自动控制原理与系统

自动控制原理与系统
自动控制原理与系统

自动控制原理与系统实验指导书

云南机电职业技术学院

电气工程系课程组

2006.03

目录

前言

上篇 《自动控制原理与系统》虚拟实验室

概述 (1)

第一章《自动控制原理》虚拟教室的分析工具箱 (3)

1-1 《自动控制原理时域分析工具箱》 (3)

1-2 《自动控制原理频域分析工具箱》 (10)

第二章 《自动控制原理》虚拟教室的设计工具箱 (20)

2-1 设计指标 (20)

2-2 校正补偿器的控制系统结构 (21)

2-3 设计基本原则 (21)

2-4 控制系统设计工具箱 (22)

实例一:飞机飞行姿态的控制(时域设计) (22)

实例二 :直流电机的控制 (28)

第三章 虚拟实验室 (37)

实验1 二阶系统时域特性的研究 (37)

实验2 零极点对系统动态性能的影响 (44)

实验3 频率特性的认识实验 (46)

实验4 二阶系统频率特性的研究 (48)

实验5 自动控制的频率响应 (52)

下篇交直流调速系统

第四章 调速系统实验 (54)

实验1 调速系统实验对象的认识 (54)

实验2 带电流截止负反馈的转速单闭环调速系统 (57)

实验3 双闭环不可逆调速系统 (60)

实验4 变频器端子功能和键盘面板介绍 (62)

实验5 变频器V/F线绘制 (67)

实验6 变频器频率设定命令功能及操作方法功能 (69)

实验7 与变频器工作频率有关的功能及频率给定线预置 (71)

实验8 变频器程序运行模式 (73)

上篇 《自动控制原理与系统》虚拟实验室

概 述

多媒体计算机技术与仪器技术的结合构成了虚拟实验室实现的基础,使人们拥有自己实验室的幻想与愿望可以在计算机屏幕上通过场景式图形界面而得以“实现”。虚拟仪器技术与认知模拟方法的结合也赋予虚拟实验室的智能化特征,无论是学生还是教师,都可以自由地、无顾虑地随时进入虚拟实验室操作仪器,进行各种实验。不但为实验类课程的教学改革及远程教育提供了条件和技术支持,还可以随时为学生提供更多、更新、更好的仪器。

本系统是根据《自动控制原理》的实验,以MATLAB为操作平台,精选部分实验内容,并针对实践教学过程中学生不易理解的部分理论问题,进行精心编排和设计的。其内容覆盖了控制理论经典部分的全部内容。

本系统共分二个部分:

?虚拟教室

?虚拟实验室

《自动控制原理》虚拟实验室包括一个MATLAB自带的单输入单输出设计工具(SISO Design Tool)以及自编的众多M文件和GUI文件。它们有机的组合在一起,可用于《自动控制原理》的教学演示及实验教学,并免去了编写MATLAB源代码的编程问题。从而使教学和实验变的简单易行。

《自动控制原理》虚拟实验室在MATLAB运行情况下,通过在其命令窗口键入Control Systems来启动。进入MATLAB主界面(图1所示)后,在其命

图1 MATLAB主界面

令窗口(Command Wind)中键入Control Systems命令并按回车确定,将会出现《自动控制原理》虚拟实验室的主界面,如图2所示。

图2《自动控制原理》虚拟实验室的主界面

选择其界面中相应的“虚拟教室”或者“虚拟实验室”,即可进入到相应的教学演示或

实验教学内容中去。

第一章 《自动控制原理》虚拟教室的分析工具箱

在《自动控制原理》虚拟实验室的主界面(图2)中,选择“虚拟教室”,将出现一个工具箱选项,如下图所示。点击相应的按钮,即可激活这个系统

中所需的工具箱资源。在这个工具箱资源中,主要包括时域及频域两部分的理论学习与分析仿真,它们是:

? 自动控制原理时域分析工具箱

? 自动控制原理频域分析工具箱

? 大型作业:控制系统设计工具箱

图 《自动控制原理》虚拟教室的工具箱选项

1-1 《自动控制原理时域分析工具箱》

《自动控制原理时域分析工具箱》可以让用户执行下列任务:

? 输入多项式形式的传递函数

? 计算闭环系统下的阶跃响应及脉冲响应

? 通过闭环系统极点在复数平面上的分布情况,分析和判断系统的稳定性

? 了解增加零点和极点对闭环系统的影响

? 比较高阶传递函数及其低阶近似的传递函数

为了能更好地演示如何使用《自动控制原理时域分析工具箱》,我们将举

例说明。

一、《自动控制原理时域分析工具箱》的启动与模型输入 设某位置控制系统具的以下的传递函数:

)

2.361(4500)(+=S S K S G P

其中:K 为该系统的开环比例系数

因为K 是系统可以调节的开环比例系数,所以在我们输入系统模型时,首先要对该系统做出适于使用SISO Design Tool 设计工具的修改。即将K 视为与)(S C 串联的补偿控制器。其组成框图如1-1-1所示:

图1-1-1 某位置控制系统的框图

其中:)(S C K

=为该系统的补偿控制器

)(S C 为该系统剩余的传递函数,有:

4500()(361.2)G S S S =+ 1-1-1 接下来,我们在工具箱选项菜单中,选择《自动控制原理》时域分析工具箱。选择后,计算机屏幕上将出现如图1-1-2所示的画面。

