2020高考理科数学解析几何题型与方法

2020高考理科数学解析几何题型与方法
2020高考理科数学解析几何题型与方法

专题五:高考理科数学解析几何题型与方法(理科)

一、考点回顾 1.直线

(1).直线的倾斜角和斜率

直线的斜率是一个非常重要的概念,斜率k 反映了直线相对于x 轴的倾斜程度.当斜率k 存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为x=a (a ∈R ).因此,利用直线的点斜式或斜截式方程解题时,斜率k 存在与否,要分别考虑.

(2) .直线的方程

a.点斜式:)(11x x k y y -=-;

b.截距式:b kx y +=;

c.两点式:

121121x x x x y y y y --=--; d.截距式:1=+b

y

a x ;

e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系

两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.

设直线1l :y =1k x +1b ,直线2l :y =2k x +2b ,则

1l ∥2l 的充要条件是1k =2k ,且1b ≠2b ;1l ⊥2l 的充要条件是1k 2k =-1.

(4).简单的线性规划.

a.线性规划问题涉及如下概念:

①存在一定的限制条件,这些约束条件如果由x 、y 的一次不等式(或方程)组成的不等式组来表示,称为线性约束条件.

②都有一个目标要求,就是要求依赖于x 、y 的某个函数(称为目标函数)达到最大值或最小值.特殊地,若此函数是x 、y 的一次解析式,就称为线性目标函数.

③求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题. ④满足线性约束条件的解(x ,y )叫做可行解. ⑤所有可行解组成的集合,叫做可行域.

⑥使目标函数取得最大值或最小值的可行解,叫做这个问题的最优解.

b.线性规划问题有以下基本定理:

①一个线性规划问题,若有可行解,则可行域一定是一个凸多边形. ② 凸多边形的顶点个数是有限的.

③ 对于不是求最优整数解的线性规划问题,最优解一定在凸多边形的顶点中找到. C.线性规划问题一般用图解法. 2. 圆

(1).圆的定义:平面内到定点等于定长的点的集合(或轨迹)。 (2).圆的方程 a.圆的标准方程

222)()(r b y a x =-+-(r >0),称为圆的标准方程,

其圆心坐标为(a ,b ),半径为r.

特别地,当圆心在原点(0,0),半径为r 时,圆的方程为2

2

2

r y x =+. b.圆的一般方程

022=++++F Ey Dx y x (F E D 422-+>0)称为圆的一般方程,

其圆心坐标为(2D -

,2E -),半径为F E D r 42

122-+=. 当F E D 42

2-+=0时,方程表示一个点(2D -,2

E -);

当F E D 42

2

-+<0时,方程不表示任何图形.

c.圆的参数方程

圆的普通方程与参数方程之间有如下关系:

2

2

2

r y x =+ ? cos sin x r y r θ

θ=??=?

(θ为参数)

2

22)()(r b y a x =-+- ? cos sin x a r y b r θ

θ

=+??

=+? (θ为参数)

(3).直线与圆 3.圆锥曲线

(1).椭圆 a.定义

定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).

定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常

数=

<<时,这个点的轨迹是椭圆.

e (0e 1)c

a

b.图形和标准方程

图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0)

821(a b 0)

x a y b x b y a 222

2222

2

c.几何性质

条件

{M|MF 1|+|MF 2|=2a ,2a >|F 1F 2|}

{M|

|MF |M l =

|MF |M l =e 0e 1}

1122点到的距离

点到的距离

,<<标准方程x a y b a b 222

2

10+=()>>x b y a a b 222

2

10+=()>>顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b),B 2(0,b)

A 1(0,-a),A 2(0,a)

B 1(-b ,0),B 2(b ,0)

轴对称轴:x 轴,y 轴.长轴长|A 1A 2|=2a ,短轴长|B 1B 2|=2b

焦点F 1(-c ,0),F 2(c ,0)F 1(0,-c),F 2(0,c)

焦距

|F 1F 2|=2c(c >0),c 2=a 2-b 2

d.常用结论

①过椭圆

22

22

1

x y

a b

+=的焦点的弦AB长的最大值为2a, (长轴);最小值为

2

2b

a

(过焦点垂

直长轴的弦)

②设椭圆

22

22

1

x y

a b

+=的两焦点分别为F1,F2, P为椭圆任意一点,当∠F1PF2最大时,

P为短轴端点;

③椭圆上的点到焦点的最短距离为a-c;椭圆上的点到焦点的最长距离为a+c

(2)双曲线

a.定义

定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).

定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这

个动点的轨迹是双曲线(这定点叫做双曲线的焦点).

b.图形和标准方程

图8-3的标准方程为:

x a

y

b

2

2

2

2

-=>,>

1(a0b0)

图8-4的标准方程为:

y a

x

b

2

2

2

2

-=>,>

1(a0b0)

c.几何性质

d.常用结论

①过双曲线22

221x y a b

-=的焦点的弦AB 长的最小值为2a (A,B 分别在两支上) ,最小值为

2

2b a

(A,B 在同一支上且过焦点垂直实轴的弦) ②双曲线的2222(0)x y a b λλ-=≠的渐近线方程为22

220x y a b

-=

③双曲线上的点到焦点的最短距离为c-a (3).抛物线

a.定义

平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.

b.抛物线的标准方程,类型及几何性质,见下表:

①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.

