金属液中,其反应式为(FeO)=[FeO]、[FeO]=[Pe]十[O]。氧气顶吹转炉传氧以间接传氧为主。 氧气顶吹转炉的传氧载体有以下几种。 (1)金属液滴传氧。氧流与金属熔池相互作用,形成许多金属小液滴。被氧化形成带有富氧薄膜的金属液滴,大部分又返回熔池成为氧的主要传递者;熔池中的金属几乎都经历液滴形式,有的甚至多次经历液滴形式,金属液滴比表面积大,反应速度很快。 (2)乳化液传氧。氧流与熔池相互作用,形成气—渣—金属的三相乳化液,极大地增加了接触界面,加快了传氧过程。 (3)熔渣传氧。熔池表面的金属液被大量氧化,而形成高氧化铁熔渣,这样的熔渣是传氧的良好载体。 (4)铁矿石传氧。铁矿石的主要成分是Fe2O3、Fe3O4,在炉内分解并吸收热量,也是熔池氧的传递者。 顶吹转炉的传氧主要靠金属液滴和乳化液进行,所以冶炼速度快,周期短。 2-4什么是硬吹,什么是软吹? 硬吹是指枪位低或氧压高的吹炼模式。当采用硬吹时,氧气流股对熔池的冲击力大,形成的冲击深度较深,冲击面积相对较小,因而产生的金属液滴和氧气泡的数量也多,气—熔渣—金属乳化充分,炉内的化学反应速度快,特别是脱碳速度加快,大量的CO气泡排出,熔池搅动强烈,熔渣的TFe含量较低。 软吹是指枪位较高或氧压较低的吹炼模式。在软吹时,氧气流股对熔池的冲击力减小,冲击深度变浅,冲击面积加大,反射流股的数量增多,对于熔池液面搅动有所增强,脱碳速度缓慢,因而对熔池内部的搅动相应减弱,熔渣中的TFe含量有所增加。 软吹和硬吹都是相对的。 2-5转炉内金属液中各元素氧化的顺序是怎样的? 氧化物分解压越小,元素越易氧化。在炼钢温度下,常见氧化物的分解压排列顺序如下:P{O2}(Fe2O3)>P{O2}(FeO)>P{O2}(CO2)>P{O2}(MnO)>P{O2}(P2O5)>P{O2}

炼钢的基本原理

炼钢的基本原理: 生铁,矿石或加工处理后的废钢氧气等为主要原料 炼钢的方法,一般可分为转炉炼钢、平炉炼钢和电炉炼钢三种方法。现分别介绍如下: 1. 转炉炼钢法这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 2. 平炉炼钢法(平炉炼钢法也叫马丁法) 平炉炼钢使用的氧化剂通入的空气和炉料里的氧化物,(废铁,废钢,铁矿石)。反应所需的热量是由燃烧气体燃料(高炉煤气,发生炉煤气)或液体燃料(重油)所提供。 平炉的炉膛是一个耐火砖砌成的槽,上面有耐火砖制成的炉顶盖住。平炉的前墙上有装料口,装料机就从这里把炉料装进去。熔炼时关上耐火砖造成的门。炉膛的两端都筑有炉头,炉头各有两个孔道,供导入燃料与热空气,或从炉里导炉气之用。 平炉炼钢所用的原料有废钢、废铁、铁矿石和溶剂(石灰石和生石灰)。开始冶炼时,燃料遇到导入的热空气就在燃料面上燃烧,温度高达1800摄氏度。热量直接由火焰传给炉料,使炉料迅速熔化(铁的熔点是1535摄氏度,钢略低)。同时有一部分熔化的生铁生成氧化亚铁,生铁里的杂质硅、锰被氧化亚铁氧化,声成炉渣。由于炉里放有过量的石灰石,磷与硫等杂质就生成磷酸钙和硫化钙成为炉渣。其次碳也进行氧化,生成一氧化碳从熔化的金属里冒出,好象金属在沸腾一样。 反应快要进行完毕的时候,加入脱氧剂并定时把炉渣扒出。在冶炼将完成时要根据炉前分析(用快速分析法,几分钟可完成)来检验钢的成分是否合乎要求。炼锝的钢从出钢口流入钢水包里,再从钢水包注入模子里铸成制品或钢锭。

