通信原理实验大纲

通信原理实验大纲
通信原理实验大纲

《通信原理》课程实验教学大纲

本课程适用于:计算机科学与技术本科专业参考学时:16学时

一、制定实验教学大纲的依据

《通信原理》实验教学大纲是根据《通信原理》课程教学大纲的实验教学环节的要求而制定。

二、实验教学的性质地位和任务

“通信原理”课程具有理论性强、数学公式推导多、抽象概念多等特点,与“信号与线性系统分析”、“概率论与数理统计”等先修课程联系紧密。为了更好地理解和掌握本课程中的基本内容,并为后续的专业课程学习打下基础,必须有相应的配套实验。实验主要以MATLAB软件为基础进行仿真,主要内容有:随机过程的MATLAB仿真、脉冲编码调制的MATLAB仿真、数字基带传输系统的MATLAB仿真、数字调制信号的MATLAB仿真。

三、课程基本要求

1.熟悉MATLAB运行环境;

2.掌握MATLAB程序编辑、编译和运行的过程;

3.掌握MATLAB随机变量发生函数;

4.掌握脉冲编码调制基本原理,会用MATLAB对抽样值进行A律13折线编码;

5.掌握常用数字基带信号波形,理解无码间干扰及频谱形状;

6.掌握MATLAB画眼图方法;

7.掌握数字调制信号的波形图,理解已调信号的频谱特点。

四、实验内容与要求

项目一:MATLAB软件基础

1.实验目的

(1)熟悉MATLAB运行环境;

(2)掌握MATLAB程序编辑、编译和运行的过程;

(3)学会编写简单的MATLAB应用程序;

(4)掌握MATLAB基本绘图功能。

2.具体内容

(1)在M文件中编写程序,实现求和功能;

(2)利用plot函数进行二维绘图。

3.主要仪器设备与工具

(1)每人一台PC机;

(2)实验配置为:MATLAB7.0。

项目二:随机过程的MATLAB仿真

1.实验目的

(1)利用MATLAB产生随机变量;

(2)利用MATLAB估计随机信号的自相关函数;

(3)掌握随机信号的自相关函数与功率谱的关系。

2.具体内容

(1)产生均值为0、方差为1的高斯随机信号,其长度为0.5s。计算该信号的自相关函数;

(2)在(-1/2,1/2)内产生一均匀分布的随机数N=1000的离散时间序列,计算该序列的自相关函数,并求序列的功率谱。

3.主要仪器设备与工具

(1)每人一台PC机;

(2)实验配置为:MATLAB7.0。

项目三:脉冲编码调制的MATLAB仿真

1.实验目的

(1)掌握脉冲编码调制的基本原理;

(2)理解均匀PCM与非均匀PCM;

(3)利用MATLAB对抽样值进行A律13折线编码。

2.具体内容

(1)产生一幅度为1和w=1的正弦序列。采用均匀PCM方案,将其进行8

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

通信原理实验大全(完整版)

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验???????? 1 实验二FM调制与解调实验??????????? 5 实验三ASK调制与解调实验????????? 8 实验四FSK调制与解调实验?????????11 实验五时分复用数字基带传输?????? 14 实验六光纤传输实验??????????? 19 实验七模拟锁相环与载波同步???????? 27 实验八数字锁相环与位同步???????? 32

实验一AM 调制与解调实验 一、实验目的 理解 AM 调制方法与解调方法。 二、实验原理 本实验中 AM 调制方法:原始调制信号为 1.5V 直流+ 1KHZ 正弦交流信号,载波为20KHZ 正弦交流信号,两者通过相乘器实现调制过程。 本实验中 AM 解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面各图中。 4.结合上述实验结果深入理解 AM 调制方法与解调方法。

实验一参考结果

实验二FM 调制与解调实验 一、实验目的 理解 FM 调制方法与解调方法。 二、实验原理 本实验中 FM 调制方法:原始调制信号为 2KHZ 正弦交流信号,让其通过 V/F (电压 /频率转换,即 VCO 压控振荡器)实现调制过程。 本实验中 FM 解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面各图中。 4.结合上述实验结果深入理解 FM 调制方法与解调方法。