②p 的几何意义:焦点F 到准线l 的距离.

③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k

|x x ||y y |2121-=-11

2+

k

焦点弦长公式:|AB|=p +x 1+x 2 c.常用结论

①过抛物线y 2=2px 的焦点F 的弦AB 长的最小值为2p

②设A(x 1,y), 1B(x 2,y 2)是抛物线y 2=2px 上的两点, 则AB 过F 的充要条件是y 1y 2=-p 2 ③设A, B 是抛物线y 2=2px 上的两点,O 为原点, 则OA ⊥OB 的充要条件是直线AB 恒过定点(2p,0)

(4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义

与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当

e>1时,是双曲线,当e=1时,是抛物线.

4. 直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)

(1).首先会判断直线与圆锥曲线是相交、相切、还是相离的

a.直线与圆:一般用点到直线的距离跟圆的半径相比

b.直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离

c.直线与双曲线、抛物线有自己的特殊性

(2).a.求弦所在的直线方程

b.根据其它条件求圆锥曲线方程

(3).已知一点A坐标,一直线与圆锥曲线交于两点P、Q,且中点为A,求P、Q所在的直

线方程

(4).已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或者是

圆锥曲线上否存在两点关于直线对称)

5.二次曲线在高考中的应用

二次曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。通过以二次曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。本文关注近年部分省的高考二次曲线问题,给予较深入的剖析,这对形成高三复习的新的教学理念将有着积极的促进作用。

(1).重视二次曲线的标准方程和几何性质与平面向量的巧妙结合。

(2).重视二次曲线的标准方程和几何性质与导数的有机联系。

(3).重视二次曲线性质与数列的有机结合。

(4).重视解析几何与立体几何的有机结合。

6.知识网络

曲线与方程

直线

直线的倾斜角和斜率点斜式

两点式

一般式

直线方程的基本形式

在线外——点到直线的距离

在线上

点和直线的位置关系

相交

两条直线的位置关系平行

重合

交点

夹角

简单的线性规划

二元一次不等式表示平面区域

线性规划

线性规划的实际应用

垂直

圆的定义

圆的方程

标准式

一般式

参数式

外切、相交、内切、内含直线与圆的位置关系

相交

相切——圆的切线

相等

交点

弦长

位置关系

判定方法:圆心到直线的距离d与半径R的比较

二、经典例题剖析

(根据近几年高考命题知识点及热点做相应的试题剖析,要求例题不得少于8个) 考点一 曲线(轨迹)方程的求法

常见的求轨迹方程的方法:

(1)单动点的轨迹问题——直接法(五步曲)+ 待定系数法(定义法); (2)双动点的轨迹问题——代入法;

(3)多动点的轨迹问题——参数法 + 交轨法。

1. (哈九中) 设)0(1),(),,(22

222211>>=+b a b

x x y y x B y x A 是椭圆上的两点,

满足0),(),(

2211=?a

y b x a y b x ,椭圆的离心率,23

=e 短轴长为2,0为坐标原点. (1)求椭圆的方程;

(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

解析:本例(1

)通过e =

22b =,及,,a b c 之间的关系可得椭圆的方程;(2)从方程入手,通过直线方程与椭圆方程组成方程组并结合韦达定理;(3)要注意特殊与一般的关系,分直线的斜率存在与不存在讨论。

圆锥曲线——椭圆、曲线、直线—定义—标准方程 性质:对称性、焦点、顶点、 离率、准线、焦半径等 直线与圆锥曲线的位置关系

答案:(1

)2 2.1, 2.c

b b e a e a ====

=?==椭圆的方程为14

22

=+x y (2)设AB 的方程为3+=kx y

由41,4320132)4(1

4

3

2212212222+-=+-=+=-++????

??=++=k x x k k x x kx x k x y kx y 由已知

43)(43)41()3)(3(410212122121221221+

+++=+++=+=x x k x x k kx kx x x a y y b x x

±=++-?++-+=k k k k k k 解得,4

3

43243)41(44222 2

(3)当A 为顶点时,B 必为顶点.S △AOB =1

当A ,B 不为顶点时,设AB 的方程为y=kx+b

42042)4(1

4

2212

222

2+-=+=-+++??????=++=k kb x x b kbx x k x y b

kx y 得到 4

42221+-=k b x x

:04

)

)((0421212121代入整理得=+++?==

b kx b kx x x y y x x 422

2

=+k b 4

1644|||4)(||21||||212

22212

2121++-=-+=--=k b k b x x x x b x x b S 1|

|242

==b k 所以三角形的面积为定值.

