求前n项和的方法和由递推公式求通项公式的方法

求前n项和的方法和由递推公式求通项公式的方法
求前n项和的方法和由递推公式求通项公式的方法

数列求和的基本方法和技巧

一、利用常用求和公式求和

利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2

)

1(2)(11-+=+=

2、等比数列求和公式:?????≠--=--==)

1(11)1()1(111

q q q a a q

q a q na S n n

n

3、 )1(211+==∑=n n k S n

k n )12)(1(6112++==∑=n n n k S n k n 2

1

3)]1(21[+==∑=n n k S n

k n

[例1] 已知3

log 1

log 23-=x ,求数列{x n }的前n 项和.

[例2] 设S n =1+2+3+…+n ,n ∈N *,求1

)32()(++=n n

S n S n f 的最大值.

二、错位相减法求和

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:1

3

2

)12(7531--+???++++=n n x n x x x S (注意讨论)

[例4] 求数列??????,2

2,,26,24,2232n n

前n 项的和.

三、倒序相加法求和

这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.

[例5] 求

89sin 88sin 3sin 2sin 1sin 2

2

2

2

2++???+++的值

四、分组法求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231

,,71,41,1112-+???+++-n a

a a n ,…(注意讨论)

[例7] 求数列{n(n+1)(2n+1)}的前n 项和.

五、裂项法求和

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1))()1(n f n f a n -+= (2)1111

()()n a n n k k n n k

=

=-++

(3)111)1(1+-=+=

n n n n a n (4)11

()n a n k n k

n k n ==+-++

(5) n n n n tan )1tan()1cos(cos 1sin -+=+(6)tan(1)tan tan(1)tan 1tan1

n n n n +-+=-

(7)])

2)(1(1

)1(1[21)2)(1(1++-+=+-=

n n n n n n n a n

(8) n

n

n n n n n n S n n n n n n n n n a 2)1(1

1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++=

-则 [例9] 求数列???++???++,1

1,

,3

21,

2

11n n 的前n 项和.

[例10] 在数列{a n }中,11211++

???++++=n n

n n a n ,又1

2+?=n n n a a b ,求数列{b n }的前n 项的和.

[例11] 求证:

1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=

+???++

六、合并法求和

针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .

[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.

[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.

[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

七、利用数列的通项求和

先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法. [例15] 求

1

1111111111个n ???+???+++之和.

[例16] 已知数列{a n }:∑∞

=+-+++=

1

1))(1(,)3)(1(8

n n n n a a n n n a 求的值.

以上一个7种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。

由递推公式求通项公式的方法

已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学,不涉及具体某一题目的独特解法与技巧。

一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数)

此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有

21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=-

将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++- ,进而求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 解:依题意有

213211,3,,23n n a a a a a a n --=-=-=-

逐项累加有221(123)(1)

1323(1)212

n n n a a n n n n +---=+++-=

=-=-+ ,从而

223n a n n =-+。

注:在运用累加法时,要特别注意项数,计算时项数容易出错. 变式练习:已知{}n a 满足11=a ,)

1(1

1+=-+n n a a n n ,求}{n a 的通项公式。

二、)(1n f a a n n ?=+型数列,(其中()f n 不是常值函数)

此类数列解决的办法是累积法,具体做法是将通项变形为

1

()n n

a f n a +=,从而就有 32

121

(1),(2),,(1)n n a a a f f f n a a a -===- 将上述1n -个式子累乘,变成

1

(1)(2)(1)n

a f f f n a =???- ,进而求解。 例2. 已知数列{}n a 中11123,(2)321

n n n a a a n n --=

=?≥+,求数列{}n a 的通项公式。 解:当2n ≥时,324123113523

,,,,,57921

n n a a a a n a a a a n --====+ 将这1n -个式子累乘,得到

113(21)(21)n a a n n ?=-+,从而21311(21)(21)341n a n n n ?=?=-+-,当1n =时,1211413

a n ==-,所以2

1

41

n a n =-。 注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错. 变式练习:在数列{}n a 中, n a >0,2

2

1112,(1)n n n n a na n a a a ++==++,求n a .

