数学高考复习名师精品教案:第01课时:第一章 集合与简易逻辑-集合的概念

数学高考复习名师精品教案:第01课时:第一章 集合与简易逻辑-集合的概念
数学高考复习名师精品教案:第01课时:第一章 集合与简易逻辑-集合的概念

数学高考复习名师精品教案

第01课时:

第一章集合与简易逻辑—集合的概念

一.课题:集合的概念

二.教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问题,掌握集合问题的常规处理方法.

三.教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用.

四.教学过程:

(一)主要知识:

1.集合、子集、空集的概念;

2.集合中元素的3个性质,集合的3种表示方法;

3.若有限集A有n个元素,则A的子集有2n个,真子集有21

n-

n-,非空子集有21个,非空真子集有22

n-个.

(二)主要方法:

1.解决集合问题,首先要弄清楚集合中的元素是什么;

2.弄清集合中元素的本质属性,能化简的要化简;

3.抓住集合中元素的3个性质,对互异性要注意检验;

4.正确进行“集合语言”和普通“数学语言”的相互转化.

(三)例题分析:

例1.已知集合2{1}P y x ==+,2{|1}Q y y x ==+,2{|1}E x y x ==+,2{(,)|1}F x y y x ==+,{|1}G x x =≥,则 ( D )

()A P F = ()B Q E = ()C E F = ()D Q G =

解法要点:弄清集合中的元素是什么,能化简的集合要化简.

例2.设集合{},,P x y x y xy =-+,{}2222,,0Q x y x y =+-,若P Q =,求,x y 的值及集合P 、Q .

解:∵P Q =且0Q ∈,∴0P ∈.

(1)若0x y +=或0x y -=,则220x y -=,从而{}22,0,0Q x y =+,与集合中元素的互异性矛盾,∴0x y +≠且0x y -≠;

(2)若0xy =,则0x =或0y =.

当0y =时,{},,0P x x =,与集合中元素的互异性矛盾,∴0y ≠;

当0x =时,{,,0}P y y =-,22{,,0}Q y y =-,

由P Q =得220y y y y y -=??=-?≠?? ① 或220

y y y y y -=-??=?≠?? ② 由①得1y =-,由②得1y =,

∴{01x y ==-或{

01x y ==,此时{1,1,0}P Q ==-.

例3.设集合1{|,}24k M x x k Z ==+∈, 1{|,}42

k N x x k Z ==+∈,则( B )

()A M N = ()B M N ?≠ ()C M N ? ()D M N φ= 解法一:通分; 解法二:从1

4

开始,在数轴上表示.

例4.若集合{}2|10,A x x ax x R =++=∈,集合{}1,2B =,且A B ?,求实数a 的取值范围.

解:(1)若A φ=,则240a ?=-<,解得22a -<<;

(2)若1A ∈,则2110a ++=,解得2a =-,此时{1}A =,适合题意;

(3)若2A ∈,则22210a ++=,解得52a =-,此时5{2,}2A =,不合题意; 综上所述,实数m 的取值范围为[2,2)-.

例5.设2()f x x px q =++,{|()}A x x f x ==,{|[()]}B x f f x x ==,

(1)求证:A B ?;

(2)如果{1,3}A =-,求B .

解答见《高考A 计划(教师用书)》第5页.

(四)巩固练习:

1.已知2{|2530}M x x x =--=,{|1}N x mx ==,若N M ?,则适合条件的实数m 的集合P 为1{0,2,}3-;P 的子集有 8 个;P 的非空真子集有 6 个.

2.已知:2()f x x ax b =++,{}{}|()22A x f x x ===,则实数a 、b 的值分别为2,4-.

3.调查100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么既带感冒药又带胃药的人数的最大值为 75 ,最小值为 55 .

4.设数集3{|}4M x m x m =≤≤+,1{|}3

N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合M N 的长度的最小值是112.