点评:本题考查了直线与椭圆的基本概念和性质,二次方程的根与系数的关系、解析几何的基本思想方法以及运用综合知识解决问题的能力。

2. (湖北省十一校)在直角坐标平面中,△ABC 的两个顶点为 A (0,-1),B (0, 1)平面内

两点G 、M 同时满足①0GA GB GC ++=u u u r u u u r u u u r r , ②||MA uuu r = ||MB uuu r = ||MC u u u u r ③GM u u u u r ∥AB u u u r

(1)求顶点C 的轨迹E 的方程

(2)设P 、Q 、R 、N 都在曲线E 上 ,定点F 的坐标为, 0) ,已知PF u u u r ∥FQ uuu r , RF u u u r

∥FN u u u r 且PF u u u r ·RF u u u r

= 0.求四边形PRQN 面积S 的最大值和最小值.

解析:本例(1)要熟悉用向量的方式表达点特征;(2)要把握好直线与椭圆的位置关系,弦长公式,灵活的运算技巧是解决好本题的关键。

答案:(1)设C ( x , y ), Q 2GA GB GO +=u u u v u u u v u u u v ,由①知2GC GO =-u u u v u u u v

,∴G 为

△ABC 的重心 , ∴ G(3x ,3

y ) 由②知M 是△ABC 的外心,∴M 在x 轴上

由③知M (

3

x

,0),

由|| ||MC MA =u u u u r u u u r =

化简整理得:2

213x y +=(x ≠0)。

(2)F ,0 )恰为2

213

x y +=的右焦点

设PQ 的斜率为k ≠0且k ≠±

2

,则直线PQ 的方程为y = k ( x )

由2222

22

((31)630330

y k x k x x k x y ?=-??+-+-=?

+-=??

设P(x 1 , y 1) ,Q (x 2 ,y 2 ) 则x 1 + x 2 = 2231k + , x 1·x 2 =226331

k k -+

则·

=

= 22

1)

31

k k ++

Q RN ⊥PQ,把k 换成1

k

-得 | RN | = 221)3k k ++

∴S =

1

2

| PQ | · | RN | =22

226(1)(31)(3)

k k k +++ =228

21

3()10

k k

-

++)

2218

3()102k k S ∴+

+=

- 221k k +Q ≥2 , 8

2S ∴

-≥16 3

2∴≤ S < 2 , (当 k = ±1时取等号) 又当k 不存在或k = 0时S = 2 综上可得

3

2

≤ S ≤ 2 ∴S max = 2 , S min =

32

点评:本题考查了向量的有关知识,椭圆与直线的基本关系,二次方程的根与系数的关系及不等式,转化的基本思想方法以及运用综合知识解决问题的能力。

考点二 圆锥曲线的几何性质

3.(xx 年安徽省高考题)如图,F 为双曲线C :()22

2210,0x y a b a b

-=>>的右焦点 P 为双曲线

C 右支上一点,且位于x 轴上方,M 为左准线上一点,O 为坐标原点 已知四边形OFPM 为平

行四边形,PF OF λ=

(Ⅰ)写出双曲线C 的离心率e 与λ的关系式;

(Ⅱ)当1λ=时,经过焦点F 且品行于OP 的直线交双曲线于A 、B 点,若12AB =,求此时的双曲线方程

分析: 圆锥曲线的几何性质结合其它图形的考查是重点。注意灵活应用第二定义。

解:∵四边形OFPM 是Y ,∴||||OF PM c ==,作双曲线的右准线交PM 于H ,则

2||||2a PM PH c =+,又222222

2||||||2222

PF OF c c e e a a PH c a e c c c c

λλλλ=====----,2

20e e λ--= (Ⅱ)当1λ=时,2e =,2c a =,2

2

3b a =,双曲线为22

22143x y a a

-=四边形OFPM 是

菱形,所以直线OP

AB

的方程为2)y x a =-,代入到双曲线方程得:

22948600x ax a -+=,

又12AB =

,由AB =

12=,解得2

94a =,则2

274

b =

,所以2212794

x y -=为所求 点评:本题灵活的运用到圆锥曲线的第二定义解题。

4.(xx 年湖北省高考题)设,A B 分别为椭圆22

221(,0)x y a b a b

+=>的左、右顶点,椭圆长半轴

的长等于焦距,且4x =为它的右准线

(Ⅰ)、求椭圆的方程;

(Ⅱ)、设P 为右准线上不同于点(4,0)的任意一点, 若直线,AP BP 分别与椭圆相交于异于,A B 的点M N 、,证明:点B 在以MN 为直径的圆内

分析:本小题主要考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力

解:(Ⅰ)依题意得 a =2c ,c

a 2

=4,解得a =2,c =1,从而b

故椭圆的方程为 13

42

2=+y x (Ⅱ)解法1:由(Ⅰ)得A (-2,0),B (2,0)

设M (x 0,y 0)