图1-1-2 《自动控制原理》时域分析工具箱

为了定义该系统的传递函数,在如图1-1-2所示的画面中点击“输入系统模型”下面的“传递函数的多项式”,此时将出现如图1-1-3所示的图形画面。值得注意的是,在该工具箱中,用户只能使用多项式的方法输入系统的传递函数。因此,式1-1-1应首先改写成:

S

S S G 2.3614500)(2+= 1-1-2 然后再在如图1-1-3所示的图形画面中,点击框图中的G(S)和H(S),分别输入系统传递函数、反馈传递函数分子和分母的多项式系数。注意:各系数之间应用空格隔开,否则计算机将无法识别这些多项式的系数。

当所输入的系数正确无误后,点击“应用”按钮,以完成系统模型的建立并退出此窗口。

图1-1-3 输入系统传递函数、反馈传递函数的分子和分母的多项式系数

由于本例是单位反馈,所以H(S)为1

图1-1-4 系统计算结果显示

接下来,我们在同一窗口中点击“计算/显示”下的按钮“计算”按钮来计算系统的传递函数。此时,我们将会看到画面中所显示的该系统的开环传递函数G(S)H(S)、闭环传递函数1+G(S)H(S)的特征方程(分母多项式)表达式,以及闭环传递函数的零点和极点值。如图1-1-4所示。

用户在关闭图1-1-4所示的窗口后,可以点击其它相应按钮,以得到该闭环系统在单位阶跃信号或脉冲信号等输入信号作用下的时域响应曲线、零极点分布图。图1-1-5表示的是所给示例的单位阶跃响应曲线,以及它的时域响应性能指标(1=K )。

图1-1-5 闭环系统的单位阶跃响应

二、SISO 系统设计工具的时域分析

1、开环比例系数(开环增益)K 对闭环系统性能的影响

在图1-1-5所示的画面中,点击“系统设计工具”下面的“根轨迹”按钮,将会激活MATLAB 自带的SISO Design Tool(单输入单输出设计工具)。这是一个非常有用的、针对单输入单输出系统中补偿(校正)控制器)(S C 进行设计的小型图形软件。利用它,我们可以完成《自动控制原理》中的大部分系统的分析与设计任务。下面,我们就前面所给出的例子,来说明这个工具箱的使用方法。

在完成输入系统模型后,点击系统设计工具下面的“根轨迹”按钮,以激活SISO 设计工具(如图1-1-6所示),计算机将会自动导入你先前输入的系统和反馈环节的传递函数,并将)(S C 看成是,且默认值为K 1=K 。

图中粉红色的方块是(1-1-6)=K C 时,闭环系统的增益及极点位置,

当点击给出当前状态此时左边粉红色方块所表示的S 1左边粉红色方块时,状态栏中会下闭环系统极点的位置。

=图1-1-6 SISO 设计工具

是当前1)(==K S C 时的极点大小:

3481?=S

利用同样的办法,我们可以观察右边极点的位置。同时比较图1-1-4中所计算出的结果,也可方块并移动它,也就相当于改变了值的大小,以及极点的位置。图以得到相同的结论。

用鼠标左键抓住粉红色K SISO 设计工具会自动计算当前新的K 值,并将结果显示在1-1-6左上角的当前补偿器(Current Compensator)窗口中。而新极点的位置则在点击粉红色方块时,由状态栏给出。那么为什么会出现这种情况呢?要说明这一点,我们可以回到示例所给出的系统框图中。从框图中,我们可以得到该闭环系统的传递函数是:

K S R 4500)(K

S S S Y S H S G 45002.361)()()(12++==+ 1-1-3 并由此解得该闭环系统的极点是:

K 当1=K 时,S 326166.180±?=45002,1? 1-1-4

由此可见,该闭环系统的极点将随着开环增益的变化而变化。该闭环系统有K 两个实极点(见图1-1-4)。它们分别是:

348?=S .12?=S 1922 1-1-5

但随着K 的增大,该闭环系统的极点也将出现相应的变化。

当248.7≤K 时,该闭环系统的极点为实数;当248.7≥K 时,该闭环系统的极点为一对复数。如1共轭当K=181时,此时该闭环系统将出现一对复数极点:

i S 884181+?= i S 8841812??= 1-1-6

在当前补偿控制器(Current Compensator)窗口中输入181)==K S C 如图1-1-7所示,(。可以看到此时,图中粉红色的方块所移动到的位置,点击图中上方粉红色的方块,可得到闭环系统在181)(==K S C 时的极点值。这与式1-1-6

所给出的结论是一样的。

图1-1-7 K =181时,闭环系统的根轨迹

此时,闭环系统的单位阶跃响应也将发生变化,如图1-1-8所示。与图1-1-5所得到的闭环系统的单位阶跃响应相比,此振荡现象(图1-1-8所

2、增加闭环系统零极点对闭环系统性能的影响

在SISO Desi 制器时闭环系统将随着K 值的增加而出现示),这与《自动控制原理》中的有关理论的论述是完全一致的。

图1-1-8 K =181时,闭环系统的单位阶跃响应

gn Tool 系统设计工具中,通过改变补偿控)(S C SISO 设计工具的菜单中,选择Compensator/Edit /C 来获取补偿控制器)(S C 的编辑属性。如图1-1-9

所示。

的属性值,可以了解在传递函数中增加零极点的作用。如果要增加一个零极点,我们可以在SISO 设计工具窗口右上角位置的方框图中双击补偿控制器)(S C ,然后输入所要增加的零极点值。也可以通过在

