(推荐)高中数学恒成立问题中求含参范围的方法总结

(推荐)高中数学恒成立问题中求含参范围的方法总结
(推荐)高中数学恒成立问题中求含参范围的方法总结

恒成立问题中含参范围的求解策略

数学中含参数的恒成立问题,几乎覆盖了函数,不等式、三角,数列、几何等高中数学的所有知识点,涉及到一些重要的数学思想方法,归纳总结这类问题的求解策略,不但可以让学生形成良好的数学思想,而且对提高学生分析问题和解决问题的能力是很有帮助的,下面就几种常见的求解策略总结如下,供大家参考。

一、分离参数——最值化

1 在给出的不等式中,如果能通过恒等变形分离出参数,即:a ≥f(x)恒成立,只须求出 ,

则a ≥

;若a ≤f(x)恒成立, 只须求出

,则a ≤

转化为函数求最值.

例1 已知函数f(x)= ,若任意x ∈[2 ,+∞)恒有f(x)>0,试确定a 的取值范围.

解:根据题意得,x+?2>1在x ∈[2 ,+∞)上恒成立,即a>?+3x 在x ∈[2 ,+∞)上恒成立.设f(x)=-

+3x .

则f(x)=?+ ,当x=2时,=2 ,所以a>2

2在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若f(a)≥g(x)恒成立,只须求出g(x)最大值 ,则f(a)≥ .然后解不等式求出参数a 的取值范围; :若f(a)≤g(x)恒成立,只须求出g(x)最小值 ,则f(a)≤ .然后解不等式求出参数a 的取值

范围.问题还是转化为函数求最值.

例2 已知x ∈(?∞ ,1]时,不等式1+

+(a ?)

>0恒成立,求a 的取值范围.

解 令 =t ,∵x ∈(?∞ ,1] ∴t ∈(0 ,2].所以原不等式可化为< ,要使上式在t ∈

(0 ,2]上恒成立,只须求出f(t)=在t ∈(0 ,2]上的最小值即可.

∵f(t)==+=? 又t ∈(0 ,2] ∴∈[) ∴=f(2)=

∴< , ∴?

例3 设c b a >>且

c

a m

c b 1b a 1-≥

-+-恒成立,求实数m 的取值范围。 解析:由于c a >,所以0c a >-,于是??

? ??-+--≤c b 1b a 1)c a (m 恒成立,因+≥???

??--+--++=??? ??-+--+-=??? ??-+--2c b b a b a c b 11c b 1b a 1)]c b ()b a [(c b 1b a 1)c a (

.4c

b b a b a

c b 2=--?-- (当且仅当b a c b -=-时取等号),故4m ≤。

二、数形结合——直观化

对于某些不容易分离出参数的恒成立问题,可利用函数的图像或相应图形,采用数形结合的思想,直观地反应出参数的变化范围。

例4 设])1k 2,1k 2(I ,I x ()k 2x ()x (f k k 2+-∈-=表示区间,对于任意正整数k ,直线ax y =与)x (f 恒有两个不同的交点,求实数a 的取值范围。

解析:作出2)k 2x ()x (f -=在区间]1k 2,1k 2(+-上的图像,由图像知,直线ax y =只能绕原点O 从x 正半轴旋转到过点)1,1k 2(A +的范围,直线AO 的斜率为,1

k 21

01k 201+=-+-于是实数a 的取值范围

是.1

k 21

a 0+≤

< 例5、当x ∈(1,2)时,不等式(x-1)2

范围。 分析:若将不等号两边分别设成两个函数,则左边为二次函数,

图象是抛物线,右边为常见的对数函数的图象,故可以通过图象求解。 解:设y 1=(x-1)2

,y 2=log a x,则y 1的图象为右图所示的抛物线,

要使对一切x ∈(1,2),y 11,并且必须也只需当x=2

时y 2的函数值大于等于y 1的函数值。

故log a 2>1,a>1,∴1

数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式。

例6、若不等式2

3log 0a x x -<在10,3x ??∈ ???内恒成立,求实数a 的取值范围。

解:由题意知:2

3log a x x <在10,3x ??∈ ???