∵M 点在椭圆上,∴y 0=

4

3

(4-x 02) ○1 又点M 异于顶点A 、B ,∴-2

2

600

+x y ) 从而BM u u u u r

=(x 0-2,y 0), BP u u u r =(2,

2

600

+x y ) ∴BM u u u u r ·BP u u u r =2x 0-4+2602

0+x y =220

+x (x 02-4+3y 02) ○2

将○1代入○2,化简得BM u u u u r ·BP u u u r

2

5

(2-x 0) ∵2-x 0>0,∴BM u u u u r ·BP u u u r

>0,则∠MBP 为锐角,从而∠MBN 为钝角,

故点B 在以MN 为直径的圆内

解法2:由(Ⅰ)得A (-2,0),B (2,0) 设M (x 1,y 1),N (x 2,y 2),

则-2

2

1y y +), 依题意,计算点B 到圆心Q 的距离与半径的差

2

BQ -

2

41MN =(221

x x +-2)2+(221y y +)2-4

1[(x 1-x 2)2+(y 1-y 2)2] =(x 1-2) (x 2-2)+y 1y 1 ○3 又直线AP 的方程为y =

)2(211++x x y ,直线BP 的方程为y =)2(2

22

--x x y , 而点两直线AP 与BP 的交点P 在准线x =4上, ∴

26262211-=+x y x y ,即y 2=2

)2311

2+-x y x ( ○4 又点M 在椭圆上,则1342

12

1=+y x ,即)4(4

32

121x y -= ○5

于是将○4、○5代入○3,化简后可得2

BQ -

2

41MN =0)2)(24

521<-x x -(

从而,点B 在以MN 为直径的圆内

点评:本题关键是联系直线、圆和椭圆等平面解析几何的基础知识,运用数学知识进行推理运算的能力和解决问题的能力

考点三 有关圆锥曲线的定义的问题

利用圆锥曲线的第一、第二定义求解.

5.已知某椭圆的焦点F 1(-4,0),F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个焦点为B ,且=10,椭圆上不同两点A (x 1,y 1),C(x 2,y 2)满足条件|F 2A |,|F 2B |,|F 2C |成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标.

分析:因为已知条件中涉及到椭圆上的点到焦点的距离,所以可以从椭圆的定义入手. 解:(1)由椭圆的定义及已知条件知:2a =|F 1B |+|F 2B |=10,所以a=5,又c =3,

故b=4.故椭圆的方程为

19

252

2=+y x . 由点B (4,y 0)在椭圆上,得|F 2B |=|y 0|=59,因为椭圆的右准线方程为4

25=x ,离心率54=e .所以根据椭圆的第二定义,有,54

5)425(54||112x x A F -=-=

222545)425(54||x x C F -=-=.因为|F 2A |,|F 2B |,|F 2C |成等差数列,154

5x -+

5

9

25452?=-x ,所以: x 1+x 2=8,

从而弦AC 的中点的横坐标为

42

2

1=+x x 。 点评:涉及椭圆、双曲线上的点到两个焦点的距离问题,常常要注意运用第一定义,而涉及曲线上的点到某一焦点的距离,常常用圆锥曲线的统一定义.对于后者,需要注意的是右焦点与右准线对应,不能弄错.

考点四 直线与圆锥曲线位置关系问题

利用数形结合法或将它们的方程组成的方程组转化为一元二次方程,利用判别式、韦达定理来求解或证明.

6.抛物线C 的方程为)0(2

<=a ax y ,过抛物线C 上一点P(x 0,y 0)(x 0≠0)作斜率为k 1,k 2的两条

直线分别交抛物线C 于A(x 1,y 1)B(x 2,y 2)两点(P,A,B 三点互不相同),且满足

)10(012-≠≠=+λλλ且k k .(Ⅰ)求抛物线C 的焦点坐标和准线方程;

(Ⅱ)设直线AB 上一点M ,满足BM λ=,证明线段PM 的中点在y 轴上;

(Ⅲ)当λ=1时,若点P 的坐标为(1,-1),求∠PAB 为钝角时点A 的纵坐标1y 的取值范围.

分析:将直线方程和抛物线方程组成的方程组转化为一元二次方程,用韦达定理来求解. 解:(Ⅰ)由抛物线C 的方程2

ax y =(0

0(a ,准线方程为a

y 41

-=. (Ⅱ)证明:设直线PA 的方程为)(010x x k y y -=-,直线PB 的方程为

)(020x x k y y -=-.

点),(00y x P 和点),(11y x A 的坐标是方程组0102

()y y k x x y ax -=-???=??L L L ①

的解.将②式代入①式得000112

=-+-y x k x k ax ,于是a k x x 101=

+,故011x a

k

x -= ③ 又点),(00y x P 和点),(22y x B 的坐标是方程组0202

()y y k x x y ax -=-???

=??L L ④

⑤的解.将⑤式代入④式得000222

=-+-y x k x k ax .于是220k x x a +=

,故220k

x x a

=-. 由已知得,12k k λ-=,则012x k a

x --

. ⑥

设点M 的坐标为),(M M y x ,由MA BM λ=,则λ

λ++=

11

2x x x M .

将③式和⑥式代入上式得00

01x x x x M -=+--=λ

λ,即00=+x x M .

∴线段PM 的中点在y 轴上.