集合与简易逻辑知识点归纳(1)

{}9B =,;B A =B B = )()(); U U B A B =? )()()U U B A B =? ()()card A B card A =+ ()()card B card A B - ()U A =e()U A =e13设全集,2,3,4A = {3,4,5} B = {4,7,8}, 求:(C U A )∩ B), (C U A)(A ∪B), C U B). 有两相)(,2121x x x x <有两相等a b x x 221- ==无实根 有意义的

①一个命题的否命题为真,它的逆 命题一定为真. (否命题?逆命 题.)②一个命题为真,则它的逆 否命题一定为真.(原命题?逆 否命题.) 4.反证法是中学数学的重要方法。 会用反证法证明一些代数命题。 充分条件与必要条件 答案见下一页

数学基础知识与典型例题(第一章集合与简易逻辑)答案 例1选A; 例2填{(2,1)} 注:方程组解的集合应是点集. 例3解:∵{}9A B =,∴9A ∈.⑴若219a -=,则5a =,此时{}{}4,9,25,9,0,4A B =-=-, {}9,4A B =-,与已知矛盾,舍去.⑵若29a =,则3a =±①当3 a =时,{}{}4,5,9,2,2,9A B =-=--.B 中有两个元素均为2-,与集合中元素的互异性矛盾,应舍去.②当3a =-时,{}{}4,7,9,9,8,4A B =--=-,符合题意.综上所述,3a =-. [点评]本题考查集合元素基本特征──确定性、互异性、无序性,切入点是分类讨论思想,由于集 合中元素用字母表示,检验必不可少。 例4C 例5C 例6①?,②ü,③ü,④ 例7填2 例8C 例9? 例10解:∵M={y|y =x 2+1,x ∈R}={y |y ≥1},N={y|y =x +1,x ∈R}={y|y ∈R}∴ M∩N=M={y|y ≥1} 注:在集合运算之前,首先要识别集合,即认清集合中元素的特征。M 、N 均为数集,不能误认为是点集,从而解方程组。其次要化简集合。实际上,从函数角度看,本题中的M ,N 分别是二次函数和一次函数的值域。一般地,集合{y |y =f (x ),x ∈A}应看成是函数y =f (x )的值域,通过求函数值域化简集合。此集合与集合{(x ,y )|y=x 2+1,x ∈R}是有本质差异的,后者是点集,表示抛物线y =x 2+1上的所有点,属于图形范畴。集合中元素特征与代表元素的字母无关,例如{y|y ≥1}={x |x ≥1}。 例11填?注:点集与数集的交集是φ. 例12埴?,R 例13解:∵C U A = {1,2,6,7,8} ,C U B = {1,2,3,5,6}, ∴(C U A)∩(C U B) = {1,2,6} ,(C U A)∪(C U B) = {1,2,3,5,6,7,8}, A ∪ B = {3,4,5,7,8},A∩B = {4},∴ C U (A ∪B) = {1,2,6} ,C U (A∩B) = {1,2,3,5,6,7,8} 例145,6a b ==-; 例15原不等式的解集是{}37|<<-x x 例16 53|332 2x R x x ??∈-<-+-->+?? ≥或,即3344123x x x x ? 2或x <31,∴原不等式的解集为{x | x >2或x <31}.方法2:(整体换元转化法)分析:把右边看成常数c ,就同)0(>>+c c b ax 一样∵|4x -3|>2x +1?4x -3>2x +1或4x -3<-(2x +1) ? x >2 或x < 31,∴原不等式的解集为{x | x >2或x <3 1}. 例18分析:关键是去掉绝对值. 方法1:零点分段讨论法(利用绝对值的代数定义) ①当1-x ,∴}32 1 |{<2 1}. 方法2:数形结合:从形的方面考虑,不等式|x -3|-|x +1|<1表示数轴上到3和-1两点的距离之差小于1的点 ∴原不等式的解集为{x |x > 2 1 }. 例19答:{x |x ≤0或1??????????-<>-<>≤≤--≠????? ? ? ???>+-<+-≤-+≠+13 21 0121 0)1(2230)1(24020 12k k k k k k k k k k k k k 或或. 1 3 212<<-<<-?k k 或∴实数k 的取值范围是{k|-2?=+-R 的解集为函数在上恒大于 22,2, |2||2|2. 2,2,1|2|121.,,2 11 0.,, 1.(0,][1,). 22 x c x c x x c y x x c c c x c x x c R c c P c P c c -?+-=∴=+-??>?> <≥?+∞R ≥函数在上的最小值为不等式的解集为如果正确且Q 不正确则≤如果不正确且Q 正确则所以的取值范围为 例26答:552x x x >?><或. 例27答既不充分也不必要 解:∵“若 x + y =3,则x = 1或y = 2”是假命题,其逆命题也不成立. ∴逆否命题: “若12x y ≠≠或,则3x y +≠”是假命题, 否命题也不成立. 故3≠+y x 是12x y ≠≠或的既不充分也不必要条件. 例28选B 例29选A