内恒成立,

在同一坐标系内,分别作出函数2

3y x =和log a y x =

观察两函数图象,当10,3x ?

?∈ ??

?

时,若1a >函数

log a y x =的图象显然在函数23y x =图象的下方,所

以不成立;

当01a <<时,由图可知,log a y x =的图象必须过

点11,33?? ???

或在这个点的上方,则,11

log 33a

≥ 127a ∴≥ 1127

a ∴>≥ 综上得:1127

a >≥

三、变更主元——简单化

对含多个变量问题,有时变换主元与次元的位置,常能达到避繁就简的目的。

例7对于满足≤2的所有实数p,求使不等式恒成立的x 的取值范围. 分析:在不等式出现了两个字母x 及p,关键在于把哪个字母看成一个变量.另一个作为常数.显然可将p 视作自变量,则上述问题可转化为在[-2 ,2]内关于p 的一次函数大于0恒成立问题.

解:原不等式可化为(x ?1)p+

?2x+1>0 .设f(p)= (x ?1)p+

?2x+1,则 f(p)在[?2 ,2] 上恒大于0,

故有 即 解得

x y

o 1 2

y 1=(x-1)2 y 2=log a x

例8对于]1,1[a -∈,不等式1

a x 2ax

x 21212-++??

? ??

??

??恒成立,求实数x 的取值范围。

解析:不等式???

? ??

?

?

??-++1

a x 2ax

x 21212不等式1a x 2ax x 2-+>+即)1x (a )1x (2-->-对于

]1,1[a -∈恒成立。

记2)1x ()1x (a )a (f -+-=,则问题转化为一次函数(或常数函数)在区间[-1,1]内恒为正的x 应满足的条件。

由???>>-0)1(f 0)1(f 得 0x 0

)1x ()1x (0

)1x ()1x (22

-+->---或.2x >

故实数x 的取值范围是 ).,2()0,(+∞-∞

恒成立问题中含参范围的求解策略较多,但主要有以上三种常见方法,其实质是一种等价转化的思想,可见,只要我们在解题中善于归纳和总结,就一定会积累更多的经验和方法,从而更好地提高我们的解题能力。

四、判别式法

若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数

),0()(2R x a c bx ax x f ∈≠++=,有

10)(>x f 对R x ∈恒成立????00a ; 20)(

2a x a x y +-+=的定义域为R ,求实数a 的取值范围。

解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有0

4)1(2

2<--=?a a 解得311>-

1

()1,(+∞--∞ 。

若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。

例10.设22)(2

+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 解:设m mx x x F -+-=22)(2

,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为:

???

?

???

-≤--≥-≥?1

220)1(0m F 解得23-≤≤-m 。 综上可得实数m 的取值范围为)1,3[-。

五、分类讨论

在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。

例3、若[]2,2x ∈-时,不等式2

3x ax a ++≥恒成立,求a 的取值范围。

解:设()2

3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。

(1) 当22a -

<-即:4a >时,()()min 2730f x f a =-=-≥ 7

3

a ∴≤又4a >所以a

不存在;

(2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ??

=-=--≥ ???

62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤

(3) 当22

a

-> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又4a <-74a ∴-≤<-

综上所得:72a -≤≤

六、利用集合与集合间的关系

在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ?????,则()f a m ≤且()g a n ≥,不等式的解即为实数a 的取值范围。

例5、当1,33x ??

∈ ???

时,log 1a x <恒成立,求实数a 的取值范围。

解:1log 1a x -<<

(1) 当1a >时,1x a a <<,则问题转化为11,3,3a a ????

? ? ????? 3

113a a ≥??∴?≤??

3a ∴≥

(2) 当01a <<时,1a x a <<,则问题转化为11,3,3a a ????? ? ?????13

13

a a

?