(Ⅲ)因为点)1,1(-P 在抛物线2ax y =上,所以1-=a ,抛物线方程为2

x y -=. 由③式知111--=k x ,代入2

x y -=得2

11)1(+-=k y .

将1=λ代入⑥式得211x k =-,代入2

x y -=得2

22)1(+-=k y .

因此,直线PA 、PB 分别与抛物线C 的交点A 、B 的坐标为

2111(1,21)A k k k -----,2111(1,21)B k k k --+-.

于是2

111(2,2)AP k k k =++u u u r ,11(2,4)AB k k =u u u r ,

2111111112(2)4(2)2(2)(21)AP AB k k k k k k k k ?=+++=++u u u r u u u r

. 因PAB ∠为钝角且P 、A 、B 三点互不相同,故必有0AP AB ?

求得1k 的取值范围是12k <-或11

02

k -

<<.又点A 的纵坐标1y 满足211(1)y k =-+,故当12k <-时,11y <-;当1102k -<<时,1114y -<<-.即11

(,1)(1,)4

y ∈-∞---U

点评:解析几何解题思维方法比较简单,但对运算能力的要求比较高,平时练习要注意提高自己的运算能力.

7.(上海市宝山区)已知抛物线C :2

2(0)y px p =>上任意一点到焦点F 的距离比到y 轴的距

离大1。

(1)求抛物线C 的方程;

(2)若过焦点F 的直线交抛物线于M 、N 两点,M 在第一象限,且|MF|=2|NF|,求直线MN

的方程;

(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,

我们把它称为原来问题的一个“逆向”问题.

例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积163

后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为163

,求侧棱长”;

也可以是“若正四棱锥的体积为163

,求所有侧面面积之和的最小值”.

现有正确命题:过点(,0)2

p

A -

的直线交抛物线C :22(0)y px p =>于P 、Q 两点,设点P 关于x 轴的对称点为R ,则直线RQ 必过焦点F 。

试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题。 答案:解:(1)2

4y x =

(2)设2(,)4

t N t -(t>0),则2

(,2)M t t ,F(1,0)。

因为M 、F 、N 共线,则有FM NF k k =, 所以

2

2

211

14

t t

t t -=

--

,解得t =,

所以21

k =

=- 因而,直线MN

的方程是1)y x =-。 (3)“逆向问题”一:

①已知抛物线C :2

2(0)y px p =>的焦点为F ,过点F 的直线交抛物线C 于P 、Q 两点,设点P 关于x 轴的对称点为R ,则直线RQ 必过定点(,0)2

p

A -。 证明:设过F 的直线为y=k(x 2

p

-

),11(,)P x y ,22(,)Q x y ,则11(,)R x y - 由

24()2

y x p y k x ?=??=-??得

2

2

2

221

(4)0

4

k x pk x p k -++=,所以

2

124

p x x =

1111()222RA

p k x y k p p x x --==-++, 2121121211()()()

222222

QA

p p p k x k x x x k x k p p p x x x x x ---===-+++

=RA k , 所以直线RQ 必过焦点A 。

②过点(,0)2

p A -的直线交抛物线C 于P 、Q 两点,FP 与抛物线交于另一点R ,则RQ 垂直

于x 轴。

③已知抛物线C :2

2(0)y px p =>,过点B(m,0 )(m>0)的直线交抛物线C 于P 、Q 两点,设点P 关于x 轴的对称点为R ,则直线RQ 必过定点A(-m,0)。

“逆向问题”二:已知椭圆C :22

221x y a b

+=的焦点为F 1(-c,0),F 2(c,0),过F 2的直线交椭圆C

于P 、Q 两点,设点P 关于x 轴的对称点为R ,则直线RQ 必过定点2

(,0)a A c

“逆向问题”三:已知双曲线C :22

22

1x y a b

-=的焦点为F 1(-c,0),F 2(c,0),过F 2的直线交双曲

线C 于P 、Q 两点,设点P 关于x 轴的对称点为R ,则直线RQ 必过定点2

(,0)a A c

考点五 圆锥曲线在高考中的应用

(1).圆锥曲线的标准方程和几何性质与平面向量的巧妙结合。

8.(xx 年全国高考天津理科22题)椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (C ,0)(C >0)的准线L 与X 轴相交于点A ,FA OF 2=,过点A 的直线与椭圆相交于P 、Q 两点。

(1)求椭圆的方程及离心率;

(2)若 OP ·O Q = 0,求直线PQ 的方程; (3)设 A P =

λ AQ (λ>1),过点P 且平行与准线L 的直线与椭圆相交于另一点M ,

证明 FM = -λ FQ 。

分析:(1)要求椭圆的方程及离心率,很重要的一点就是要熟悉这种二次曲线的标准方程的中心、长轴长、短轴长、焦点坐标、标准方程、离心率、焦距等有关概念及几何性质。解:(1)根据已知条件“椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (C ,0)(C >0)的

准线L 与X 轴相交于点A 。” 可设椭圆的方程为

122

2

2=+y a

x (a >2),从而有()