图1-1-9 改变校正补偿器C(S)的属性值

比如在本例中,我们要在181)(==K S C 时增加一个实极点:

610?=S

则可以在打开补偿控制器C )(S 的编辑面板(如图1-1-9所示)后,选择“Add Real Pole(增加实极点)”按钮,来直接输入示。

1-1-11所示。

需要增加的实极点,如图1-1-10所图1-1-10 在开环系统中加入实极点

输入完成后,选择“OK”确定,则相应闭环系统的根轨迹也发生了改变,如图

图1-1-11 加入极点610?=S 后三阶系统的根轨迹

图1-1-12 加入极点=S 后三应

与前面图1-1-7所示的二阶系统相比,可以看出,加入极点后的三阶系统的根轨迹发生了明显的改变,但此时闭环系统的单位阶跃响应,如图图1-1-8所示的二阶系

阶系统的单位阶跃响610?1-1-12所示,与统的单位阶跃响应几乎完全一样。关于这一点,我们可以用理论课中所学过的知识加以解释,即:新加入的极点与系统原有极点的位置相差太远,是次要极点。所以它对整个闭环系统的影响几乎可以忽略不计。这也正是高阶系统进行低阶近似的基本原则。

但是如果新增的极点距离系统的两个主导极点非常近的话,则新增的极点对系统将有很大的影响。在本例中,如果新增的极点是:

2000?=S

则相应闭环系统的根轨迹也发生了改变如图1-1-13

所示。

图1-1-13 加入极点2000?=S 后三阶系统的根轨迹

与原来的二阶系统相比,此时三阶系统的响应将变成有更高的自然频率和更快的上升时图1-1-14 加入极点20?=S 间的振荡响应,如图1-1-14

所示。

00后三阶系统的单位阶跃响应

1-2 《自动控制原理频域分析工具箱》

《自动控制原理频域quist)图

的影响

举例制原理频域分析工具箱》的启动与模型输入

(如图1-2-1所示):

其中:为该系统的开环增分析工具箱》可以让用户执行下列任务:

? 输入多项式形式的传递函数

? 计算开环传递函数的奈氏(Ny ? 了解在开环或闭环传递函数增加零点和极点? 比较高阶传递函数及其低阶近似的传递函数

为了能更好地演示如何使用《自动控制原理频域分析工具箱》,我们也将

说明。

一、《自动控

考虑一个单回路反馈控制系统,其具的以下的系统框图图1-2-1 某单位反馈控制系统的框图

K )(S G 为该系统的传递函数益 ,有:

)

10)(2(1)(++=S S S S G 1-2-1

在工具箱选项菜单中,选择《自动控制原理》时域分析工具箱后,计算机屏幕上将出现如图1-2-2所示的画面。

图1-2-2 《自动控制原理》时域分析工具箱

为了定义该系统的传递函数,在如图1-2-2所示的画面中点击“输入系统模型”下面的“传递函数的多项式”,值得注意的是:在该工具箱此时将出现如图1-2-3所示的图形画面。中,用户也只能使用多项式的方法输入系统的传递函数。因此,式1-2-1应首先改写成:

S G 1)(232012++= 1-2-2

S

S S 框图中的G(S)和H(S),分别输然后再在如图1-2-3所示的图形画面中,点击入系统传递函数、反馈传递函数分子和分母的多项式系数。关于这一步与1-1节中所介绍的内容是一样的图1-2-3 输入系统传递函数、反馈传递函数的分子和分母的多项式系数

。当所输入的系数正确无误后,点击“应用”按钮,以完成系统模型的建立并退出此窗

口。

由于本例是单位反馈,所以H(S)为1

在同一窗口中点击“计算/显示”下的按钮“计算”,来计算系统的传递函数。我们将会看到画面中所显示的该系统的开环传递函数G(S)H(S)、闭环传递函数的特征方程(分母多项式)的表达式,以及接下来,此时,1+G(S)H(S)1=K 时闭环传递函数的零点和极点。如图1-2-4所示。

如图1-2-5所示。

二、SISO Design Tool 系统设计工1、系统开环增益对闭环系统性能的影响

图1-2-4 系统计算结果显示

用户在关闭图1-2-4所示的窗口后,可以点击其它相应按钮。如点击“系统稳定性分析”下的“开环奈氏典线”,可以得到该系统的奈氏(Nyquist)图,并用以判断系统的稳定性,

图1-2-5 系统开环传递函数的Nyquist 曲线

具的频域分析

K

为了进行更彻底的频率分析,点击图1-2-5所示的画面中的“ 伯德(Bode)图” 按钮,这样就为开环传递函数G(S)H(S)激活了MATLAB 中的SISO Design Tool 设计工具。

图1-2-6 K=1时的开环伯德(Bode )图

图1-2-6中画出了开环传递函数G(S)H(S)在1)(==K S C 时的伯德(Bode)图,并在图中显示了:

可以让用户通过改我们调整增益裕量在频率ωpc=4.47rad/ sec 处的稳定裕量GM=47.6dB;

相位裕量在频率ωgc=0.05rad/ sec 处的稳定裕量PM=88.3o

与前一节讨论用SISO 设计工具做时域分析一样,频率的SISO 设计工具也变系统参数,来研究它们对时间和频率响应的影响。在本例中,如果K S C =)(,并将从1改变为10000。那么只需在画面左上角的编辑框中改变K )(S C ,让它等10000即可。结果显示在图1-2-7中。图中还显示了:

增益裕量在频率ωpc=4.47rad/ sec 处的稳定裕量变为GM=-32.4dB;