高一数学上册第一章集合与简易逻辑精品教案

课 题:1.1集合-集合的概念(1) 教学过程: 一、复习引入: 1.集合论的创始人——康托尔(德国数学家)(见附录); 2.“物以类聚”,“人以群分”; 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素. 定义:一般地,某些指定的对象集在一起就成为一个集合. 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集)。 (2)元素:集合中每个对象叫做这个集合的元素。 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合。记作N ,{} ,2,1,0=N (2)正整数集:非负整数集内排除0的集N *或N + {} ,3,2,1*=N (3)整数集:全体整数的集合。记作Z , {} ,,, 210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数 =Q (5)实数集:全体实数的集合。记作R {} 数轴上的点所对应的数 =R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括 数0 (2)非负整数集内排除0的集,记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示, 例如,整数集内排除0的集,表示成Z * 3、元素对于集合的隶属关系 (1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A (2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ? 4、集合中元素的特性

高一数学必修一集合教案知识点及练习

教学辅导教案 学科: 任课教师: 授课日期: 第一部分:集合的含义 知识梳理 1.元素与集合的概念 (1)把 统称为元素,通常用________________________表示。 (2)把_________________ ___ __叫做集合(简称为集),通常用______ ______表示。 2.集合中元素的特性 (1(2(3 3.集合相等 只要_____________________________________就称这两个集合是相等的。 4、集合分类 根据集合所含元素个数不同,可把集合分为如下几类: (1)把不含任何元素的集合叫做空集,记

(2)含有有限个元素的集合叫做有限集 (3)含有无穷个元素的集合叫做无限集 5.元素与集合之间的关系 (1)如果a是集合A的元素,就说__________________,记作__________________. (2)如果a不是集合A的元素,就说________________,记作__________________. 例题分析 用符号“∈”或“?”填空: (1)1________N,0________N,-3________N,0.5________N,2________N; (2)1________Z,0________Z,-3________Z,0.5________Z,2________Z; (3)1________Q,0________Q,-3________Q,0.5________Q,2________Q; (4)1________R,0________R,-3________R,0.5________R,2________R. 经典例题: 例1:用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程2x x=的所有实数根组成的集合; (3)由1~20以内的所有素数组成的集合. 素数: 例2.试分别用列举法和描述法表示下列集合:

集合与简易逻辑知识点整理

集合与简易逻辑 知识点整理 班级: 姓名: 1.集合中元素的性质(三要素): ; ; 。 2.常见数集:自然数集 ;自然数集 ;正整数集 ; 整数集 ;有理数集 ;实数集 。 3.子集:A B ?? ; 真子集:A B ≠ ?? ; 补(余)集:A C B ? ; 【注意】空集是任意集合的子集,是任意非空集合的真子集。 4.交集:A B ?? ; 并集:A B ?? 。 笛摩根定律:()U C A B ?= ;()U C A B ?= 。 性质:A B A ?=? ;A B A ?=? 。 5.用下列符号填空: "","","","","",""≠ ∈???=≠ 0 N ;{}0 R ;φ {}0;{}1,2 {}(1,2);{}0x x ≥ {} 0y y ≥ 6.含绝对值的不等式的解法:【注意】含等号时端点要取到。 x a < (0)a >的解集是 ;x a > (0)a >的解集是 。 (0)ax b c c +<>? a x b <+< ;(0)ax b c c +<

一元二次不等式2 0ax bx c ++>(0)a ≠恒成立? 。 一元二次不等式2 0ax bx c ++≥(0)a ≠恒成立? 。 9.简单分式不等式的解法: () 0()f x g x > ?()()0f x g x ?>?()0()0f x g x >??>?或()0()0f x g x ;则p q 是的 条件; 若,p q q p ≠>?;则p q 是的 条件; 若p q ?;则p q 是的 条件; 若,p q q p ≠>≠>;则p q 是的 条件。

集合与简易逻辑知识点

集合、简易逻辑 知识梳理: 1、 集合:某些指定的对象集在一起就构成一个集合。集合中的每一个对象称为该集合的元素。 元素与集合的关系:A a ∈或A a ? 集合的常用表示法: 列举法 、 描述法 。集合元素的特征: 确定性 、 互异性 、 无序性 。 常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ?B 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ?B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 注:空集是任何集合的子集。是非空集合的真子集 结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ?即:B A ?=}{B x A x x ∈∈且,|。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ?即:B A ?=}{B x A x x ∈∈或,|。 记住两个常见的结论:B A A B A ??=?;A B A B A ??=?;