提示:依题意分解因式可得11[(1)]()0n n n n n a na a a +++-+=,而n a >0,所以1(1)0n n n a na ++-=,即

11

n n a n

a n +=+。

三、q pa a n n +=+1型数列

此类数列解决的办法是将其构造成一个新的等比数列,再利用等比数列的性质进行求解,构造的办法有两种,一是待定系数法构造,设)(1m a p m a n n +=++,展开整理

1n n a pa pm m

+=+-,比较系数有

pm m b -=,所以1b m p =-,所以1

n b a p +-是等比数列,公比为p ,首项为1

1b a p +-。二是用作差

法直接构造,1n n a pa q +=+,

1n n a pa q -=+,两式相减有11()n n n n a a p a a +--=-,所以1n n a a +-是公比为p 的等比数列。

例3. 在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。 解法1:设13()n n a m a m -+=+,即有132n n a a m -=+

对比132n n a a -=+,得1m =,于是得113(1)n n a a -+=+,即

31

1

1=++-n n a a

所以数列{1}n a +是以112a +=为首项,以3为公比的等比数列 则1

23

1n n a -=?-。

解法2:由已知递推式,得1132,32,(2)n n n n a a a a n +-=+=+≥,

上述两式相减,得113()n n n n a a a a +--=-,即

31

1=---+n n n

n a a a a

因此,数列1{}n n a a +-是以214a a -=为首项,以3为公比的等比数列。 所以1

143n n n a a -+-=?,即1

3243

n n n a a -+-=?,

所以1

23

1n n a -=?-。

变式练习:已知数列{}n a 满足*

111,21().n n a a a n N +==+∈求数列{}n a 的通项公式.

注:根据题设特征恰当地构造辅助数列,利用基本数列可简捷地求出通项公式.

四、型数列(p 为常数)

此类数列可变形为

()1

11++++=n n n n n p n f p a p a ,则?

?????n n p a 可用累加法求出,由此求得n a . 例4已知数列{}n a 满足1

111,32n n n a a a ++==+,求n a .

解:将已知递推式两边同除以12n +得

1131222n n n n a a ++=?+,设2n n n a b =,故有1

3

2(2)2

n n b b ++=?+,1

5322

n n n

b -?=-,从而11532n n n a -+=?-. 注:通过变形,构造辅助数列,转化为基本数列的问题,是我们求解陌生的递推关系式的常用方法. 若()f n 为n 的一次函数,则n a 加上关于n 的一次函数构成一个等比数列; 若()f n 为n 的二次函数, 则n a 加上关于n 的二次函数构成一个等比数列.这时我们用待定系数法来求解. 例5.已知数列{}n a 满足111

1,2,21,.2

n n n a n a a n a -=≥=

+-当时求 解:作n n b a An B =++,则n n a b An B =--,11(1)n n a b A n B --=---代入已知递推式中得:11111

(2)(1)2222

n n b b A n A B -=

++++-. 令1

202

1110

22

A A

B ?+=????+-=??46A B =-???=?

这时11

2n n b b -=

且46n n b a n =-+ 显然,132n n b -=,所以13

462

n n a n -=+-.

注:通过引入一些待定系数来转化命题结构,经过变形和比较,把问题转化成基本数列,从而使问题得

以解决.

变式练习:(1)已知{}n a 满足1

112

2,2+++==n n n a a a ,求n a 。

(2)已知数列{}n a ,n S 表示其前n 项和,若满足2

31n n S a n n +=+-,求数列 {}n a 的通项公式。

提示:(2)中利用111

,2

n n n S n a S S n -=?=?

-≥?,把已知条件转化成递推式。

五、C

Ba Aa a n n

n +=

型数列(C B A ,,为非零常数)

这种类型的解法是将式子两边同时取倒数,把数列的倒数看成是一个新数列,便可顺利地转化为

1n n a pa q +=+型数列。

例6.已知数列{}n a 满足1122,2

n

n n a a a a +==

+,求n a . 解:两边取倒数得:

11112n n a a +=+,所以1111(1)22n n n a a =+-?=,故有2n a n

=。 变式练习:数列{}n a 中,1111

2,22n n

n n n

a a a a +++?==+,求{}n a 的通项。

六、n n n qa pa a +=++12型数列(,p q 为常数)

这种类型的做法是用待定糸数法设()n n n n a a a a λχλ-=--=+112构造等比数列。 例7.数列{}n a 中,,3,221==a a 且()2,211≥∈+=++-n N n a a a n n n ,求n a .