通信原理实验3

实验三FSK调制及解调实验 一、实验目的 1、掌握用键控法产生FSK信号的方法。 2、掌握FSK非相干解调的原理。 二、实验器材 1、主控&信号源、9号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 FSK调制及解调实验原理框图 2、实验框图说明 基带信号与一路载波相乘得到1电平的ASK调制信号,基带信号取反后再与二路载波相乘得到0电平的ASK调制信号,然后相加合成FSK调制输出;已调信号经过过零检测来识别信号中载波频率的变化情况,通过上、下沿单稳触发电路再相加输出,最后经过低通滤波和门限判决,得到原始基带信号。 四、实验步骤 实验项目一FSK调制 概述:FSK调制实验中,信号是用载波频率的变化来表征被传信息的状态。本项目中,通过调节输入PN序列频率,对比观测基带信号波形与调制输出波形来验证FSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【FSK数字调制解调】。将9号模块的S1拨为0000。调节信号源模块的W2使128KHz载波信号的峰峰值为3V,调节W3使256KHz载波信号的峰峰值也为3V。 3、此时系统初始状态为:PN序列输出频率32KH。 4、实验操作及波形观测。 (1)示波器CH1接9号模块TH1基带信号,CH2接9号模块TH4调制输出,以CH1为触发对比观测FSK调制输入及输出,验证FSK调制原理。 (2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。 答:PN序列输出频率增大后,载波个数会增多。 实验项目二FSK解调 概述:FSK解调实验中,采用的是非相干解调法对FSK调制信号进行解调。实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证FSK解调原理。观测解调输出的中间观测点,如TP6(单稳相加输出),TP7(LPF-FSK),深入理解FSK解调过程。 1、保持实验项目一中的连线及初始状态。 2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、TH8(FSK解调输出),验证FSK解

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

通信原理实验报告2

通信原理 实验报告 课程名称:通信原理 实验三:二进制数字信号调制仿真实验实验四:模拟信号数字传输仿真实验姓名: 学号: 班级: 2012年12 月

实验三二进制数字信号调制仿真实验 一、实验目的 1.加深对数字调制的原理与实现方法; 2.掌握OOK、2FSK、2PSK功率谱密度函数的求法; 3.掌握OOK、2FSK、2PSK功率谱密度函数的特点及其比较; 4.进一步掌握MATLAB中M文件的调试、子函数的定义和调用方法。 二、实验内容 1. 复习二进制数字信号幅度调制的原理 2. 编写MATLAB程序实现OOK调制; 3. 编写MATLAB程序实现2FSK调制; 4. 编写MATLAB程序实现2PSK调制; 5. 编写MATLAB程序实现数字调制信号功率谱函数的求解。 三、实验原理 在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢程度。由于数字符号是按码元间隔不断产生的,经过将数字符号一一映射为响应的信号波形后,就形成了数字调制信号。根据映射后信号的频谱特性,可以分为基带信号和频带信号。 通常基带信号指信号的频谱为低通型,而频带信号的频谱为带通型。 调制信号为二进制数字基带信号时,对应的调制称为二进制调制。在二进制数字调制中,载波的幅度、频率和相位只有两种变化状态。相应的调制方式有二进制振幅键控(OOK/2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)。 下面分别介绍以上三种调制方法的原理,及其MATLAB实现: 本实验研究的基带信号是二进制数字信号,所以应该首先设计MATLAB程序生成二进制数字序列。根据实验一的实践和第一部分的介绍,可以很容易的得到二进制数字序列生成的MATLAB程序。 假定要设计程序产生一组长度为500的二进制单极性不归零信号,以之作为后续调制的信源,并求出它的功率谱密度,以方便后面对已调信号频域特性和基带信号频域特性的比较。整个过程可用如下程序段实现: %定义相关参数 clear all; close all; A=1 fc=2; %2Hz; N_sample=8; N=500; %码元数 Ts=1; %1 Baud/s dt=Ts/fc/N_sample; %波形采样间隔 t=0:dt:N*Ts-dt; Lt=length(t);