高中数学 第一章集合与简易逻辑教案3.doc

第一章“集合与简易逻辑”教材分析 本章安排的是“集合与简易逻辑”,这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合的初步知识是现行高中数学教科书中原来就有的内容,这部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识则是新增加的内容,这部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识 集合概念及其基本理论,称为集合论,是近代数学的一个重要的基础.一方面,许多重要的学科,如数学中的数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用. 逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分. 在高中数学中,集合的初步知识与简易逻辑知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,这就是把它们安排在高中数学起始章的出发点. 本章共编排了8小节,教学时间约需22课时: 11 集合约2课时 12 子集、全集、补集约2课时 13 交集、并集约2课时

14 绝对值不等式的解法约2课时 15 一元二次不等式的解法约4课时 16 逻辑联结词约2课时 17 四种命题约2课时 18 充分条件与必要条件约2课时 小结与复习约4课时 说明:本章是高中数学的起始章,课时安排得相对宽松一些,像小结与复习部分安排4课时,其中考虑到了对初中内容进行适当复习、巩固的因素. 一内容与要求 大体上按照集合与逻辑这两个基本内容,第一章编排成两大节. 第一大节是“集合”.学生在小学和初中数学中,已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(圆)等,都有了一定的感性认识.在此基础上,这一大节首先结合实例引出集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出子集的概念,此外,还给出了与子集相联系的全集与补集的概念.接着,又讲述了属于集合运算的交集、并集的初步知识.鉴于不等式的内容目前初中数学只讲述一元一次不等式与一元一次不等式组,考虑到集合知识的运用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,第一大节最后安排的是绝对值不等式与一元二次不等式的解法.此外,在这一大节之后,还附了一篇关于有限集合元素个数的阅读材料. 这一大节的重点是有关集合的基本概念.学习集合的初步知识,可以使学生更好地理解数学中出现的集合语言,可以使学生更好地使用集合语言表

(完整版)高中数学一轮复习《1集合与充要条件》教学案

盐城市文峰中学美术生高中数学复习教学案 §1集合与充要条件 【考点及要求】: 1.了解集合含义,体会“属于”和“包含于”的关系,全集与空集的含义; 2.了解并掌握集合之间交,并,补的含义与求法; 3.理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件. 【基础知识】: 1.集合中元素与集合之间的关系:文字描述为 和 符号表示为 和 2.常见集合的符号表示:自然数集 正整数集 整数集 有理数集 实数集 复数集 3.集合的表示方法1 2 3 4.集合间的基本关系:1)相等关系:_________A B B A ???且 2)子集:A 是B 的子集,符号表示为______或B A ? 3) 真子集:A 是B 的真子集,符号表示为_____或____ 5.不含任何元素的集合叫做 ,记作 ,并规定空集是任何集合的子集,是任何非空集合的 6.若已知全集U ,集合A U ?,则U C A = . 7.________A A ?=,_________A ??=,__________A A ?=, _________A ??=,_________U A C A ?=,_________U A C A ?=, 8.若A B ?,则____,___A B A B ?=?= 9.若q p ?,则p 是q 的 条件, q 是p 的 条件. 10.若q p ?,且p q ?,则p 是q 的 条件. 【基本训练】: 1.{}a a a ,202-∈,则a 的值等于_________. 2.若全集{}4,3,2,1,0=U ,且{}3,2=A C U ,则A 的真子集有 个. 3.集合{}{}02,12<-=>=x x x B x x A ,则______=?B A . 4.1>x 是x x >2的_____________ 条件. 【典型例题讲练】 例1.已知集合{}{} 03)32(,082222≤-+--=≤--=m m x m x x B x x x A (1) 若[]4,2=?B A ,求实数m 的值;

高中数学三角函数教案

高中数学三角函数教案 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义包括定义域、正负符号判断;了解任意 角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概 念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的 辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、正负符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性α确定,比值也随之确定与依赖性比值随着α的变化而变化. 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模 仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、 讲练结合”的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义锐角三角形边角关系——问题情境:能推广 到任意角吗?——它山之石:建立直角坐标系为何?——优化认知:用直角坐标系研究锐角三 角函数——探索发展:对任意角研究六个比值与角之间的关系:确定性、依赖性,满足函数 定义吗?——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析对应法则、定义域、值域与正负符号判定——例题与练习——回顾小结——布置作业]

集合与常用逻辑用语(高三复习、教案设计)