相位裕量在频率ωgc=20.8rad/ sec 处的稳定裕量变为PM=50.8o

这种变化反映了系统稳定性的改变。

图1-2-7 K=10000时的开环伯德(Bode )图

2、利用菜单观察闭环系统的时域和频域响应

在SISO 设计工具窗口的Analysis (分析)菜单中选择合适的选项来研究改开环增益K oop lot K 是如何影响系统时域和频域响应的。如图1-2-8所示,选择“其它响应(Other L Responses…)”,就可以打开如图1-2-9所示的“响应波形设置面板(Response P Setup)”,并在图示情况等。不同值下的结果显示下,选择闭环阶跃响应、闭环Bode 响应在图1-2-10至图1-2-12

中。

图1-2-8 SISO Design Tool系统设计工具的绘图选项

图1-2-9 SISO设计工具的绘图选项的弹出菜单

图1-2-10 本例K=1时的闭环阶跃响应和闭环Bode图

图1-2-11 本例K=240时的闭环阶跃响应和闭环Bode图

图1-2-12 本例K=1000时的闭环阶跃响应和闭环Bode图

3、增加闭环系统零极点对闭环系统性能的影响

为了研究增加极点和零点对频率特性的影响,在SISO设计工具窗口的View(观察)菜单中选择“根轨迹(Root Locus)”选项,则可以在SISO设计工具窗口中增加一个根轨迹的图形窗,其过程如图1-2-13至1-2-14所示。

图1-2-13 在SISO设计工具中增加根轨迹选项

图1-2-14本例在SISO 设计工具中的根轨迹和开环Bode 图

在本例中,当240=K 时,由图1-2-11可知,此时系统是处于临界稳定状态。如果在这种情况下,我们给开环系统的传递函数增加一个实零点:

5?=Z

则可以在打开补偿控制器)(S C 的编辑面板后,按“增加实零点(Add Real Zero)”按钮,来直接输入需要增加的实零点,如图1-2-15所示。

图1-2-15 在开环系统中加入实零点

自动控制原理课程设计报告

成绩: 自动控制原理 课程设计报告 学生姓名:黄国盛 班级:工化144 学号:201421714406 指导老师:刘芹 设计时间:2016.11.28-2016.12.2

目录 1.设计任务与要求 (1) 2.设计方法及步骤 (1) 2.1系统的开环增益 (1) 2.2校正前的系统 (1) 2.2.1校正前系统的Bode图和阶跃响应曲线 (1) 2.2.2MATLAB程序 (2) 3.3校正方案选择和设计 (3) 3.3.1校正方案选择及结构图 (3) 3.3.2校正装置参数计算 (3) 3.3.3MATLAB程序 (4) 3.4校正后的系统 (4) 3.4.1校正后系统的Bode图和阶跃响应曲线 (4) 3.4.2MATLAB程序 (6) 3.5系统模拟电路图 (6) 3.5.1未校正系统模拟电路图 (6) 3.5.2校正后系统模拟电路图 (7) 3.5.3校正前、后系统阶跃响应曲线 (8) 4.课程设计小结和心得 (9) 5.参考文献 (10)

1.设计任务与要求 题目2:已知单位负反馈系统被控制对象的开环传递函数 ()() 00.51K G s s s =+用串联校正的频率域方法对系统进行串联校正设计。 任务:用串联校正的频率域方法对系统进行串联校正设计,使系统满足如下动态及静态性能 指标: (1)在单位斜坡信号作用下,系统的稳态误差0.05ss e rad <; (2)系统校正后,相位裕量45γ> 。 (3)截止频率6/c rad s ω>。 2.设计方法及步骤 2.1系统的开环增益 由稳态误差要求得:20≥K ,取20=K ;得s G 1s 5.0201)s(0.5s 20)s (20+=+=2.2校正前的系统 2.2.1校正前系统的Bode 图和阶跃响应曲线 图2.2.1-1校正前系统的Bode 图

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

《自动控制原理》

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的 MATLAB仿真 一、实验目的 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G200 , 100 2 ) ( 2 1 1 2 1 2= = - = - = - = 其对应的模拟电路及SIMULINK图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。 ①比例环节1 ) ( 1 = s G和2 ) ( 1 = s G; ②惯性环节 1 1 ) ( 1+ = s s G和 1 5.0 1 ) ( 2+ = s s G ③积分环节 s s G1 ) ( 1 = ④微分环节s s G= ) ( 1 ⑤比例+微分环节(PD)2 ) ( 1 + =s s G和1 ) ( 2 + =s s G ⑥比例+积分环节(PI) s s G1 1 ) ( 1 + =和s s G21 1 ) ( 2 + = 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

自动控制原理课程设计报告

《自动控制原理》 课程设计报告 姓名:高陆及__________ 学号: 1345533107______ 班级: 13电气 1班______ 专业:电气工程及其自动化学院:电气与信息工程学院

江苏科技大学(张家港) 2015年9月

目录 一、设计目的 (3) 二、设计任务 (3) 三、具体要求 (4) 四、设计原理概述 (4) 4.1校正方式的选择 (4) 4.2集中串联校正简述 (5) 4.2.1串联超前校正 (5) 4.2.2串联滞后校正 (5) 4.2.3串联滞后-超前校正 (5) 4.2.4串联校正装置的一般性设计步骤 (5) 五、设计方案及分析 (6) 5.1高阶系统的频域分析 (6) 5.1.1 原系统的频率响应特性及阶跃响应 (7) 5.1.2使用Simulink观察系统性能 (9) 5.1.3 搭建模拟实际电路 (10) 5.1.4 对原系统的性能分析 (12) 5.2校正方案确定与校正结果分析 (13) 5.2.1 采用串联超前网络进行系统校正 (13) 5.2.3 采用串联滞后—超前网络系统进行校正 (18) 5.2.4 使用EWB搭建校正后模拟实际电路 (23) 六、总结 (26)