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信原理实验三 张倩雨

“通信原理”实验报告 姓名:张倩雨 学号:2011329680211 实验三 模拟信号数字化传输系统的建模与分析 一、实验目的 1、进一步掌握Simulink 软件使用的基本方法; 2、熟悉信号的压缩扩张; 3、熟悉信号的量化; 4、熟悉PCM 编码与解码。 二、实验仪器 带有MATLAB 和SIMULINK 开发平台的微机。 三、实验原理 1、信号的压缩和扩张 非均匀量化等价为对输入信号进行动态范围压缩后再进行均匀量化。中国和欧洲的PCM 数字电话系统采用A 律压扩方式,美国和日本则采用μ律方式。设归一化的话音输入信号为x ∈[-1,1],则A 律压缩器的输出信号y 是: ???????+++=|)|ln 1(ln 1)sgn(ln 1y x A A x A Ax 1 ||11||≤<≤x A A x 其中,sgn(x) 为符号函数。A 律PCM 数字电话系统国际标准中,参数A=87.6。 Simulink 通信库中提供了“A-Law Compressor ”、“A-Law Expander ”以及“Mu-Law Compressor ”和“Mu-Law Expander ”来实现A 律和?律压缩扩张计算。 压缩系数为87.6的A 律压缩扩张曲线可以用折线来近似。16段折线点坐标是 ?????? -=1214181161321641128101281-641-321-161-81-41-21-1,,,,,,,,,,,,,,,,x ?? ???? -=187868584838281081-82-83-84-85-86-87-1y ,,,,,,,,,,,,,,,, 其中靠近原点的4段折线的斜率相等,可视为一段,因此总折线数为13段,故称13段折线 近似。用Simulink 中的“Look-Up Table ” 查表模块可以实现对13段折线近似的压缩扩张计算的建模,其中,压缩模块的输入值向量设置为 [-1,-1/2,-1/4,-1/8,-1/16,-1/32,-1/64,-1/128,0,1/128,1/64,1/32,1/16,1/8,1/4,1/2,1] 输出值向量设置为 [-1:1/8:1] 扩张模块的设置与压缩模块相反。 2、PCM 编码与解码 PCM 是脉冲编码调制的简称,是现代数字电话系统的标准语音编码方式。A 律PCM 数字电话系统中规定:传输话音信号频段为300Hz 到3400Hz ,采样率为8000次/秒,对样值进行13折线压缩后编码为8bit 二进制数字序列。因此,PCM 编码输出的数码速率为64Kbps 。

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

通信原理实验二

实验二 数字调制 一、 实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK 、2FSK 、2DPSK 信号的方法。 3、掌握相对码波形与2PSK 信号波形之间的关系、绝对码波形与2DPSK 信号波形之间的关系。 4、了解2ASK 、2FSK 、2DPSK 信号的频谱与数字基带信号频谱之间的关系。 二、实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK 、2FSK 、2PSK 、2DPSK 信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK 、2FSK 、2DPSK 信号的频谱。 三、实验步骤 本实验使用数字信源单元及数字调制单元。 1、熟悉数字调制单元的工作原理。接好电源线,打开实验箱电源开关。 2、用数字信源单元的FS 信号作为示波器的外同步信号,示波器CH1 接信源单元的(NRZ-OUT)AK ,CH2 接数字调制单元的BK ,信源单元的K1、K2、K3 置于任意状态(非全0),观察AK 、BK 波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。 图 2-1 AK 和BK 信号 结论:从图中结果,总结AK 信号和BK 信号的关系为:-1b =n n n a b ⊕,反过来,-1=b n n n a b ⊕。由于异或1相当于取反,异或0相当于保持。所以当-1=0n b 时,b =n n a ,而当-1=1n b 时,b =n n a 。最终的BK 波形由b n 的首个参考相位决定。