第一章:集合与常用逻辑用语 §·集合的概念及运算 一、知识清单 1.集合的含义与表示 (1)集合:集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。 (2)常用的集合表示法:①列举法;②描述法;③数轴或图像表示法;④venn 图法 2.集合的特性 3.常用的集合 特 性 理 解 应 用 确定性 要么属于该集合,要么不属于,二者必居其一; 判断涉及的总体是否构成集 合 互异性 集合中的任意两个元素都是不同的; 1.判断集合表示是否正确; 2.求集合中的元素 无序性 集合的不同与元素的排列无关; 通常用该性质判断两个集合 的关系 集合 (){}0|=x f x (){}0|>x f x (){}x f y x =| (){}x f y y =| ()(){}x f y y x =|, (){}x f y =

常见数集的记法: 4.集合间的基本关系 (2)有限集合中子集的个数

【提醒】空集是任意集合的子集,是任意非空集合的真子集。符号表示为:5.集合的运算 集),写作C S A。

二、高考常见题型及解题方法 1.解决集合问题的常用方法 2.集合问题常见题型 (1)元素与集合间关系问题 (2)集合与集合间关系问题 (3)集合的基本运算: ①有限集(数集)间集合的运算; ②无限集间集合的运算:数轴(坐标系)画图、定域、求解; ③用德·摩根公式法求解集合间的运算。 【针对训练】 例1.已知集合A={0,1,2},则集合B={x-y|x ∈A ,y ∈A}中元素的个数是( ) A.1 B.3 C.5 D.9 例2.设集合{} {}R x x x P R x x x y y M ∈≤≤-=∈--==,42|,,12|2 ,则集合M 与P 之间的关系式为( )

人教版高中数学必修1集合教案

一集合(§1.1.1 集合) 教学时间 :第一课时 课题:§1.1.1 集合 教学目标: 1、理解集合的概念和性质. 2、了解元素与集合的表示方法. 3、熟记有关数集. 4、培养学生认识事物的能力. 教学重点:集合概念、性质 教学难点:集合概念的理解 教学方法:尝试指导 教具准备:投影片(3张) 教学过程: (I)引入新课 同学们好!首先,我祝贺大家能升入苍梧第一高级中学进行高中学习。下面我想初步了解一下同学们的情况。请来自××中学的同学站起来。依次询问他们的名字,并板书。同样询问来自另一学校学生情况。××同学你为什么不站起来?来自××中学的三位虽然性别不同,年龄有差异,但他们有一个共同的性质——来自××中学。所以,在数学上可以把他们看作为有3个元素的集合(板书课题:集合,并将其姓名用{ }括起来),同样,××中学的二位同学也可看作有2个元素的集合。显然,刚才抽到的××同学如果作为一个元素就不属于上面这两个集合了。同学们!这节课我们将系统地研究集合的一些概念。讲四个问题:(1)集合和元素;(2)集合的分类;(3)集合的表示方法;(4)为什么要学习集合的表示方法? (II)复习回顾 师生共同回顾初中代数中涉及“集合”提法. (Ⅲ)讲授新课

通过以上实例,教师指出: 1、定义: 集合:一般地,某些指定的对象集在一起就成为一个集合(集). 师:进一步指出: 元素:集合中每个对象叫做这个集合的元素. 由此上述例中集合的元素是什么? 生:例(1)的元素为1、3、5、7, 例(2)的元素为到两定点距离等于两定点间距离的点, 例(3)的元素为满足不等式3x-2> x+3的实数x, 例(4)的元素为所有直角三角形, 例(5)为高一·六班全体男同学. 师:请同学们另外举出三个例子,并指出其元素. 生:略.(教师给予评议)。 师:一般用大括号表示集合,{ …}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为…… 为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5} 2 生:在师指导下一一回答上述问题. 师:由以上四个问题可知, 集合元素具有三个特征: (1)确定性;(2)互异性;(3)无序性. 3、元素与集合的关系:隶属关系 ∈师:元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。