??∴??≥??103a ∴<≤

综上所得:1

03

a <≤

或3a ≥

易混题

㈠、能成立问题

若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A

>;

若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()

min f x B

<.

例1、已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围______(答:

1a >)

例2、若关于x 的不等式32

-≤--a ax x 的解集不是空集,则实数a 的取值范围是 .

第二个填空是不等式能成立的问题. 设()a ax x x f --=2

.则关于x 的不等式32

-≤--a ax x 的解集

不是空集()3-≤?x f 在()+∞∞-,上能成立()3min -≤?x f ,

即(),34

42

min -≤+-

=a a x f 解得6a ≤-或2a ≥ 例3、已知函数()x x f ln =,()bx ax x g +=2

2

1,0≠a . 若2=b ,且()()()x g x f x h -=存在单调递

减区间,求a 的取值范围;

分析及解只研究第(I )问.x ax x x h b 22

1ln )(,22

--

==时, 则.1

221)(2x

x ax ax x x h -+-

=--=' 因为函数()h x 存在单调递减区间,所以()0h x '<有解.

由题设可知,()x h 的定义域是()+∞,0 ,

而()0<'x h 在()+∞,0上有解,就等价于()0<'x h 在区间()+∞,0能成立,

即x x a 212->, ()+∞∈,0x 成立, 进而等价于()x u a min

>成立,其中()x

x x u 2

12-=. 由()x x

x u 212-=1112

-???

??-=x 得,()1min -=x u .于是,1->a ,

由题设0≠a ,所以a 的取值范围是()()+∞-,00,1

例4、不等式2

20kx k +-<有解,求k 的取值范围。

解:不等式2

20kx k +-<有解2(1)2k x ?+<有解221k x ?<+有解2max 221k x ???<= ?+??,

所以(2)k ∈-∞,

。 例5、对于不等式21x x a -++<,存在实数x ,使此不等式成立的实数a 的集合是M ;对于任意[05]x ∈,,使此不等式恒成立的实数a 的集合为N ,求集合M N ,.

解:由21(1)()213(12)21(2).x x f x x x x x x -+<-=-++=-->??

???

≤≤,

又()a f x >有解min ()3

a f x ?>=,所以{3}M a a =>.

()g x 21[05]()x x x a g x =-++∈>,,,

恒成立

max ()(5)9a g x g ?>==.

所以

{9}

N a a =>

㈡、恰好成立

例6、已知(),22x

a

x x x f ++=

当[)()x f x ,,1+∞∈的值域是[)+∞,0,试求实数a 的值.(最值法) .

第(Ⅱ问是一个恰成立问题,

这相当于()022≥++=

x

a

x x x f 的解集是[)+∞∈,1x . 当0≥a 时,由于1≥x 时,

()3222≥++=++=x

a x x a x x x f ,与其值域是[)+∞,0矛盾,

当0

x

a

x x a x x x f 是[)+∞,1上的增函数, 所以,()x f 的最小值为()1f ,

令()01=f ,即.3,021-==++a a

例7、已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2

+4x ,其中k 为实数。

(1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围; (2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围;

(3)对任意x 1、x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围。

解析:(最值法)(1)设h(x)=g(x)-f(x)=2x 2-3x 2

-12x+k ,问题转化为x ∈[-3,3]时,h(x)≥0恒成

立,故h min (x)≥0.令h ′ (x)=6x 2

-6x-12=0,得x= -1或2。

由h(-1)=7+k ,h(2)=-20+k ,h(-3)=k-45,h(3)=k-9,故h min (x)=-45+k ,由k-45≥0,得k ≥45. (2)据题意:存在x ∈[-3,3],使f (x)≤g(x)成立,即为:h(x)=g(x)-f(x)≥0在x ∈[-3,3]有解,故h max (x)≥0,由(1)知h max (x )=k+7,于是得k ≥-7。