2

2

22=

-c a ;又因,2FA OF =可以有)(c c

a c -=2

2,联系以上这两个关于a 、c 的方程组并解得a=6,c=2,所以椭圆的方程为12

62

2=+y x ,离心率e=26。

(2)根据已知条件 “O P ·O Q = 0” ,我们可设 P ()11,y x ,Q ()22,y x ,把两个向量的数量积的形式转化为坐标表示的形式,再根据直线 PQ 经过 A (3,0),只须求出直线PQ 的斜率K 即可求出直线PQ 的方程。而P 、Q 两点又在椭圆上,因此,我们容易想到通过直线y=k

(x-3)与椭圆12

62

2=+y x ,联系方程组消去一个未知数y (或x )得()

062718132222

=-+-+k x k x k

,并利用一元二次方程的根与系数关系结合0

2121=+y y x x

及()()33212

21--=x x k

y y 不难求出k=5

5

±

,这里应特别注意K 的值要保证?>0成立,否则无法保证直线PQ 与椭圆有两个交点。

(3)要证F M =-λ F Q ,我们容易想到通过式中两个向量FM 、FQ 的坐标之间关系来谋求证题的方法。为此我们可根据题意“过点P 且平行为准线L 的直线与椭圆相交于另一点M ”,求得点M 坐标为()11,y x -。又因AP=λAQ ,易知FM 、FQ 的两个纵坐标已经满足21y y λ-=,所以现在要考虑的问题是如何证明FM 、FQ 的两个横坐标应该满足()2221--=-x x λ,事实上,

()()2211,3,,3y x AQ y x AP -=-=

注意到λ>1,解得λ

λ21

52-=

x ⑤ 因F (2,0),M ()11,y x -,故FM=()11,2y x --=()()22,13y x -+-λ。 =???

??--1,21y λ=??

?

??---2,21y λλλ 又FQ=()??

?

??-=-222,21,2y y x λλ,因此FM=-λFQ 。 点评:本题主要考查椭圆的标准方程、几何性质及相关概念,直线方程、平面向量的坐标表示和向量的数量积,多元二次方程组解法、曲线和方程的关系、直线与椭圆相交等解析几何的基础思想方法,以及分析问题和综合解题能力。

把两个向量之间的关系,转化为两个向量坐标之间的关系,再通过代数运算的方法来解决有关向量的问题是一种常用的解题手段。

9. (江苏卷)已知2||||),0,2(),0,2(2121=--PF PF P F F 满足点,记点P 的轨迹为E. (1)求轨迹E 的方程;

(2)若直线l 过点F 2且与轨迹E 交于P 、Q 两点.

(i )无论直线l 绕点F 2怎样转动,在x 轴上总存在定点)0,(m M ,使MQ MP ⊥恒成立,

求实数m 的值.

(ii )过P 、Q 作直线21

=

x 的垂线PA 、OB ,垂足分别为A 、B ,记|

|||||AB QB PA +=λ,求λ的取值范围.

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高三数学解析几何训练试题(含答案)

高三数学解析几何训练试题(含答案) 2013届高三数学章末综合测试题(15)平面解析几何(1)一、选 择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x2+y2+Dx+Ey =0的圆心在直线x+y=1上,则D与E的关系是( ) A.D+E=2 B.D+E=1 C.D+E=-1 D.D+E=-2[来X k b 1 . c o m 解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2. 2.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( ) A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2. 3.已知F1、F2是椭圆x24+y2 =1的两个焦点,P为椭圆上一动点,则使|PF1|?|PF2|取最大值的点P为( ) A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,∴|PF1|?|PF2|≤|PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”. 4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P 是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是( ) A.165 B.3 C.163 D.253 解析 A 椭 圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得 ∠F1PF2<π2,∴∠PF1F2=π2或∠PF2F1=π2,点P到y轴的距离d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A. 5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为( ) A.4x+y+4=0 B.x-4y-4=0 C.4x-y-12=0 D.4x -y-4=0 解析 D 设切点为(x0,y0),则y′|x=x0=2x0, ∴2x0=4,即x0=2,∴切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0. 6.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+ y21n=1,若焦点在y轴上,则1n>1m>0,即m>n>0. 7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析 一、高考定位 回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25 分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题. 二、应对策略 复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧. 二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力. 三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识. 预测在2013年的高考题中: 1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. 2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还 有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题. 三、常见题型

1.直线与圆的位置关系问题 直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位. 点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理. (2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨. 2.圆锥曲线中的证明问题 圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等). 求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明. 常用的一些证明方法: 点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲

高考数学导数题型归纳(文科)-

文科导数题型归纳 高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330 g m g m <-? ?<--

2012高考数学必考题型解答策略:函数与导数

2012高考数学必考题型解答策略:函数与导数 D

而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。8.求极值, 函数单调性,应用题,与三角函数或向量结合,预计2012年基本上还是这个考查趋势,具体为:(1)以选择题或者填空题的形式考查集合的基本关系和基本运算,考查中涉及函数的定义域、不等式的解、方程的解等问题,要特别注意一些新定义试题. (2)以选择题或者填空题的方式考查逻辑用语的知识,其中重点是充要条件的判断和含有一个量词的命题的否定. (3)以选择题或者填空题的方式考查基本初等函数及其应用,重点是函数定义域、值域,函数的单调性和奇偶性的应用,指数函数、对数函数、幂函数的图象和性质的应用,函数的零点判断,简单的函数建模,导数的几何意义的应用,定积分的计算及其简单应用.(4)以解答题的方式考查导数在函数问题中的综合应用,重点是使用导数的方法研究函数的单调性和极值以及能够转化为研究函数的单调性、极值、最值问题的不等式和方程等问题,考查函数建模和利用导数解模.