一、设计目的 1.通过课程设计熟悉频域法分析系统的方法原理 2.通过课程设计掌握滞后—超前校正作用与原理 3.通过在实际电路中校正设计的运用,理解系统校正在实际中的意义 二、设计任务 控制系统为单位负反馈系统,开环传递函数为) 1025.0)(11.0()(++= s s s K s G , 设计滞后-超前串联校正装置,使系统满足下列性能指标: 1、开环增益100K ≥

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

自动控制原理实验报告

自动控制原理 实验报告 姓名学号 时间地点实验楼B 院系专业 实验一系统的数学模 实验二控制系统的时域分析 实验三控制系统的频域分析

实验一系统的数学模 一、实验目的和任务 1、学会使用MATLAB的命令; 2、掌握MATLAB有关传递函数求取及其零、极点计算的函数。 3、掌握用MATLAB 求取系统的数学模型 二、实验仪器、设备及材料 1、计算机 2、MATLAB软件 三、实验原理 1、MATLAB软件的使用 2、使用MATLAB软件在计算机上求取系统的传递函数 四、实验内容 1、特征多项式的建立与特征根的求取 在命令窗口依次运行下面命令,并记录各命令运行后结果 >>p=[1,3,0,4]; p = 1 3 0 4 >>r=roots(p) r = -3.3553 + 0.0000i 0.1777 + 1.0773i 0.1777 - 1.0773i >>p=poly(r) p = 1.0000 3.0000 -0.0000 4.0000 2、求单位反馈系统的传递函数: 在命令窗口依次运行下面命令,并记录各命令运行后结果 >>numg=[1];deng=[500,0,0]; >>numc=[1,1];denc=[1,2]; >>[num1,den1]=series(numg,deng,numc,denc); >>[num,den]=cloop(num1,den1,-1) num = 0 0 1 1

den = 500 1000 1 1 >>printsys(num,den) num/den = s + 1 --------------------------- 500 s^3 + 1000 s^2 + s + 1 3、传递函数零、极点的求取 在命令窗口依次运行下面命令,并记录各命令运行后结果>>num1=[6,0,1];den1=[1,3,3,1]; >>z=roots(num1) ; >>p=roots(den1) ; >>n1=[1,1];n2=[1,2];d1=[1,2*i];d2=[1,-2*i];d3=[1,3]; >>num2=conv(n1,n2) num2 = 1 3 2 >>den2=conv(d1,conv(d2,d3)) den2 = 1 3 4 12 >>printsys(num2,den2) s^2 + 3 s + 2 ---------------------- s^3 + 3 s^2 + 4 s + 12 >>num=conv(num1,den2);den=conv(den1,num2); >>printsys(num,den) 6 s^5 + 18 s^4 + 25 s^3 + 75 s^2 + 4 s + 12 ------------------------------------------- s^5 + 6 s^4 + 14 s^3 + 16 s^2 + 9 s + 2 >>pzmap(num,den),title(‘极点-零点图’)

重庆大学 自动控制原理课程设计

目录 1 实验背景 (2) 2 实验介绍 (3) 3 微分方程和传递函数 (6)

1 实验背景 在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。自动控制原理是相对于人工控制概念而言的,自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。 在自动控制原理【1】中提出,20世纪50年代末60年代初,由于空间技术发展的需要,对自动控制的精密性和经济指标,提出了极其严格的要求;同时,由于数字计算机,特别是微型机的迅速发展,为控制理论的发展提供了有力的工具。在他们的推动下,控制理论有了重大发展,如庞特里亚金的极大值原理,贝尔曼的动态规划理论。卡尔曼的能控性能观测性和最优滤波理论等,这些都标志着控制理论已从经典控制理论发展到现代控制理论的阶段。现代控制理论的特点。是采用状态空间法(时域方法),研究“多输入-多输出”控制系统、时变和非线性控制系统的分析和设计。现在,随着技术革命和大规模复杂系统的发展,已促使控制理论开始向第三个发展阶段即第三代控制理论——大系统理论和智能控制理论发展。 在其他文献中也有所述及(如下): 至今自动控制已经经历了五代的发展: 第一代过程控制体系是150年前基于5-13psi的气动信号标准(气动控制系统PCS,Pneumatic Control System)。简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。 第二代过程控制体系(模拟式或ACS,Analog Control System)是基于0-10mA或4-20mA 的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。它标志了电气自动控制时代的到来。控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。 第三代过程控制体系(CCS,Computer Control System).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,Computer Control System)。这个被称为第三代过程控制体系是自动控制领域的一次革命,它充分发挥了计算机的特长,于是人们普遍认为计算机能做好一切事情,自然而然地产生了被称为“集中控制”的中央控制计算机系统,需要指出的是系统的信号传输系统依然是大部分沿用4-20mA的模拟信号,但是时隔不久人们发现,随着控制的集中和可靠性方面的问题,失控的危险也集中了,稍有不慎就会使整个系统瘫痪。所以它很快被发展成分布式控制系统(DCS)。 第四代过程控制体系(DCS,Distributed Control System分布式控制系统):随着半导体制造技术的飞速发展,微处理器的普遍使用,计算机技术可靠性的大幅度增加,目前普遍使用的是第四代过程控制体系(DCS,或分布式数字控制系统),它主要特点是整个控制系统不再是仅仅具有一台计算机,而是由几台计算机和一些智能仪表和智能部件构成一个了控制