(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意x 1,x 2∈[-3,3],都有f (x 1)≤g(x 2)成立,不等式的左右两端函数的自变量不同,x 1,x 2的取值在[-3,3]上具有任意性,因而要使原不等式恒成立的充要条件是:

]3,3[,)()(min max ??x ?x g x f -∈≤,由g ′(x)=6x 2

+10x+4=0,得x=-32

或-1,易得

21)3()(min -=-=g x g ,又f(x)=8(x+1)2-8-k ,]3,3[?x -∈. 故.120)3()(max k f x f -==令120-k ≤

-21,得k ≥141。

点评:本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件。

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注!)

(推荐)高中数学七大数学基本思想方法

高中数学七大数学基本思想方法 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础。考把函数与方程思想作为七种重要思想方法重点来考查。 第二:数形结合思想 (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系,形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法。 (2)从具体出发,选取适当的分类标准。 (3)划分只是手段,分类研究才是目的。 (4)有分有合,先分后合,是分类整合思想的本质属性。 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性。 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决题化归为已解决问题。 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识。 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论。 (3)由特殊到一般,再由一般到特殊的反复认识过程。 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程。 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向。 第六:有限与无限的思想 (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路。 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向。 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用。 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查。 第七:或然与必然的思想

2020高一数学知识点总结归纳精选5篇

2020高一数学知识点总结归纳精选5 篇 高一数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。下面就是给大家带来的高一数学知识点总结,希望能帮助到大家! 高一数学知识点总结(一) (1)指数函数的定义域为所有实数的集合,这里的前提是a 大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴

的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 高一数学知识点总结(二) 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q 是偶数,函数的定义域是[0,+)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制****于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x0,则a可以是任意实数; 排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

高中数学知识点总结超全

高中数学 必修1知识点 第一章 集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等 (7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集, 它有2 2n -非空真子集.

【1.1.3】集合的基本运算 (8)交集、并集、补集 名称记号意义性质示意图 交集A B {|, x x A ∈且 } x B ∈ (1)A A A = (2)A?=? (3)A B A ? A B B ? B A 并集A B {|, x x A ∈或 } x B ∈ (1)A A A = (2)A A ?= (3)A B A ? A B B ? B A 补集 U A{|,} x x U x A ∈? 且 1() U A A=?2() U A A U = 【补充知识】含绝对值的不等式与一元二次不等式的解法 (1)含绝对值的不等式的解法 不等式解集 ||(0) x a a <>{|} x a x a -<< ||(0) x a a >>|x x a <-或} x a > ||,||(0) ax b c ax b c c +<+>> 把ax b+看成一个整体,化成||x a<, ||(0) x a a >>型不等式来求解 判别式 24 b ac ?=- ?>0 ?=0 ?<二次函数 2(0) y ax bx c a =++> 的图象O 一元二次方程 20(0) ax bx c a ++=> 的根 2 1,2 4 2 b b ac x a -±- = (其中 12 ) x x < 122 b x x a ==-无实根 ()()() U U U A B A B = ()()() U U U A B A B =

高考数学思想方法汇总(80页)

高考数学思想方法 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言

美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题.而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法.高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法.我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光. 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等. 数学思想方法与数学基础知识相比较,它有较高的地位和层次.数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记.而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用. 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段.数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得. 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”. 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想.最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷. 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现.再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范.巩固性题组旨在检查学习的效果,起到巩固的作用.每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识. 第一章高中数学解题基本方法 一、配方法