备考建议 基本初等函数和函数的应用:在掌握好基本知识的前提下重点解决函数性质在解决问题中的综合应用、函数性质在判断函数零点中的应用,指数函数、对数函数的图象和性质的应用,数形结合思想的应用. 导数及其应用:要掌握好导数的几何意义、导数的运算、导数和函数的单调性与极值的关系,由于函数的极值和最值的解决是以函数的单调性为前提的,因此要重点解决导数在研究函数单调性中的应用,特别是含有字母参数的函数的单调性(这是高考考查分类与整合思想的一个主要命题点),在解决好上述问题后,要注意把不等式问题、方程问题转化为函数的单调性、极值、最值进行研究性训练,这是高考命制压轴题的一个重要考查点. 解答策略 1.讨论函数的性质时,必须坚持定义域优先的原则.对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响. 2.运用函数的性质解题时,注意数形结合,

最新名校2020高考解析几何大题二(定值定点)(4.2日)

解析几何大题二 1.椭圆M 的中心在坐标原点O ,左、右焦点F 1,F 2在x 轴上,抛物线N 的顶点也在原点O ,焦点为F 2,椭圆M 与抛物线N 的一个交点为A (3,2). (Ⅰ)求椭圆M 与抛物线N 的方程; (Ⅱ)在抛物线M 位于椭圆内(不含边界)的一段曲线上,是否存在点B ,使得△AF 1B 的外接圆圆心在x 轴上?若存在,求出B 点坐标;若不存在,请说明理由. 2.已知椭圆22 22:1(0)x y C a b a b +=>>的右焦点F 到直线30x y -+=的距离为22,231,P ?? ? ? ?? 在椭圆C 上. (1)求椭圆C 的方程; (2)若过F 作两条互相垂直的直线12,l l ,,A B 是1l 与椭圆C 的两个交点,,C D 是2l 与椭圆C 的两个交点,,M N 分别是线段,AB CD 的中点试,判断直线MN 是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由. 3.已知抛物线C:y 2 =2px(p>0)的焦点F 和椭圆22 143 x y +=的右焦点重合,直线过点F 交抛物线于A 、 B 两点. (1)求抛物线C 的方程; (2)若直线交y 轴于点M,且,MA mAF MB nBF ==u u u r u u u r u u u r u u u r ,m 、n 是实数,对于直线,m+n 是否为定值? 若是,求出m+n 的值;否则,说明理由. 4.已知椭圆22 22:1(0)x y E a b a b +=>>的上顶点为B ,点(0,2)D b -,P 是E 上且不在y 轴上的点, 直线DP 与E 交于另一点Q .若E 的离心率为2 2,PBD ?的最大面积等于 322 . (1)求E 的方程; (2)若直线,BP BQ 分别与x 轴交于点,M N ,判断OM ON ?是否为定值.

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

2019高考大题之解析几何

高考大题之解析几何 1.如图,椭圆C :22221x y a b +=(a >b >0)的离心率e =3 5 ,左焦点为F ,A ,B ,C 为其三个顶 点,直线CF 与AB 交于点D ,若△ADC 的面积为15. (Ⅰ)求椭圆C 的方程; (Ⅱ)是否存在分别以AD ,AC 为弦的两个相外切的等圆? 若存在,求出这两个圆的圆心坐标;若不存在,请说明理由. 解:(Ⅰ)设左焦点F 的坐标为(-c ,0),其中c =22a b -, ∵e = 35c a =,∴a =5 3 c ,b =43c . ∴A (0,43c ),B (-5 3c ,0),C (0,-43c ), ∴AB :33154x y c c -+=,CF :314x y c c --=, 联立解得D 点的坐标为(-54c ,1 3c ). ∵△ADC 的面积为15,∴12|x D |·|AC |=15,即12·54c ·2·4 3 c =15, 解得c =3,∴a =5,b =4,∴椭圆C 的方程为22 12516 x y +=. (Ⅱ)由(Ⅰ)知,A 点的坐标为(0,4),D 点的坐标为(-15 4 ,1). 假设存在这样的两个圆M 与圆N ,其中AD 是圆M 的弦,AC 是圆N 的弦, 则点M 在线段AD 的垂直平分线上,点N 在线段AC 的垂直平分线y =0上. 当圆M 和圆N 是两个相外切的等圆时,一定有A ,M ,N 在一条直线上,且AM =AN . ∴M 、N 关于点A 对称,设M (x 1,y 1),则N (-x 1,8-y 1), 根据点N 在直线y =0上,∴y 1=8.∴M (x 1,8),N (-x 1,0), 而点M 在线段AD 的垂直平分线y -52=-54(x +158)上,可求得x 1=-251 40 . 故存在这样的两个圆,且这两个圆的圆心坐标分别为 M (-25140,8),N (25140 ,0). 2.如图,椭圆22 221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线交椭圆于B A ,两点, AF 的最大值为M ,BF 的最小值为m ,满足2 34 M m a ?= 。 (Ⅰ)若线段AB 垂直于x 轴时,3 2 AB = ,求椭圆的方程; (Ⅱ) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于E D ,两