例8. 数列{}n a 中, a 1=1,a 2=2,a n+1=a n +6a n-1,求n a .

由递推公式求通项公式的方法

由递推公式求通项公式的方法 已知数列的递推公式,求取其通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学,不涉及具体某一题目的独特解法与技巧。 一、1()n n a a f n +=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有 21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=- 将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++- ,进而求解。 例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求 解:依题意有 213211,3,,23n n a a a a a a n --=-=-=- 逐项累加有221(123)(1)1323(1)212n n n a a n n n n +---=+++-= =-=-+ ,从而223n a n n =-+。 注:在运用累加法时,要特别注意项数,计算时项数容易出错. 变式练习:已知{}n a 满足11=a ,) 1(11+=-+n n a a n n ,求}{n a 的通项公式。 二、)(1n f a a n n ?=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累积法,具体做法是将通项变形为1()n n a f n a +=,从而就有 32121 (1),(2),,(1)n n a a a f f f n a a a -===- 将上述1n -个式子累乘,变成1 (1)(2)(1)n a f f f n a =???- ,进而求解。 例2. 已知数列{}n a 中11123,(2)321 n n n a a a n n --==?≥+,求数列{}n a 的通项公式。

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

由递推公式求通项公式典型例题素材

如何由递推公式求通项公式 高中数学递推数列通项公式的求解是高考的热点之一,是一类考查思维能力的题型,要求考生进行严格的逻辑推理。找到数列的通项公式,重点是递推的思想:从一般到特殊,从特殊到一般;化归转换思想,通过适当的变形,转化成等差数列或等比数列,达到化陌生为熟悉的目的。 下面就递推数列求通项的基本类型作一个归纳,以供参考。 类型一:1()n n a a f n +-= 或 1()n n a g n a += 分析:利用迭加或迭乘方法。即:112211()()+()n n n n n a a a a a a a a ---=-+-+-+…… 或121121 n n n n n a a a a a a a a ---=…… 例1.(1) 已知数列{}n a 满足11211,2n n a a a n n += =++,求数列{}n a 的通项公式。 (2)已知数列{}n a 满足1(1)1,2n n n a a s +==,求数列{}n a 的通项公式。 解:(1)由题知:121111(1)1 n n a a n n n n n n +-===-+++ 112211()())n n n n n a a a a a +(a -a a ---∴=-+-++…… 1111111()()()121122n n n n =-+-++-+---…… 312n = - (2)2(1)n n s n a =+ 112(2)n n s na n --∴=≥ 两式相减得:12(1)(2)n n n a n a na n -=+-≥ 即: 1(2)1 n n a n n a n -=≥- 121121 n n n n n a a a a a a a a ---∴=?? (121121) n n n n -=??--…… n = 类型二:1(,(1)0)n n a pa q p q pq p +=+-≠其中为常数,

求前n项和公式的常用方法

求数列前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列的前n项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(n∈N*)的和

由递推公式求通项公式的三种方法

由递推公式求通项公式的三种方法 递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,下面介绍由递推公式求通项公式的几种方法. 1.累加法 [典例1] 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N * ).若b 3=-2,b 10=12,则a 8=( ) A .0 B .3 C .8 D .11 [解析] 由已知得b n =2n -8,a n +1-a n =2n -8,所以a 2-a 1=-6,a 3-a 2=-4,…,a 8-a 7=6,由累加法得a 8-a 1=-6+(-4)+(-2)+0+2+4+6=0,所以a 8=a 1=3. [答案] B [题后悟道] 对形如a n +1=a n +f (n )(f (n )是可以求和的)的递推公式求通项公式时,常用累加法,巧妙求出a n -a 1与n 的关系式. 2.累乘法 [典例2] 已知数列{a n }中,a 1=1,前n 项和S n = n +23a n . (1)求a 2,a 3; (2)求{a n }的通项公式. [解] (1)由S 2=43 a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3. 由S 3=53 a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32 (a 1+a 2)=6. (2)由题设知a 1=1. 当n >1时,有a n =S n -S n -1=n +23a n -n +13 a n -1,