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

自动控制设计(自动控制原理课程设计)

自动控制原理课程设计 本课程设计的目的着重于自动控制基本原理与设计方法的综合实际应用。主要内容包括:古典自动控制理论(PID)设计、现代控制理论状态观测器的设计、自动控制MATLAB 仿真。通过本课程设计的实践,掌握自动控制理论工程设计的基本方法与工具。 1 内容 某生产过程设备如图1所示,由液容为C1与C2的两个液箱组成,图中Q 为稳态液体流量)/(3s m ,i Q ?为液箱A 输入水流量对稳态值的微小变化)/(3s m ,1Q ?为液箱A 到液箱B 流量对稳态值的微小变化)/(3s m ,2Q ?为液箱B 输出水流量对稳态值的微小变化)/(3s m ,1h 为液箱A 的液位稳态值)(m ,1h ?为液箱A 液面高度对其稳态值的微小变化)(m ,2h 为液箱B 的液位稳态值)(m ,2h ?为液箱B 液面高度对其稳态值的微小变化)(m ,21,R R 分别为A,B 两液槽的出水管液阻))//((3s m m 。设u 为调节阀开度)(2m 。 已知液箱A 液位不可直接测量但可观,液箱B 液位可直接测量。 图1 某生产过程示意图

要求 1. 建立上述系统的数学模型; 2. 对模型特性进行分析,时域指标计算,绘出bode,乃示图,阶跃反应曲线 3. 对B 容器的液位分别设计:P,PI,PD,PID 控制器进行控制; 4. 对原系统进行极点配置,将极点配置在-1+j 与-1-j;(极点可以不一样) 5. 设计一观测器,对液箱A 的液位进行观测(此处可以不带极点配置); 6. 如果要实现液位h2的控制,可采用什么方法,怎么更加有效?试之。 用MATLAB 对上述设计分别进行仿真。 (提示:流量Q=液位h/液阻R,液箱的液容为液箱的横断面积,液阻R=液面差变化h ?/流量变化Q ?。) 2 双容液位对象的数学模型的建立及MATLAB 仿真过程 一、对系统数学建模 如图一所示,被控参数2h ?的动态方程可由下面几个关系式导出: 液箱A:dt h d C Q Q i 111?=?-? 液箱B:dt h d C Q Q 22 21?=?-? 111/Q h R ??= 222/Q h R ??= u K Q u i ?=? 消去中间变量,可得: u K h dt h d T T dt h d T T ?=?+?++?222122221)( 式中,21,C C ——两液槽的容量系数 21,R R ——两液槽的出水端阻力 111C R T =——第一个容积的时间常数 222C R T =——第二个容积的时间常数 2R K K u =_双容对象的放大系数

自动控制原理课程设计

扬州大学水利与能源动力工程学院 课程实习报告 课程名称:自动控制原理及专业软件课程实习 题目名称:三阶系统分析与校正 年级专业及班级:建电1402 姓名:王杰 学号: 141504230 指导教师:许慧 评定成绩: 教师评语: 指导老师签名: 2016 年 12月 27日

一、课程实习的目的 (1)培养理论联系实际的设计思想,训练综合运用经典控制理论和相关课程知识的能力; (2)掌握自动控制原理的时域分析法、根轨迹法、频域分析法,以及各种校正装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标; (3)学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试; (4)学会使用硬件搭建控制系统; (5)锻炼独立思考和动手解决控制系统实际问题的能力,为今后从事控制相关工作打下较好的基础。 二、课程实习任务 某系统开环传递函数 G(s)=K/s(0.1s+1)(0.2s+1) 分析系统是否满足性能指标: (1)系统响应斜坡信号r(t)=t,稳态误差小于等于0.01; (2)相角裕度y>=40度; 如不满足,试为其设计一个pid校正装置。 三、课程实习内容 (1)未校正系统的分析: 1)利用MATLAB绘画未校正系统的开环和闭环零极点图 2)绘画根轨迹,分析未校正系统随着根轨迹增益变化的性能(稳定性、快速性)。 3)作出单位阶跃输入下的系统响应,分析系统单位阶跃响应的性能指标。 4)绘出系统开环传函的bode图,利用频域分析方法分析系统的频域性能指标(相角裕度和幅值裕度,开环振幅)。 (2)利用频域分析方法,根据题目要求选择校正方案,要求有理论分析和计算。并与Matlab计算值比较。 (3)选定合适的校正方案(串联滞后/串联超前/串联滞后-超前),理论分析并计算校正环节的参数,并确定何种装置实现。

自动控制原理课程实验

上海电力学院实验报告 自动控制原理实验课程 题目:2.1.1(2.1.6课外)、2.1.4(2.1.5课内)班级:gagagagg 姓名:lalalal 学号:hahahahah 时间:zzzzzzzzzzz