3、示波器CH1 接2DPSK,CH2 分别接AK 及BK,观察并总结2DPSK 信号相位变化与绝对码的关系以及2DPSK 信号相位变化与相对码的关系。 图 2-2 AK和2DPSK信号 结论:2DPSK信号在AK码元为“1”时反相。 图 2-3 BK和2DPSK信号 结论:2DPSK信号在BK信号的前后码元不一致时反相。 4、示波器CH1 接AK、CH2 依次接2FSK 和2ASK;观察这两个信号与AK 的关系。 图 2-4 AK信号和2FSK信号 结论: 2FSK信号中,在AK信号码元为“1”是,对应已调波有载波振幅,码元为“0”时,无已调载波波振幅。

通信原理实验二

实验二:PCM系统仿真 班级:学号:姓名:实验室: 实验时间:指导老师: 实验目的: 1、掌握脉冲编码调制原理; 2、理解量化级数、量化方法与量化信噪比的关系。 3、理解非均匀量化的优点。 实验内容: 对模拟信号进行抽样和均匀量化,改变量化级数和信号大小,根据MATLAB仿真获得量化误差和量化信噪比。 实验步骤: 1) 产生一个周期的正弦波x(t) = cos (2 * pi *t ),以1000Hz频率进行采样,并进行8级均匀量化,用plot函数在同一张图上绘出原信号和量化后的信号。代码及图见附录。 2) 以32Hz的抽样频率对x(t)进行抽样,并进行8级均匀量化。绘出正弦波波形(用plot函数)、样值图,量化后的样值图、量化误差图(后三个用stem函数)。代码及图见附录。 3) 以2000Hz对x(t)进行采样,改变量化级数,分别仿真得到编码位数为2~8位时的量化信噪比,绘出量化信噪比随编码位数变化的曲线。另外绘出理论的量化信噪比曲线进行比较。代码及图见附录。 4)在编码位数为8和12时采用均匀量化,在输入信号衰减为0~50 dB时,以均匀间隔5 dB仿真得到均匀量化的量化信噪比,绘出量化信噪比随信号衰减变化的图形。注意,输入信号减小时,量化范围不变;抽样频率为2000 Hz。代码及图见附录。 实验思考题: 1.图2-3表明均匀量化信噪比与量化级数(或编码位数)的关系是怎样的? 答:量化信噪比随着量化级数的增加而提高,当量化级数较小是不能满足通信质量的要求。 2.分析图2-5,A律压缩量化相比均匀量化的优势是什么? 答:量化信噪比随着量化级数的增加而提高,当量化级数较小是不能满足通信质量的要求 心得体会:

通信原理实验七

实验七抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性。 2、掌握自然抽样及平顶抽样的实现方法。 3、理解低通采样定理的原理。 4、理解实际的抽样系统。 5、理解低通滤波器的幅频特性对抽样信号恢复的影响。 6、理解低通滤波器的相频特性对抽样信号恢复的影响。 7、理解带通采样定理的原理。 二、实验器材 1、主控&信号源、3号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、实验原理框图 图1-1 抽样定理实验框图 2、实验框图说明 抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关

S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证 概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。调节主控模块的W1使A-out输出峰峰值为3V。 3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。 4、实验操作及波形观测。 (1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。 MUSIC主控&信号源抽样输出3#

通信原理 实验三AMI

实验三AMI/HDB3码型变换实验 一.实验目的 1.了解二进制单极性码变换为 AMI/HDB3 码的编码规则; 2.熟悉 HDB3 码的基本特征; 3.熟悉 HDB3 码的编译码器工作原理与实现方法; 4.根据测量与分析结果,画出电路关键部位的波形。 二.实验器材 1.JH5001通信原理综合实验系统 2.20MHz双踪示波器 3.函数信号发生器 三.实验内容 1.AMI码编码规则验证 将输入信号选择跳线开关KD01设置在M 位置(右端)、单/双极性码输出选择开关设置KD02设置在2_3 位置(右端)、AMI/HDB3编码开关KD03设置在AMI 位置(右端),使该模块工作在AMI码方式。 (1)、将CMI编码模块内的M序列类型选择跳线开关KX02设置在2_3位置(右端),产生7位周期m序列。用TPD01同步。同时观测输入数据TPD01与AMI输出双极性编码数据TPD05波形,如图3、1所示;同时观测输入数据TPD01与AMI 输出单极性编码数据TPD08波形,如图3、2所示; (2)、将CMI编码模块内的M序列类型选择跳线开关KX02 设置在1_2 位置(左端),产生15 位周期m 序列。用TPD01同步。同时观测输入数据TPD01与AMI 输出双极性编码数据TPD05波形,如图3、3所示;同时观测输入数据TPD01与AMI 输出单极性编码数据TPD08波形,如图3、4所示。