整理得a n =n +1n -1 a n -1. 于是a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1 a n -1. 将以上n -1个等式中等号两端分别相乘,整理得a n = n n +1 2. 综上可知,{a n }的通项公式a n = n n +1 2. [题后悟道] 对形如a n +1=a n f (n )(f (n )是可以求积的)的递推公式求通项公式时,常用累乘法,巧妙求出a n a 1与n 的关系式. 3.构造新数列 [典例3] 已知数列{a n }满足a 1=1,a n +1=3a n +2;则a n =________. [解析] ∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1 =3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3 n -1, ∴a n =2·3n -1-1. [答案] 2×3 n -1-1 [题后悟道] 对于形如“a n +1=Aa n +B (A ≠0且A ≠1)”的递推公式求通项公式,可用迭代法或构造等比数列法. 上面是三种常见的由递推公式求通项公式的题型和对应解法,从这些题型及解法中可以发现,很多题型及方法都是相通的,如果能够真正理解其内在的联系及区别,也就真正做到了举一反三、触类旁通,使自己的学习游刃有余,真正成为学习的主人.

由递推关系求通项公式的类型与方法

由递推关系求通项公式的类型与方法 递推公式是给出数列的基本方式之一,在近几年高考题中占着不小的比重。2008年高考数学19份理科试卷,共19道数列部分的解答题,其中有17道涉及递推数列,(福建卷理科有两道题涉及数列问题,江苏卷、江西卷中数列题不涉及递推),说每卷都有数列问题,数列必出递推也不为过。不能不感受到高考数学试题中“递推”之风的强劲。为此本文主要以2008年试题为例重点研究由递推关系求数列通公式的类型与求解策略。 一、递推关系形如:1()n n a a f n +=+的数列 利用迭加或迭代法得:1(1)(2)(1)n a a f f f n =++++-L ,(2n ≥) 例1(08天津文20)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)略 (Ⅰ)证明:由题设11(1)n n n a q a qa +-=+-(2n ≥),得 11()n n n n a a q a a +--=-,即1n n b qb -=,2n ≥. 又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为q 的等比数列. (Ⅱ)解法:由(Ⅰ)211a a -=,32a a q -=, 22121321()()()11n n n n a a a a a a a a q q q --=+-+-++-=+++++L L ,(2n ≥). 所以当2n ≥时,1 1,,. 1,111n n q q q a n q -≠=?-+ ?=-??? 上式对1n =显然成立. 二、递推关系形如:1()n n a a f n +=的数列 利用迭乘或迭代法可得: 1(1)(2)(1)n a a f f f n =-L ,(2n ≥) 例2 (2008天津理22)在数列{}n a 与{}n b 中,4,111==b a ,数列{}n a 的前n 项和n S 满足()031=+-+n n S n nS ,12+n a 为n b 与1+n b 的等比中项,*N n ∈.

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

专题由递推关系求数列的通项公式(含答案)

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a =,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积

求通项公式的几种方法与总结

睿 博 教 育 学 科 教 师 讲 义 讲义编号: LH-rbjy0002 副校长/组长签字: 签字日期: 教学内容 数列通项及求和 主干知识整合: 1.数列通项求解的方法 (1)公式法;(2)根据递推关系求通项公式有:①叠加法;②叠乘法;③转化法.(3)不完全归纳法即从特殊到一般的归纳法;(4)用a n =?? ? S 1n =1 S n -S n -1n ≥2 求解. 2.数列求和的基本方法: (1)公式法;(2)分组法;(3)裂项相消法;(4)错位相减法;(5)倒序相加法. ? 探究点 一 公式法 如果所给数列满足等差或者等比数列的定义,则可以求出a 1,d 或q 后,直接代入公式求出a n 或S n . 已知{a n }是等差数列,a 10=10,前10项和S 10=70,则其公差d =________. ? 探究点二 根据递推关系式求通项公式 如果所给数列递推关系式,不可以用叠加法或叠乘法,在填空题中可以用不完全归纳法进行研究. 例2 (1)已知数列{a n }满足a 1=2,a n +1=5a n -13 3a n -7(n ∈N *),则数列{a n }的前100项的和为________. (2)已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l