教学片断与案例

教学片断与案例 1、综合法和分析法的一个教学片断 师:合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的.观察、思考下列证明过程各有什么特点?它们是以怎样的形式使结论获证的? 引例1已知a,b>0,求证2222()()4a b c b c a abc +++≥ 证明:因为222,0b c bc a +≥>,所以22()2a b c abc +≥, 因为222,0c a ac b +≥>,所以22()2b c a abc +≥. 因此, 2222()()4a b c b c a abc +++≥. 引例2已知,a b R +∈,求证: 2a b +≥ 证明:要证2 a b +≥a b +≥, 只需证0a b +-,只需证20≥ 因为20≥显然成立,所以原不等式成立. 引例3已知0,0,0>>++>++abc ca bc ab c b a .求证: 0,,>c b a 证:设0abc ,∴0++c b a ,则0>-=+a c b ∴0)(<++=++bc c b a ca bc ab ,与题设矛盾 又若0=a ,则与0>abc 矛盾,∴必有0>a . 同理可证: 0,0>>c b 设计意图:通过三种证明方法案例的展示,引导学生观察、比较、辨析、思考三种证明方法的形式、特点,为归纳、抽象、概括三种证明方法提供感性认识,也为理解不同证明方法的表述形式打下基础.引例1、2的方法是本课要学习的重点内容,引例3的方法(反证法)是下一课的学习任务,在此给出引例3有两方面的作用,一方面,让学生对不同方法有一个整体认识与了解,另一方面,为下一课的学习作好铺垫. 对三个引例,引导学生分两个层次比较、归纳.第一层次的比较,是否直接针对结论进行证明?得出直接证明与间接证明;第二层次的比较,是引例1、2之间,证明的起点及逻辑推理形式,由此可引导学生归纳、概括出本课重点学习的两种方法:综合法与分析法. 2、归纳探索的一个教学片断 问题情境:(河内塔游戏)传说在古老的印度有一座神庙,神庙中有三根针和套在一根针上的64个圆环.古印度的天神指示他的僧侣们按下列规则,把圆环从一根针上全部移到另一根针上,第三根针起“过渡”的作用. ①每次只能移动1个圆环; ②较大的圆环不能放在较小的圆环上面.

2013高考数学基础检测:01专题一-集合与简易逻辑

2013高考数学基础检测:01专题一-集合与简易逻辑

专题一 集合与简易逻辑 一、选择题 1.若A={x ∈Z|2≤22-x <8}, B={x ∈R||log 2x|>1}, 则A ∩(C R B)的元素个数为( ) A .0 B .1 C .2 D .3 2.命题“若x 2<1,则-11或x<-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1 3.若集合M={0, 1, 2}, N={(x, y)|x-2y+1≥0且x-2y-1≤0, x 、y∈M},则N 中元素的个数为( ) A .9 B .6 C .4 D .2 4.对于集合M 、N ,定义M-N={x|x∈M,且x ?N},M ○+N=(M-N)∪(N -M).设A={y|y=x 2-3x, x∈R}, B={y|y=-2x , x∈R},则A ○+B=( ) A .],094(- B . )0,4 9[- C .),0()49,(+∞--∞ D .),0[)4 9,(+∞--∞ 5.命题“对任意的x∈R ,x 3-x 2+1≤0”的否定是( )

{x|x>0}=ф,则实数m 的取值范围是_________. 10.(2008年高考·全国卷Ⅱ)平面内的一个四边形为平行四边形的充分条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件①_____________________; 充要条件②_____________________.(写出你认为正确的两个充要条件) 11.下列结论中是真命题的有__________(填上序号即可) ①f(x)=ax 2+bx+c 在[0, +∞)上单调递增的一 个充分条件是-2a b <0; ②已知甲:x+y ≠3;乙:x ≠1或y ≠2.则甲是乙的充分不必要条件; ③数列{a n }, n ∈N * 是等差数列的充要条件是 P n (n, n S n )共线. 三、解答题 12.设全集U=R ,集合A={x|y=log 2 1 (x+3)(2-x)}, B={x|e x-1 ≥1}. (1)求A ∪B ; (2)求(C U A)∩B .