高中数学思想方法

高中数学思想方法 ] 高中数学学习思想的培养 高中数学学习思想的培养 简单地说,思想是方法中的方法,方法是思想的具体实现。思想内在地统一各种方法,是方法的萌芽阶段。方法必然受思想的指导。基于思想方法的辩证统一,在这里我将结合 数学基础知识的研习,一并探讨数学思想方法的研习。 前人已为我们总结归纳论述了大量的数学思想方法,现在的问题是如何把这些别人的 思想方法变成自己的思想方法。 一、大量收集整理 大量收集、整理各种各样的数学思想方法,网络上的、书籍上的都要。问题是思想方 法也是无穷无尽的,这个收集整理阶段要到什么时候才能结束?一个判断方法就是,出现 重复,重复到一定程度就可以适可而止了。我们还可以以重复的程度来判断数学思想方法 的普遍性与重要性。 二、初步归类总结 按照一定的标准根据进行初步归纳分类总结,形成一个大致的体系网络框架。下面挂 一漏万地阐述一下。 如按应用领域可划分为:数学研究方法、数学学习方法、数学教学方法。按普遍性程 度可划分为:哲学方法论、一般科学方法论、具体科学方法论。数学方法至少包含上面的 三个领域、三个层次。它们相互联系,表现为相互渗透相互转化。我们就是要通过初步的 归纳分类总结来初步把握揭示它们之间的联系。 如抽象与概括、归纳与演绎、归类与分类、比较与类比、分析与 综合,既可认为是哲学方法论层次的也可认为是一般科学方法论层次的,两者之间只 有一条很细的线,如果你站在哲学的高度来反思论证阐述,那它就是哲学方法论;如果你 着眼于如何在科学上具体运用完善,那它就是一般科学方法论。 抽象与概括在数学上主要表现为理想化与模型化方法;归纳与演绎在数学上主要表现 为数学归纳法与公理化和形式化方法;比较与类比在数学上是一种很重要的数学猜想方法;其实各种数学方法都是各种哲学方法的组合,并不是像上面表现的那样简单化、线性化。 如公理化与形式化方法就主要包含了演绎、抽象;数学模型法也包含了抽象、分类、演绎、还有计算。

高中数学知识点总结(精华版)

高中数学知识点总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

高中数学知识点完全总结(绝对全)

高中数学概念总结 一、 函数 1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。 二次函数c bx ax y ++=2的图象的对称轴方程是a b x 2-=,顶点坐标是??? ? ? ?--a b ac a b 4422,。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -?-=和n m x a x f +-=2)()( (顶点式)。 2、 幂函数n m x y = ,当n 为正奇数,m 为正偶数, m

),(y x P ,点P 到原点的距离记为r ,则sin α= r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=y r 。 2、同角三角函数的关系中,平方关系是:1cos sin 2 2 =+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ; 倒数关系是:1=?ααctg tg ,1csc sin =?αα,1sec cos =?αα; 相除关系是:αααcos sin = tg ,α α αsin cos =ctg 。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如:=-)23sin( απαcos -,)2 15(απ -ctg =αtg ,=-)3(απtg αtg -。 4、 函数B x A y ++=)sin(?ω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ω π 2= T ,频 率是πω2= f ,相位是?ω+x ,初相是?;其图象的对称轴是直线)(2 Z k k x ∈+=+π π?ω,凡是该图象与直线B y =的交点都是该图象的对称中心。 5、 三角函数的单调区间: x y s i n =的递增区间是??? ?? ? + -222 2πππ πk k ,)(Z k ∈,递减区间是????? ? ++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是 ??? ? ? +-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。 6、=±)sin(βαβαβαsin cos cos sin ± =±)c o s (βαβαβαs i n s i n c o s c o s = ±)(βαtg β αβ αtg tg tg tg ?± 1 7、二倍角公式是:sin2α=ααcos sin 2? cos2α=αα2 2 sin cos -=1cos 22 -α=α2 sin 21- tg2α= α α 2 12tg tg -。

高中数学常见思想方法总结

高中常见数学思想方法 方法一 函数与方程的思想方法 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解. 函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的. 【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><. (1)求公差d 的取值范围; (2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由. 【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题. 【解】(1) 由3a =12a d +=12,得到1a =12-2d , 所以12S =121a +66d =12(12-2d )+66d =144+42d >0, 13S =131a +78d =13(12-2d )+78d =156+52d <0. 解得:2437 d -<<-. (2)解法一:(函数的思想) n S =21115(1)(12)222 na n n d dn d n ++=+- =22 124124552222d d n d d ????????---- ? ????????????? 因为0d <,故212452n d ????-- ???????最小时,n S 最大.