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

2020年高考数学(理)重难点专练06 函数与导数(解析版)

2020年高考数学(理) 重难点06 函数与导数 【命题趋势】在目前高考全国卷的考点中,导数板块常常作为压轴题的形式出现,这块部分的试题难度呈现非减的态势,因此若想高考中数学拿高分的同学,都必须拿下导数这块的内容.函数单调性的讨论、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的. 对于导数内容,其关键在于把握好导数,其关键在于把握好导数的几何意义即切线的斜率,这一基本概念和关系,在此基础上,引申出函数的单调性与导函数的关系,以及函数极值的概念求解和极值与最值的关系以及最值的求解.本专题选取了有代表性的选择,填空题与解答题,通过本专题的学习熟悉常规导数题目的思路解析与解题套路,从而在以后的导数题目中能够快速得到导数问题的得分技巧. 【满分技巧】 对于导数的各类题型都是万变不离其宗,要掌握住导数的集中核心题型,即函数的极值问题,函数的单调性的判定.因为函数零点问题可转化为极值点问题,函数恒成立与存在性问题可以转化为函数的最值问题,函数不等式证明一般转化为函数单调性和最值求解,而函数的极值和最值是由函数的单调性来确定的.所以函数导数部分的重点核心就是函数的单调性. 对于函数零点问题贴别是分段函数零点问题是常考题型,数形结合是最快捷的方法,在此方法中应学会用导数的大小去判断原函数的单调区间,进而去求出对应的极值点与最值. 恒成立与存在性问题也是伴随着导数经典题型,对于选择题来说,恒成立选择小题可以采用排除法与特殊值法相结合的验证方法能够比较快捷准确得到答案,对于填空以及大题则采用对函数进行求导,从而判定出函数的最值. 函数的极值类问题是解答题中的一个重难点,对于非常规函数,超出一般解方程的范畴类题目则采用特殊值验证法,特殊值一般情况下是0,1等特殊数字进行验证求解. 对于理科类导数类题目,对于比较复杂的导数题目.一般需要二次求导,但是要注意导数大小与原函数之间的关系,搞清楚导数与原函数的关系是解决此类题目的关键所在. 含参不等式证明问题也是一种重难点题型,对于此类题型应采取的方法是: 一双变量常见解题思路:1双变量化为单变量→寻找两变量的等量关系;2转化为构造

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

高考理科数学导数题型归纳定稿版

高考理科数学导数题型 归纳 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' x f 得到两个根;’ 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)

第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数 m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=- - (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 - 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立,

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)

专题09 解析几何 第二十四讲 抛物线 2019年 1.(2019全国II 文9)若抛物线y 2 =2px (p >0)的焦点是椭圆 22 13x y p p +=的一个焦点,则p = A .2 B .3 C .4 D .8 2.(2019浙江21)如图,已知点(10)F ,为抛物线2 2(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的准线方程; (2)求 1 2 S S 的最小值及此时点G 的坐标. 3.(2019全国III 文21)已知曲线C :y =2 2 x ,D 为直线y =12-上的动点,过D 作C 的两条 切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,5 2 )为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 2015-2018年 一、选择题 1.(2017新课标Ⅱ)过抛物线C :2 4y x =的焦点F ,3的直线交C 于点M (M

在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为 A B . C . D .2.(2016年全国II 卷)设F 为抛物线C :y 2=4x 的焦点,曲线y = k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = A . 12 B .1 C .3 2 D .2 3.(2015陕西)已知抛物线2 2y px =(0p >)的准线经过点(1,1)-,则该抛物线的焦点坐 标为 A .(-1,0) B .(1,0) C .(0,-1) D .(0,1) 4.(2015四川)设直线l 与抛物线2 4y x =相交于,A B 两点,与圆2 2 2 (5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24, 二、填空题 5.(2018北京)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线2 4y ax =截得的线段长为 4,则抛物线的焦点坐标为_________. 6.(2015陕西)若抛物线2 2(0)y px p =>的准线经过双曲线2 2 1x y -=的一个焦点,则p = 三、解答题 7.(2018全国卷Ⅱ)设抛物线2 4=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与 C 交于A ,B 两点,||8=AB . (1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程. 8.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :2 4y x =上存在 不同的两点A ,B 满足PA ,PB 的中点均在C 上.

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

相关文档
最新文档