集合与简易逻辑知识点

高考数学概念方法题型易误点技巧总结(一) 集合与简易逻辑 基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。 1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若 {0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。 (答:8)(2)设{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|B x y x y n =+-0}≤,那么点)()3,2(B C A P u ∈的充要条件是________(答:5,1<->n m );(3)非空集合 }5,4,3,2,1{?S ,且满足“若S a ∈,则S a ∈-6” ,这样的S 共有_____个(答:7) 2.遇到A B =?时,你是否注意到“极端”情况:A =?或B =?;同样当A B ?时,你是否忘记?=A 的情形?要注意到?是任何集合的子集,是任何非空集合的真子集。如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,则实数a =______.(答:10,1,2 a =) 3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数 依次为,n 2,12-n ,12-n .22-n 如满足{1,2}{1,2,3,4,5}M ??≠集合M 有______个。 (答:7) 4.集合的运算性质: ⑴A B A B A =??; ⑵A B B B A =??;⑶A B ?? u u A B ?痧; ⑷u u A B A B =???痧; ⑸u A B U A B =??e; ⑹()U C A B U U C A C B =;⑺()U U U C A B C A C B =.如设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___.(答:{2,3}A =,{2,4}B =) 5. 研究集合问题,一定要理解集合的意义――抓住集合的代表元素。如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,如 (1)设集合{|M x y ==,集合N ={}2|,y y x x M =∈,则M N =___(答: [4,)+∞) ;(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+, }R λ∈,则=N M _____(答:)}2,2{(--) 6. 数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。如已知函 数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使 0)(>c f ,求实数p 的取值范围。 (答:3(3,)2 -) 7.复合命题真假的判断。“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”。如在下列说法中:⑴“p 且q ”为真是“p 或q ”为真的充分不必要条件;⑵“p 且q ”为假是“p 或

2013白蒲中学高一数学教案:集合与简易逻辑:20(苏教版)

第二十教时 教材:四种命题 目的:要求学生掌握四种命题,给出一个简单的命题(原命题)要能写出它的逆命题、否命题、逆否命题。 过程: 一、复习初中学过的命题与逆命题的知识 定义:如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,这两个命题叫互逆命题。其中一 个命题叫做原命题,另一个命题叫做原命题的否命题。 例:“同位角相等,两直线平行”(1)条件(题设):同位角相等。结论:两直线平行 它的逆命题:两直线平行,同位角相等。(2)二、新授: 1.看两个命题:同位角不相等,两直线不平行(3) 两直线不平行,同位角不相等(4)比较命题(1)与(3):一个命题的条件和结论,分别是另一个命题 的条件的否定和结论的否定。…………互否 命题 比较命题(1)与(4):一个命题的条件和结论,分别是另一个命题 的结论的否定和条件的否定。……互为逆否 命题 2.概括:(1)为原命题(2)为逆命题 (3)为否命题(4)为逆否命题 3.若p为原命题条件,q为原命题结论 则:原命题:若p 则q 逆命题:若p 则q 否命题:若?p 则?q 逆否命题:若?q 则?p 4.例一见P30 例一略 注意:关键是找出原命题的条件(p),结论(q) 然后适当改写成更明显的形式。 5.注意:1?为什么称“互为 ..”逆命题(否命题,逆否命题)2?要重视对命题的剖析:条件、结论 三、练习(P31) 四、拓宽引申: 例:写出命题“若xy= 0 则x = 0或y = 0”的逆命题、否命题、逆否命题解:逆命题:若x = 0或y = 0 则xy = 0

否命题:若xy ≠ 0 则x ≠ 0且y ≠ 0 逆否命题:若x ≠ 0且y ≠ 0 则xy≠0 五、作业:P33 习题1.7 1 、2 《课课练》P28-29 课时15中选部分