最全高中数学知识点总结(最全集)

最全高中数学知识点总结(最全集) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。

(完整版)高中数学四大思想方法

高中数学四大思想方法 ————读《什么是数学》笔记 《什么是数学》这本书是一本数学经典名著,它收集了许多闪光的数学珍品。它的目标之一是反击这样的思想:"数学不是别的东西,而只是从定义和公理推导出来的一组结论,而这些定义和命题除了必须不矛盾外,可以由数学家根据他们的意志随意创造。"简言之,这本书想把真实的意义放回数学中去。但这是与物质现实非常不同的那种意义。数学对象的意义说的是"数学上'不加定义的对象'之间的相互关系以及它们所遵循的运算法则"。数学对象是什么并不重要,重要的是做了什么。这样,数学就艰难地徘徊在现实与非现实之间;它的意义不存在于形式的抽象中,也不存在于具体的实物中。对喜欢梳理概念的哲学家,这可能是个问题,但却是数学的巨大力量所在--我们称它为,所谓的"非现实的现实性"。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。我根据自己在数学方面的兴趣,基于已有的数学背景知识,选取一部分和高中有关的内容进行舒心愉快的阅读。重新总结了高中数学中的数学四大思想方法:函数与方程、转化与化归、分类讨论、数形结合;函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范

高中数学思想与逻辑11种数学思想方法总结与例题讲解.doc

高中数学思想与逻辑:11种数学思想方法总 结与例题讲解 高中数学思想与逻辑:11种数学思想方法总结与例题讲解 一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径. 例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种. A、150 B、147 C、144 D、141 分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了. 10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D). 策略二:局部向整体的转化 从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗. 例2:一个四面体所有棱长都是,四个顶点在同一球面上,则此球表面积为( ) A、B、C、D、 分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).

策略三:未知向已知转化 又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生. 例3:在等差数列中,若,则有等式 ( 成立,类比上述性质,在等比数列中,,则有等式_________成立. 分析:等差数列中,,必有,故有类比等比数列,因为,故成立. 二、逻辑划分思想 例题1、已知集合A= ,B= ,若B A,求实数a 取值的集合. 解A= :分两种情况讨论 (1)B=¢,此时a=0; (2)B为一元集合,B= ,此时又分两种情况讨论: (i) B={-1},则=-1,a=-1 (ii)B={1},则=1,a=1.(二级分类) 综合上述所求集合为. 例题2、设函数f(x)=ax -2x+2,对于满足1 x 4的一切x值都有f(x) 0,求实数a的取值范围. 例题3、已知,试比较的大小. 【分析】 于是可以知道解本题必须分类讨论,其划分点为.

高中数学知识点总结大全

高中数学知识点总结 1. 首先对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 要注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4. 请问你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 ()(∵,∴ ·∵,∴ ·,,)335 30 555 5015392522 ∈--

若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假?p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()() (答:,,,)022334 10. 如何求复合函数的定义域? [] 如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0 义域是_____________。 [] (答:,)a a - 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? ( ) 如:,求f x e x f x x +=+1(). 令,则t x t = +≥10 ∴x t =-2 1 ∴f t e t t ()=+--2 1 21 ()∴f x e x x x ()=+-≥-2 1 210

高中数学学习方法总结经典篇

高中数学学习方法总结经典篇 数学是高考科目之一,故从初一开始就要认真地学习数学.进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈.出现这样的情况,原因很多.但主要是由于同学们不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的.在此结合高中数学教学内容的特点和高中教学经验,谈一谈高中数学学习方法,供同学参考. 一:先注意以下三点. 一)、课内重视听讲,课后及时复习. 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法.上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同.特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点.首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举.认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决.在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系. 二)、适当多做题,养成良好的解题习惯. 要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路.刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律.对于一些易错题,可备有错题集,写出自己