电弧炉原理

电弧炉原理 电炉熔 “电弧炉工作原理” 为了了解电弧炉对电能质量和电能效率影响的产生原因,需要对电弧炉设 备的特殊性做一下简单介绍。 电弧炉分类和工作原理电弧炉是利用电弧能来冶炼金属的一种电炉。工业上应用的电弧炉 可分为三类: 第一类是直接加热式,电弧发生在专用电极棒和被熔炼的炉料之间,炉料直接受到电弧热。主要用于炼钢,其次也用于熔炼铁、铜、耐火材料、精炼钢液等。 第二类是间接加热式,电弧发生在两根专用电极棒之间,炉料受到电弧的辐射热,用于熔炼铜、铜合金等。这种炉子噪声大,熔炼质量差,已逐渐被其它炉类所取代。 第三类称为矿热炉,是以高电阻率的矿石为原料,在工作过程中电极的下部一般是埋在炉料里面的。其加热原理是:既利用电流通过炉料时炉料电阻产生的热量,同时也利用了电极和炉料间的电弧产生的热量。所以又称为电弧电阻炉。 1.2电弧炉的组成设备 炉用变压器 电弧炼钢用变压器应能按冶炼要求单独进行电压电流的调节,并能承受工作短路电流的冲击。 电炉变压器额定电压的选择要考虑许多因素。若一次侧电压取高些,则系统电抗小,短路容量大,可减少闪变,但须增加配电装置费用。若二次电压高些,则功率因素较高,电效率较高,但电弧长,炉墙损耗快,综合效率变低。 一般电炉变压器二次侧均为低电压(几十至几百伏),大电流(几千至几万安)。为保证各个熔炼阶段对电功率的不同需要,变压器二次电压要能在50%~70%勺范围内调整,因此都 设计成多级可调形式。调整方法有变换、有载调压分接开关等。变压器容量小于10MVA者, 可进行无载切换;容量在10MVA以上者,一般应是有载调压方式。也有三相分别设置分接头装置,各相分别进行调整,可以保障炉内三相热能平衡。 与普通电力变压器相比,电炉专用变压器有以下特点:a.有较大的过负荷能力;b.有较高的机械强度;c.有较大的短路阻抗;d.有几个二次电压等级;e.有较大的变压比;f.二次电压低而电流大。电炉变压器和电弧炉的容量比一般为0.4~1.2MVA/t。电弧炉的电流控制,是由电弧炉变压器 高压侧绕组分接头的切换和电极的升降来达到的。 电抗器为了稳定电弧和限制短路电流,需要约等于变压器容量35%的电抗容量,串入变 压器主回路中。大型电弧炉变压器,本身具有满足需要的电抗值,不需外加电抗器;而小于10MVA