高中数学《组合》教学设计

组合教学设计(第一课时) 一、教材分析 本节课的教学内容是选修2-3(人教A版)§1.2.2《组合》第一课时.本节内容是两个计数原理及排列知识的延续,也是后续学习二项式定理,研究二项式系数性质及求等可能事件概率的基础,因此本节课在整个章节中起了承上启下的重要作用。本节课主要是借助学生身边的例子,类比排列的知识探究组合的定义、组合数的定义、组合数计算公式及组合数的性质,并从具体情境中体会排列与组合的区别与联系。通过对组合教学的探究,让学生体会类比,从特殊到一般等重要数学思想的应用以及数学来源于生活又服务于生活的课程理念。 二、学情分析 从学生的现有知识水平看,在学习本节前,学生已学习了两个基本计数原理、排列。绝大多数学生能正确运用两个计数原理,能正确理解排列、排列数的概念,能比较熟练地应用排列数公式进行计算。还能遵循先特殊后一般、先取后排、先分类后分步的原则,解决典型的排列问题。因此在本节课教学要借助这些已有的知识,通过观察、分析、类比、归纳,帮助学生理解组合的概念;从能力的角度看,学生已经具备了一定的分析问题的能力、思考的能力、探究的能力、计算的能力、数学表达的能力,教学中要借助学生已有的能力,提供实际问题情境,引导学生进行分析,向学生提供合适的探究材料,引发学生的主动探究,借助小组讨论、合作交流,全班展示等活动培养学生的自主学习、合作学习及数学表达能力。 三、设计思想 《组合》是继排列后的又一特殊的计数模型,是计数问题的延续与拓展。本节课我的设计理念是:以问题为载体,以学生为主体,创设有效问题情境,努力营造开放、民主、和谐的学习氛围,充分调动学生的兴趣与积极性。让学生在经历“自主、探究、合作”的过程中,体验从生活中发现数学,并通过观察、分析、对比、归纳、猜想、证明、展示、交流等一系列思维活动,在教师的适当引导、组织下主动地建构数学知识的过程。同时注重渗透“特殊与一般”、“分类讨论”、“转化与化归”等重要数学思想及类比的学习方法,让学生掌握知识的同时提升数学素养与思维品质,真正做到“授之以鱼不如授之以渔”。 四、教学目标 1、知识与技能: 正确理解组合、组合数的概念;会利用排列与组合的关系推导组合数公式;初步掌握组合数的性质; 2、过程与方法: 借助学生生活中熟悉的例子创设问题情境,学生通过对实际问题的探究、思考、对比、分析,初步形成组合、组合数的概念;用类比、归纳的思想得出组合、组合数的概念,并深刻体会组合、排列的区别与联系;通过小组讨论、交流合作、成果展示等活动,才用类比、特殊到一般的思想探究推导组合数公式并能进行简单应用;从组合数的计算中观察、归纳、猜想得到组合数的性质并进行简单的应用。3、情感态度与价值观: 学会用联系的观点看问题,培养良好的个性品质及团队合作意识;让学生充分感受到数学来源于生活又服务于生活,提高应用数学的意识。 五、教学重点:组合的概念、组合数公式、组合数的性质 六、教学难点:组合数公式的推导. 七、教学方法:启发、引导、自主、合作、探究

01集合与简易逻辑

北大附中2013届周练2 (时间120分钟满分150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.(2011年北京)已知集合A={x|x≠1,x∈R},A∪B=R,则集合B不可能是() A.{x|x>-2,x∈R}B.{x|x<-2,x∈R} C.{x|x≠-2,x∈R} D.{0,-2,1} 2.(2011年湖北八校联考)“a=-1”是“直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直”的 A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 3.(2011年黄冈3月质检)已知全集I={1,2,3,4,5,6,7},M={3,4,5},N={1,3,6},则集合{2,7}等于() A.(?I M)∩(?I N) B.(?I M)∪(?I N) C.M∪N D.M∩N 4.“a2+b2≠0”的含义为() A.a,b不全为0;B.a,b全不为0 C.a,b至少有一个为0;D.a不为0且b为0,或b不为0且a为0 5.设命题:p:若a>b,则1 a< 1 b;q:若 1 ab<0,则ab<0;给出以下3个复合命题:①p∧q; ②p∨q③?p∧?q.其中真命题个数为() A.0个B.1个C.2个D.3个 6.已知全集U=A∪B中有m个元素,(?U A)∪(?U B)中有n个元素.若A∩B非空,则A∩B 的元素个数为() A.mn B.m+n C.n-m D.m-n 7.命题“存在一个三角形,内角和不等于180°”的否定为() A.存在一个三角形,内角和等于180°;B.所有三角形,内角和都等于180° C.所有三角形,内角和都不等于180°;D.很多三角形,内角和不等于180° 8.已知条件p:(x+1)2>4,条件q:x>a,且?p是?q的充分而不必要条件,则a的取值范围是() A.a≥1 B.a≤1 C.a≥-3 D.a≤-3 9.(2011年湖北八市三月调考)设集合M={y|y=2x,x<0},N={y|y=log2x,0

必修一集合与简易逻辑知识点经典总结

集合、简易逻辑 集合知识梳理: 1、 集合:某些指定的对象集在一起就构成一个集合。集合中的每一个对象称为该集合的元素。 元素与集合的关系:A a ∈或A a ? 集合的常用表示法: 列举法 、 描述法 。集合元素的特征: 确定性 、 互异性 、 无序性 。 常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ?B 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为 A ? B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 注:空集是任何集合的子集。是非空集合的真子集 结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ?即:B A ?=}{B x A x x ∈∈且,|。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ?即:B A ?=}{B x A x x ∈∈或,|。 记住两个常见的结论:B A A B A ??=?;A B A B A ??=?; 命题知识梳理: 1、命题:可以判断真假的语句叫做命题。(全称命题 特称命题) ⑴全称量词——“所有的”、“任意一个”等,用“?”表示; 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

相关文档
最新文档