的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正.在平时要养成良好的解题习惯.让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如.实践证明:越到关键时候,你所表现的解题习惯与平时练习无异.如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的. 三)、调整心态,正确对待考试. 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳.调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪.特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感. 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度.对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥. 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去. 二:初中数学与高中数学的比较. 一)、初中数学与高中数学的差异. 1、知识差异. 初中数学知识少、浅、难度容易、知识面笮.高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善.如:初中学习的角的概念只是“00—1800”范围内的,但实际当中也有7200

高中数学知识点总结精华版

高中数学必修+选修知识点归纳 新课标人教A版

一、集合 1、 把研究的对象统称为元素,把一些元素组成的总 体叫做集合。集合三要素:确定性、互异性、无 序性。 2、 只要构成两个集合的元素是一样的,就称这两个 集合相等。 3、 常见集合:正整数集合:*N 或+N ,整数集合: Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、 一般地,对于两个集合A 、B ,如果集合A 中任 意一个元素都是集合B 中的元素,则称集合A 是 集合B 的子集。记作B A ?. 2、 如果集合B A ?,但存在元素B x ∈,且A x ?, 则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:?.并规定: 空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n 2个子 集,21n -个真子集. §1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成 的集合,称为集合A 与B 的并集.记作:B A Y . 2、 一般地,由属于集合A 且属于集合B 的所有元素 组成的集合,称为A 与B 的交集.记作:B A I . 3、全集、补集?{|,}U C A x x U x U =∈?且 §1.2.1、函数的概念 1、 设A 、B 是非空的数集,如果按照某种确定的对应 关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值 域.如果两个函数的定义域相同,并且对应关系完 全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法: (1)定义法:设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则: ()()21x f x f -=… (2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性 1、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f =-,那么就称函数()x f 为 偶函数.偶函数图象关于y 轴对称. 2、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f -=-,那么就称函数()x f 为 奇函数.奇函数图象关于原点对称. 知识链接:函数与导数 1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在 ))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方 程是))((000x x x f y y -'=-. 2、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ;

高中数学:数学七大基本思想方法汇总

高中数学:数学七大基本思想方法汇总 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础 注:高考把函数与方程思想作为七种重要思想方法重点来考查 第二:数形结合思想: (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系 在二维空间,实数对与坐标平面上的点建立一一对应关系 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法 (2)从具体出发,选取适当的分类标准 (3)划分只是手段,分类研究才是目的 (4)有分有合,先分后合,是分类整合思想的本质属性

(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论 (3)由特殊到一般,再由一般到特殊的反复认识过程 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想:

高中数学知识点总结(最全版)

高中数学知识点总结(最全版) 第一章函数概念(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作、②函数的三要素:定义域、值域和对应法则、③只有定义域相同,且对应法则也相同的两个函数才是同一函数、(2)区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做、注意:对于集合与区间,前者可以大于或等于,而后者必须,(前者可以不成立,为空集;而后者必须成立)、(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数、②是分式函数时,定义域是使分母不为零的一切实数、③是偶次根式时,定义域是使被开方式为非负值时的实数的集合、④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1、⑤中,、⑥零(负)指数幂的底数不能为零、⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集、⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由

不等式解出、⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论、⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义、(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的、事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值、因此求函数的最值与值域,其实质是相同的,只是提问的角度不同、求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值、②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值、③判别式法:若函数可以化成一个系数含有的关于的二次方程则在时,由于为实数,故必须有,从而确定函数的值域或最值、④不等式法:利用基本不等式确定函数的值域或最值、⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题、⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值、⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值、⑧函数的单调性法、(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种、解析法:就是用数学表达式表示两个变量之间的对应关系、列表法:就是列出表格来表示两个变量之间的对应关系、图象法:就是用图象

相关文档
最新文档