电炉炼钢知识

电炉炼钢知识 概述 民国12年(1923年),江南造船所因生产小铸钢件需要,在所属铸铁厂设置1吨小电炉1座,先后炼钢41炉,至民国14年,一江之隔的和兴钢铁厂2座平炉建成投产,部分钢水浇成铸钢件,质优价廉,江南造船所即改向和兴厂定购铸钢件而停止了自身的电炉炼钢。民国23年和民国24年,大鑫钢铁工厂先后建造2座1吨电炉,生产铸钢件。抗日战争期间,2座电炉即落入日商之手,继续生产铸钢件。“太平洋战争”爆发后,日商经营和控制的亚细亚钢业厂、大陆铁厂(原大隆机器厂)、丰田汽车修理厂建立了1座1.5吨电炉和3座3吨电炉,生产炮弹壳和其他军用铸钢件。抗日胜利后,这些电炉陆续复产,仍然生产铸钢件,至民国37年底又告停产。1949年5月上海解放时,旧中国留下的3吨以下电炉共7座,合计公称容量共12.8吨。 解放后上海的电炉炼钢,分别由钢铁行业和机械行业拥有的炼钢电炉所组成。电炉钢的产量,前者占80%,以生产钢锭为主,后者占20%,以生产铸钢件为主。 在机械行业进行电炉炼钢的有关企业,有上海汽轮机厂、上海重型机器厂、中华冶金厂、大隆机器厂、汽车拖拉机配件厂、上海铸钢厂、八一铸钢厂、新华铸钢厂、力生铸钢厂、上海铸锻厂等;还有造船工业中的江南造船厂、沪东造船厂等。在这两大行业中电炉炼钢的兴起和发展,主要是为了适应机械制造和造船事业发展的需要,从1950年至1957年,冶炼的钢水除用以浇注中小型铸钢件外,还浇成部分钢锭供加工锻钢件用。1958年后,除确保生产所需的铸钢件、锻钢坯外,还浇成了钢锭供钢铁企业加工钢材之用。1979年后,3吨以下的小炉座基本被淘汰,代之以5~10吨炉,特别是上海重型机器厂分别将原10吨和20吨电炉更新为具有电磁搅拌、全液压传动的30吨和40吨电炉,并以精炼炉相配合,扩大了电炉容量和提高了钢质,为生产大型铸钢件和锻钢件奠定了基础。生产的铸钢件,除供应上海外,还承接全国各地的铸钢件生产任务。部分厂还利用扩大了的电炉冶炼能力浇铸钢锭,向钢铁厂换取钢材。 钢铁行业的电炉炼钢,从“三年恢复”到“一五”时期,仅有上海机修总厂(前身是亚细亚钢铁厂)3吨以下的小电炉炼钢,同样是为了生产铸钢件的需要。进入“二五”时期后,电炉炼钢开始从三个方面发生转变。一是量的转变,上钢五厂建立了第一和第二炼钢车间,进行电炉炼钢;上海钢铁研究所亦建立了电炉炼钢车间;上钢三厂分别建立了电炉车间和铸钢车间。1960年与1957年相比,电炉钢产量从1.78万吨增至36.20万吨。20世纪90年代初,随着100吨超高功率大电炉在上钢三厂、五厂的建立,电炉钢的年产量增至80万至90万吨之间。二是质的转变,从单一的普碳钢向主要冶炼优质钢、不锈钢、合金钢、特殊钢转变。三是从生产铸钢件、铸钢轧辊向主要生产钢锭、连铸坯转变。20世纪90年代,电炉钢年产量已冲破90万吨。1998年,上海钢铁工业年产电炉钢103.97万吨。

转炉炼钢工艺流程介绍

转炉炼钢工艺流程介绍 ---- 冶金自动化系列专题 【导读】:转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。本专题将详细介绍转炉炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。【发表建议】 转炉冶炼目的:将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。 【相关信息】钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。 [查看全文] 转炉冶炼原理简介: 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果氧气是从炉底吹入,那就是底吹转炉;氧气从顶部吹入,就是顶吹转炉。 [查看全文] 转炉冶炼工艺流程简介:

转炉炼钢原理汇总

2.2转炉炼钢的原理 2.2.1转炉炼钢原理简介: 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (MnO SiO FeO ,,2) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 2.2.2转炉冶炼的具体原理 『 (1)熔池元素氧化规律 Si 的变化规律 开吹时[Si ]大量氧化,并结合为(22SiO FeO ?),随石灰溶解转变为稳定化合物 (22SiO CaO ?) Mn 的变化规律 吹炼初期迅速氧化,中后期被[C ]还原,后期由于渣中氧化性提高,[ Mn ]被再次氧化. C 的变化规律 熔池中氧与碳生成{CO }气泡上浮,[%C ]×[%O ]=m(常数0.002~0.0025),[ C ]与[O ]成反比. 吹炼初期由于[Si ]、[Mn ]的氧化,脱碳速度小,中期脱碳速度最快,后期[C ]浓度低,脱碳速度下降. P 的变化规律 低温、适宜的高碱度、高氧化性利于脱[P],吹炼前期应使石灰快速成渣,将(523O P FeO ?) 置换为(523O P CaO ?)和(524O P CaO ?)稳定化合物,使[P]去除. S 的变化规律 高温利于脱[S ],渣中(CaO ) 活度大,利于脱[S ],但转炉渣的氧化性高,因此转炉的脱[S ]效率低.』[1] (2)转炉中各种元素具体的反应机理 ○ 1Si 的变化规律 钢液中硅的氧化特点 在任何一种炼钢方法中,硅的氧化反应都进行得很激烈。因为硅是易氧化元素,在所 有的杂质元素中,硅和氧的亲和力最大,硅的氧化产物是只溶于炉渣的酸性氧化物2SiO ,它的分解压力比碳、锰、磷的氧化物分解压力都低,从而使得生成的2SiO 很稳定。所以,硅极易被氧化,且氧化时放出大量的热量。 在氧气转炉中开吹几分钟内硅即被氧化完毕; 在超高功率电炉大量用氧的情况下,在熔化末期或氧化初期,硅几乎氧化完毕; 在普通电炉中熔化期硅将被氧化掉70%,少量的残余硅在氧化初期也能降低到最低限 度; 硅的氧化反应的反应产物容易从反应区排出。 硅的氧化反应 (1)硅的氧化反应方程式