时,都有a i +b j =a k +b l ,则 12010∑=+2010 1 i i i )b (a 的值是________. (1)200 (2)2012 【解析】 (1)由a 1=2,a n +1=5a n -133a n -7(n ∈N * )得a 2=5×2-133×2-7=3,a 3=5×3-133×3-7= 1,a 4=5×1-13 3×1-7 =2,则{a n }是周期为3的数列,所以S 100=(2+3+1)×33+2=200. (2)由题意得a 1=1,a 2=2,a 3=3,a 4=4,a 5=5;b 1=2,b 2=3,b 3=4,b 4=5,b 5=6.归纳得a n =n , b n =n +1;设 c n =a n +b n ,c n =a n +b n =n +n +1=2n +1,则数列{c n }是首项为c 1=3,公差为2的等差数列,问题转化为求数列{c n }的前2010项和的平均数. 所以12010∑=+20101i i i )b (a =12010× 2010× 3+4021 2 =2012. ? 探究点四 数列的特殊求和方法 数列的特殊求和方法中以错位相减法较为难掌握,其中通项公式{a n b n }的特征为{a n }是等差数列,{b n }是等比数列. 例4 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列. (1)求数列{a n }的通项公式; (2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 【解答】 (1)设{a n }公比为q ,由题意得q >0, 且?? ? a 2=2a 1+3,3a 2+5a 3=2a 4, 即??? a 1q -2=3,2q 2 -5q -3=0, 解得?? ? a 1=3,q =3 或? ?? ?? a 1 =-6 5,q =-12(舍去), 所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *. (2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+3·34+…+n ·3n +1.② ②-①得,2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1, =- 31-3n 1-3 +n ·3n +1=3 2 (1-3n )+n ·3n +1

常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 2 1112-=-a a

对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- = (2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-= k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1 121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1 211231+= +? =n n a a n

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

递推公式求通项公式的几种方

由递推公式求通项公式的常用方法 由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 方法一:累加法 形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。有时若不能直接用,可变形成这种形式,然后利用这种方法求解。 例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列 (1)求c 的值 (2)求{a n }的通项公式 解:(1)a1,a2,a3成公比不为1的等比数列 2 022)2(2)() ,3,2,1(111113 12 2===++?=+∴=+=?=∴+c c a c c a a c a n cn a a a a a n n 因此(舍去)或解得又 (2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 ) 1(2322 2121342312-=-?=-?=-?=--n a a a a a a a a n n 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2 -n 又a 1=2,a n =n 2 -n +2 方法二:累乘法 形如 a n +1 a n =g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。

备战2020数学高考三大类递推数列通项公式的求法

三大类递推数列通项公式的求法 湖北省竹溪县第一高级中学徐鸿 一、一阶线性递推数列求通项问题 一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时, 则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式. 3.; 这类数列通常可转化为,或消去常数转化为二阶递推式 . 例1已知数列中,,求的通项公式. 解析:解法一:转化为型递推数列. ∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即. 解法二:转化为型递推数列. ∵=2x n-1+1(n≥2) ①∴=2x n+1 ② ②-①,得(n≥2),故{}是首项为x 2-x 1 =2, 公比为2的等比数列,即,再用累加法得.解法三:用迭代法. 当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.

例2已知函数的反函数为 求数列的通项公式. 解析:由已知得,则. 令=,则.比较系数,得. 即有.∴数列{}是以为首项,为 公比的等比数列,∴,故. 评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4) 若取倒数,得,令,从而转化为(1)型而求之. (5); 这类数列可变换成,令,则转化为(1)型一阶线性递推公式. 例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式. 解析:设用代入,可解出.

求数列通项公式和前N项和的方法

求数列前N 项和的方法 1. 公式法 等差数列前n 项和: 1 1 ()(1)22 n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,21 1(21)k k S k a ++=+g ,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算。 等比数列前n 项和: q=1时,1 n S na = ()1 111n n a q q S q -≠=-,,特别要注意对公比的讨论。 其他公式: 1、 ) 1(21 1 +==∑=n n k S n k n 2、) 12)(1(61 1 2++==∑=n n n k S n k n 3、2 1 3)]1(21 [+==∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求? ??++???+++n x x x x 32 的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=3 2 (利用 常用公式)