实验内容一: 一、问题描述: 已知系统结构图,(1)用matlab编程计算系统的闭环传递函数;(2)用matlab转换函数表示系统状态空间模型;(3)计算其特征根。 二、理论方法分析 (1)根据系统结构图的串并联关系以及反馈关系,分别利用tf ()函数series()函数,parallel函数以及feedback函数构建系统传递函数;(2)已求出系统传递函数G,对于线性定常系统利用函数ss(G)课得到系统的状态空间模型。(3)利用线性定常系统模型数据还原函数[num,den]=tfdata(G,‘v’)可得到系统传递函数的分子多项式num与分母多项式den,利用roots(den)函数可得到系统的特征根。 三、实验设计与实现 新建M文件,编程程序如下文所示: G1=tf([0.2],[1,1,1]); G2=tf([0.3],[1,1]); G3=tf([0.14],[2,1]); G4=series(G2,G3);%G2与G3串联 G5=0.7*feedback(G4,-1,1); G6=0.4*feedback(G1,G5,1); G7=feedback(G6,0.6)

ss(G7)%将系统传递函数转化为状态空间模型 [num den]=tfdata(G7,'v');%还原系统传递函数分子、分母系数矩阵 roots(den)%求系统传递函数特征根 点击Run运行 四、实验结果与分析 M文件如下: 运行结果如下:

自动控制原理实验1-6

实验一 MATLAB 仿真基础 、实验目的: (1) 熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2) 掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3) 掌握使用MATLAB 命令化简模型基本连接的方法。 (4) 学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1 ?计算机;2. MATLAB 软件 三、实验原理 函数tf ()来建立控制系统的传递函数模型,用函数printsys ()来输出控制系 统的函数,用函数命令zpk ()来建立系统的零极点增益模型,其函数调用格式 为:sys = zpk ( z, p, k 零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用 feedback ()函数求得。 则 feedback ()函数调用格式为: sys = feedback (sysl, sys2, sigh 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign = -1;正反馈时, sig n = 1;单位反馈时,sys2= 1,且不能省略。 四、实验内容: 1. 已知系统传递函数,建立传递函数模型 2 2 5(s 2) (s 6s 7) 3 3 s(s 1) (s 2s 1) 2. 已知系统传递函数,建立零极点增益模型 s 3 飞 2~ s 2s 2s 1 3 ?将多项式模型转化为零极点模型 5(s 2)2(s 2 6s 7) G(s) s 3 s 3 2s 2 2s 1 G(s) G(s)

金陵科技学院自动控制原理课程设计

绪论 (1) 一课程设计的目的及题目 (2) 1.1课程设计的目的 (2) 1.2课程设计的题目 (2) 二课程设计的任务及要求 (3) 2.1课程设计的任务 (3) 2.2课程设计的要求 (3) 三校正函数的设计 (4) 3.1理论知识 (4) 3.2设计部分 (5) 四传递函数特征根的计算 (8) 4.1校正前系统的传递函数的特征根 (8) 4.2校正后系统的传递函数的特征根 (10) 五系统动态性能的分析 (11) 5.1校正前系统的动态性能分析 (11) 5.2校正后系统的动态性能分析 (15) 六系统的根轨迹分析 (19) 6.1校正前系统的根轨迹分析 (19) 6.2校正后系统的根轨迹分析 (21) 七系统的奈奎斯特曲线图 (23) 7.1校正前系统的奈奎斯特曲线图 (23) 7.2校正后系统的奈奎斯特曲线图......... 错误!未定义书签。4 八系统的对数幅频特性及对数相频特性...... 错误!未定义书签。 8.1校正前系统的对数幅频特性及对数相频特性 (25) 8.2校正后系统的对数幅频特性及对数相频特性 (27) 总结................................... 错误!未定义书签。8 参考文献................................ 错误!未定义书签。

在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。校正装置可以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。常用的性能指标形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程),也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、带宽(见频率响应)等。 常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。在许多情况下,它们都是由电阻、电容按不同方式连接成的一些四端网络。各类校正装置的特性可用它们的传递函数来表示,此外也常采用频率响应的波德图来表示。不同类型的校正装置对信号产生不同的校正作用,以满足不同要求的控制系统在改善特性上的需要。在工业控制系统如温度控制系统、流量控制系统中,串联校正装置采用有源网络的形式,并且制成通用性的调节器,称为PID(比例-积分-微分)调节器,它的校正作用与滞后-超前校正装置类同。

自控专业设计的方法和步骤

.自控工程设计的任务 自控工程专业设计的任务基本上有以下几个方面: 1.1负责生产装置、辅助工程和公用工程系统的检测、控制、报警、联锁/ 停车, 以及监控/ 管理计算机系统的设计; 1.2负责检测仪表、控制系统及其辅助设备和安装材料的选型设计; 1.3负责监测仪表和控制系统的安装设计; 1.4负责DCS PLC自控系统的配置、功能要求和设备选型,并负责或参加软 件的编制工作; 1.5负责现场仪表的环境防护措施的设计; 1.6负责控制室的设计; 1.7负责生产过程计量系统的设计。 自控工程设计常用的方法是由工艺专业提出条件,自控与工艺专业一起讨论确定控制方案,确定必要的中间储槽及其容量,确定合适的设备余量,确定开、停车以及紧急事故处理方案等。这种设计方法对合理确定控制方案,充分发挥自控专业的主观能动性是有益的。但是在实际设计过程中,尤其对一些新工艺,主要是由工艺专业提出条件并确定控制方案,自控专业进行设计,我们当前基本采用这种方法。 2.自控工程设计的阶段划分和设计内容 当前工程设计的阶段划分,一般分为两个阶段,即初步设计和施工图设计 2.1初步设计 初步设计的主要目的是为了上报有关部门作为审批的依据,并为订货做好必要的准备。它应完成的主要内容为: 设计说明书:给出设计依据、设计原则,提出项目实施的必要性,拟定控制系统的技术方案、仪表选型规定、DCS空制系统的选型及控制策略,并从节能、消防、环境保护以及劳动安全卫生等方面作出设计概述。 工艺控制流程图:在工艺专业流程图的基础上,正确选定所需的检测点及其安装位置,选择必要的被控变量和恰当的操纵变量,绘制于工艺流程图上。图例符号应符合化工部标准《过程检测和控制系统用文字代号和图形符号(HG 20505)》或国标《过程检测和控制流程图用图形符号和文字代号(GB 2625) 》。 主要仪表设备、材料汇总表:汇总所有控制系统所需设备及相应材料,给出名称、数量,为订货以及概算提供依据。 初步设计概算:从建筑工程、设备、安装工程、工器具费等方面进行综合概算。 2.2施工图设计施工图设计是直接应用于施工的图纸设计。当前我们常用的施工图 设计文 件由以下内容组成: 1)图纸目录 2)设计说明书 3)材料表 4)设备明细表 5)工艺专业提资表