电弧炉炼钢工艺设备(一)

4 电弧炉炼钢工艺设备 4.1 废钢加工设备 常见的废钢加工方式为剪切、打包和破碎处理。目前公司废钢料场对废钢的加工方式主要有三种:废钢剪切、废钢打包以及废钢人工火焰切割。人工火焰切割方式较为简单,即按照电弧炉冶炼要求将废钢切割为合格尺寸。废钢剪切和打包则是利用专用设备对废钢进行加工处理,达到减小废钢尺寸及增加炉料堆比重的目的,下面对废钢加工方设备做简要介绍。 4.1.1 废钢打包机 废钢打包设备是将废钢放在钢结构箱体内,采用液压驱动进行三维方向强行挤压处理,最终将分散的、堆比重小的废钢加工为堆比重大的单一包块。废钢打包机见图4.1。 图4.1 废钢打包机 料场的废钢打包机是1990年从德国LINDEMANN公司引进,1991年投入使用。设备主要由滑动门机构、进给压力机构、压盖机构、中间压力机构、最终压力机构五个部分组成。 1)滑动门机构是依靠安装于门上的液压缸控制门在滑道上垂直动作,在打包过程中,门是关闭的。打包结束,门开启以使包块可被推出; 2)进给压力机构依靠水平安装的液压缸控制进给压力平台,以将废钢推进打包室的同时进行水平轴向挤压,进给压力平台的动作由引导机构引导,进给压力平台上设有剪切装置,多余的废钢在进入打包室时将被剪切掉,防止工作过程中造成机械卡阻; 3)压盖机构由液压缸驱动压盖动作,可将露出箱体的废钢压入箱体内,同时防止加工过程中废钢的弹出; 4)中间压力机构由垂直安装的液压缸驱动,对废钢进行垂直挤压,通过调整安装在机构上的限位开关,可调整垂直挤压缓冲及停止位置; 5)最终压力机构依靠水平安装的液压缸,利用最大工作压力控制最终压力平台,对废钢在打包室内进行水平径向挤压;

炼钢的生产流程及原理

级 论文题目:炼钢的生产流程及原理 专业 班级 姓名 学号 指导教师 日期

炼钢的生产流程及原理 摘要 本文概述了炼钢生产的现状及发展趋势,介绍了炼钢生产的流程、原理及现代炼钢方法。炼钢生产之初的造渣对钢的冶炼起到决定性作用,而碳、磷、硫、氧等成分的含量对钢的冶炼起着关键性作用,除此之外,钢中所含的气体和夹杂物对钢的质量也有影响。本文就造渣过程及脱碳、脱磷、脱硫、脱氧过程进行了详细的阐述。 总之,炼钢的生产过程可归纳为:“四脱”(脱碳、脱磷、脱硫、脱氧),“二去”(去气和去夹杂)“二调整”(调整成分和温度)。 关键词:

目录 摘要 第一章引言 (1) 第二章现代炼钢方法简介 (3) 2.1 氧气转炉炼钢 (3) 2.1.1 氧气顶吹转炉炼钢法特点 (3) 2.1.2 氧气底吹转炉炼钢法特点 (3) 2.1.3 复合炼钢法特点 (4) 2.2电弧炉炼钢 (4) 第三章炼钢的生产流程及原理 (6) 3.1炼钢的基本任务 (6) 3.2 炼钢原材料的来源 (7) 3.3 装料 (7) 3.4 炼钢炉渣 (7) 3.4.1 造渣 (8) 3.4.2 炼钢炉渣的作用 (10) 3.4.3 炼钢炉渣的来源 (11) 3.4.4 炼钢炉渣的分类与组成 (11) 3.4.5 炼钢炉渣的主要性质 (11) 3.5 炼钢过程的基本反应 (13) 3.5.1 碳的氧化 (13) 3.5.2 硅的氧化和还原 (14) 3.5.3 锰的氧化和还原 (15) 3.5.4 脱磷反应 (15) 3.5.5 脱硫反应 (17) 3.5.6 脱氧 (18) 3.6 去除钢中的气体 (21) 3.7降低钢中的非金属夹杂物 (22) 3.8 出钢 (24) 结论 (25) 参考文献 (26) 致谢 (27)

炼钢原理与工艺

目前主要的炼钢方法有氧气转炉炼钢法、电弧炉炼钢法以及炉外精炼技术。 氧气转炉包括氧气顶吹转炉、氧气底吹转炉、氧气侧吹转炉及顶底复吹转炉等,故常简称为LD。它拄要原料是铁水,同时可配加10%~30%的废钢;生产中不需要外来热源,依告靠吹入的氧气与铁水中的碳、硅、猛、磷等元素反应放出的热量使熔池获得所需的冶炼温度。其突出的优点是生产周期短、产量高;不足之处是生产的钢种有限,主要冶炼低碳钢和部分合金钢。 电炉炼钢法是以电能为主要能源、废钢为主要原料的炼钢方法,显著的优点是,熔池温度易于控制和炉内气氛可以调整,用来生产优质钢和高合金钢。设备也比较简单,而投资小,建厂快。 炉外精炼,是指从初炼炉即氧气炉或电弧炉中出来的初炼钢水,在另一个冶金容器中进行精炼的工艺过程。精炼的目的是进一步去气、脱硫、脱氧、排除夹杂物、调整及均匀钢液的成分和温度等,提高钢水质量;缩短初炼炉的冶炼时间,精炼的手段有真空、吹氩、搅拌、加热、喷粉等。 但目前世界上氧气转炉钢的产量仍占总产量的60%左右。 氧气顶吹转炉炼钢的基本过程是:装料(即加废钢、兑铁水→摇正炉体→降枪开始吹炼并加入第一批渣料→(吹炼中期)加入第二批渣料→(终点前)测温、取样→(碳、磷及温度合格后)倾炉出钢并进行脱氧合金化。 所谓装料,是指将炼钢所用的钢铁炉料装入炉内的工艺操作。

电炉炼钢所用原料,主要有废钢、生铁和直接还原铁三种。 废钢是电炉炼钢的主原料。 按其来源不同,废钢大致可分为返回废钢和外购废钢两类。 B对废钢的要求 对废钢的一般要求是清洁少锈,无混杂,成分明确,块度合适。 在电弧炉炼钢中,生铁一般是用来提高炉料的配碳量的。 转炉炼钢的原料主要是铁水,其次还配用部分废钢。 1.2.1.1铁水 铁水是氧气顶吹转炉的主原料,一般占装入量的70%以上。铁水的物理热和化学热是氧气顶吹转炉炼钢过程中的唯一热源。 A、对铁水温度的要求 较高的铁水温度,不仅能保证转炉炼顺利进行,同时还能增加放心钢的配加量,降低转炉的生产成本。希望铁水的温度尽量高些,入炉时仍在1250~1300℃。 1、兑入转炉时的铁水温度相对稳定。 2、铁水的成分应该合适而稳定。 3、铁水中的硅,是转炉炼钢的主要发热元素之一。铁水含硅量以0.5%~0.8%为宜。 4、对于含硅量过高的铁水应进行预脱硅处理,以改善转炉的脱磷条件,并减少渣量。 5、铁水的含猛量(1)铁水中的猛是一种有益元素;(2)铁水的含猛量多低于0.3%。

相关文档
最新文档