=x x x n --1)1(=2 11)2 1 1(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求 1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(2 1 += n n S n , )2)(1(2 1 1++= +n n S n (利用常用公式) ∴ 1 )32()(++= n n S n S n f =64 342 ++n n n = n n 64 341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,50 1) (max = n f 2. 错位相减法 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 3 2 )12(7531--+???++++=n n x n x x x S ………………………①

递推公式求通项公式的几种方

递推公式求通项公式的 几种方 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

由递推公式求通项公式的常用方法 由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。 方法一:累加法 形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。有时若不能直接用,可变形成这种形式,然后利用这种方法求解。 例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列 (1)求c 的值 (2)求{a n }的通项公式 解:(1)a1,a2,a3成公比不为1的等比数列 (2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2-n 又a 1=2,a n =n 2-n +2 方法二:累乘法 形如 a n +1 a n =g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例2:设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2 +a n +1a n =0(n = 1,2,3…),求它的通项公式。 解:由题意知a 1=1,a n >0(n =1,2,3…) 由(n +1)a n +12-na n 2+a n +1a n =0 得(a n +1+a n )[(n +1)a n +1-na n ]=0 因为a n >0,则a n +1+a n ≠0,所以a n +1a n = n n +1 ,将n =1,2, …,n -1,分别代入得 a 2a 1 = 1 2 a 3a 2 = 23 …… a n a n -1 = n -1n 将上面n -1个式子相乘得,a n a 1 =12×23×…×n -1n 又a 1=1,则a n =1 n

数列通项公式和前n项和求解方法(全)

数列通项公式和前n项和求解方法(全)

数列通项公式的求法详解 n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17 164,1093,542, 2 11(3) ,5 2,21,32 , 1(4) ,5 4,43,32, 21-- 答案:(1) 1 10-=n n a (2) ; 1 22 ++=n n n a n (3) ;1 2 += n a n (4) 1 )1(1+? -=+n n a n n . 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1), b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且4 32 a a a ??=48,4 32 a a a ++=12, 则数列的通项公式是( ) (A) 12 2-=n a n (B) 4 2+=n a n (C) 12 2+-=n a n (D) 10 2+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项1 1 =a ,公比10<

专题由递推关系求数列的通项公式含答案

专题 由递推关系求数列的通项公式 一、目标要求 通过具体的例题,掌握由递推关系求数列通项的常用方法: 二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。 三、典例精析 1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有???≥???????-=????????????????=-21 11n S S n S a n n n 及 等差数列和等比数列的通项公式。 例1 已知数列{n a }中12a =,2 +2n s n =,求数列{n a }的通项公式 评注 在运用1n n n a s s -=-时要注意条件2n ≥,对n=1要验证。 2、累加法:利用恒等式()()1211+......+n n n a a a a a a -=+--求通项公式的方法叫累加法。它是求型如 ()1+f n n n a a +=的递推数列的方法(其中数列(){}f n 的前n 项和可求)。 例2 已知数列{n a }中112a = ,121 ++32 n n a a n n +=+,求数列{n a }的通项公式 评注 此类问题关键累加可消中间项,而(f n )可求和则易得n a 3、.累乘法:利用恒等式3 21121 n n n a a a a a a a a -=? ???????()0n a ≠求通项公式的方法叫累乘法。它是求型如()1n n a g n a +=的递推数列的方法(){}() g n n 数列可求前项积 例3 已知数列{n a }中1n n s na =- ,求数列{n a }的通项公式 评注 此类问题关键是化 ()1 n n a g n a -=,且式子右边累乘时可求积,而左边中间项可消。 4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法 称为转化法。常用的转化途径有: ⑴凑配、消项变换——如将一阶线性递推公式1n n a qa d +=+(q, d 为常数,0,1q q ≠≠)通过凑配变成 11n d a q ++ -=1n d q a q ??+ ?-?? ,或消常数项转化为()211n n n n a a q a a +++-=- 例4、已知数列{n a }中,11a =,()1212n n a a n -=+≥,求数列{n a }的通项公式 点评: 此类问题关键是利用配凑或消项变换将其转化为等比数列

数列通项公式、前n项和求法总结(全)

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-2111n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和212 n S n kn =- +(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为)(1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 11

相关文档
最新文档