自动控制原理课程设计

物理科学与工程技术学院 课程设计说明书 课题名称:自动控制原理 设计题目:自动控制与检测原理 专业班级:11级自动化 学生姓名:袁 学号:1134307138

自动控制系统 为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。 自动检测 检测是指为确定产品、零件、组件、部件或原材料是否满足设计规定的 质量标准和技术要求目标值而进行的测试、测量等质量检测活动。检测有3个目标:①实际测定产品(含零、部件)的规定质量特性及其指标的量值。② 根据测得值的偏离状况,判定产品的质量水平(等级),确定废次品。③认定测量方法的正确性和对测量活动简化是否会影响对规定特征的控制 自动检测是指在计算机控制的基础上,对系统、设备进行性能检测和故障诊断。他是性能检测、连续监测、故障检测和故障定位的总称。现代自动检测技术是计算机技术、微电子技术、测量技术、传感技术等学科共同发展的产物。凡是需要进行性能测试和故障诊断的系统、设备,均可以采用自动检测技术

课程内容——设计一个雷达天线伺服控制系统 1 雷达天线伺服控制系统简介 1.1 概述 用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。它是由若干元件和部件组成的并具有功率放大作用的一种自动控制系统。位置随动系统的输入和输出信号都是位置量,且指令位置是随机变化的,并要求输出位置能够朝着减小直至消除位置偏差的方向,及时准确地跟随指令位置的变化。位置指令与被控量可以是直线位移或角位移。随着工程技术的发展,出现了各种类型的位置随动系统。由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,并成功应用在雷达天线。伺服系统的精度主要决定于所用的测量元件的精度。此外,也可采取附加措施来提高系统的精度,采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。因此可根据这个特征将它划分为两个类型,一类是模拟式随动系统,另一类是数字式随动系统。本设计——雷达天线伺服控制系统实际上就是随动系统在雷达天线上的应用。系统的原理图如图1-1 所示。

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

自动控制原理课程设计 频率法设计串联滞后——超前校正装置

目录 设计任务 (3) 设计要求 (3) 设计步骤 (3) 未校正前系统的性能分析 (3) 1.1开环增益 K (3) 1.2校正前系统的各种波形图 (4) 1.3由图可知校正前系统的频域性能指标 (7) 1.4特征根 (7) 1.5判断系统稳定性 (7) 1.6分析三种曲线的关系 (7) 1.7求出系统校正前动态性能指标及稳态误差 (7) 1.8绘制系统校正前的根轨迹图 (7) 1.9绘制系统校正前的Nyquist图 (9) 校正后的系统的性能分析 (10) 2.1滞后超前校正 (10) 2.2校正前系统的各种波形图 (11) 2.3由图可知校正前系统的频域性能指标 (15) 2.4特征根 (15) 2.5判断系统稳定性 (15) 2.6分析三种曲线的关系 (15) 2.7求出系统校正前动态性能指标及稳态误差 (15) 2.8绘制系统校正前的根轨迹图和Nyquist图 (16) 心得体会 (18) 主要参考文献 (18)

一、设计任务 已知单位负反馈系统的开环传递函数0 ()(0.11)(0.011) K G S S S S =++,试用频率 法设计串联滞后——超前校正装置。 (1)使系统的相位裕度045γ> (2)静态速度误差系数250/v K rad s ≥ (3)幅值穿越频率30/C rad s ω≥ 二、设计要求 (1)首先,根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T ,α等的值。 (2)利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是否稳定,为什么? (3)利用MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系?求出系统校正前与校正后的 动态性能指标σ%、tr 、tp 、ts 以及稳态误差的值,并分析其有何变化? (4)绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交 点的坐标和相应点的增益K *值,得出系统稳定时增益K * 的变化范围。绘制系统校正前与校正后的Nyquist 图,判断系统的稳定性,并说明理由? (5)绘制系统校正前与校正后的Bode 图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由? 三、设计步骤 开环传递函数0 ()(0.11)(0.011) K G S S S S = ++ 1、未校正前系统的性能分析 1.1开环增益0K 已知系统中只有一个积分环节,所以属于I 型系统 由静态速度误差系数 250/v K rad s ≥ 可选取 v K =600rad/s s rad K S S S K S S H S SG K s s V /600) 101.0)(11.0(lim )()(lim 00 ==++==→→

相关文档
最新文档