图3、1 7位m序列双极性图3、2 7位m序列单极性 图3、3 15位m序列双极性图3、4 15位m序列单极性 分析:经过对上述波形的分析,输入与输出基本满足了AMI码编码规则,+1与-1交替出现。且7位m序列与15位m序列对应的波形基本一致,只就是15位m 序列波形宽度变窄。 2.HDB3码变换规则验证 (1)、将KD01设置在M位置,KD02设置在2_3位置,KD03设置在HDB3位置; (2)、将KX02设置在2_3位置,观测TPD01与TPD05波形及TPD08波形,用TPD01同步,分别得到7位m序列双/单极性波形图,如图3、5与图3、6所示; (3)、将KX02设置在1_2位置,重复上述测试步骤,可得到15位m序列双/单极性波形图,如图3、7与图3、8所示; (4)、使输入数据端口悬空产生全1码(方法同1),重复上述测试步骤,可得到全1码双/单极性波形图,如图3、9所示; (5)、使输入数据为全0码(方法同1),重复上述测试步骤,可得到全0码双/单极性波形图,如图3、10与图3、11所示。

通信原理实验习题解答

实验一 1. 根据实验观察和纪录回答: (1)不归零码和归零码的特点是什么 (2)与信源代码中的“1”码相对应的AMI码及HDB3码是否一定相同 答: 1)不归零码特点:脉冲宽度等于码元宽度Ts 归零码特点:<Ts 2)与信源代码中的“1”码对应的AMI码及HDB3码不一定相同。因信源代码中的“1”码对应的AMI码“1”、“-1”相间出现,而HDB3码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。举例: 信源代码 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 AMI 1 0 0 0 0 -1 1 0 0 0 0 -1 0 0 0 0 0 1 HDB3 1 0 0 0 1 -1 1 -1 0 0 -1 1 0 0 0 1 0 -1 2. 设代码为全1,全0及0111 0010 0000 1100 0010 0000,给出AMI及HDB3码的代码和波形。 答: 信息代码 1 1 1 1 1 11 AMI 1 -1 1 -1 1-1 1 HDB3 1 -1 1 -1 1 -1 1 信息代码0 0 0 0 0 0 0 0 0 0 0 0 0 AMI0 0 0 0 0 0 0 0 0 0 0 0 0 HDB3 0 0 0 1-10 0 1-1 0 0 1 -1 信息代码 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 AMI0 1 -1 1 0 0 -1 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0 0 HDB30 1 -1 1 0 0 -1 0 0 0-1 0 1 -1 1 0 0 1 -1 0 0 0 –1 0 3. 总结从HDB3码中提取位同步信号的原理。 答: 位同步信号HDB3 整流窄带带通滤波器整形移相 HDB3中不含有离散谱f S(f S在数值上等于码速率)成分。整流后变为一个占空比等于的单极性归零码,其连0个数不超过3,频谱中含有较强的离散谱f S成分,故可通过窄带带通滤波器得到一个相位抖动较小的正弦信号,再经过整形、移相后即可得到合乎要求的位同步信号。

通信原理实验报告

通信原理实验报告 实验一抽样定理 实验二 CVSD编译码系统实验 实验一抽样定理 一、实验目的 所谓抽样。就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 二、功能模块介绍 1.DDS 信号源:位于实验箱的左侧 (1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。 (2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010 对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。 (3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。 (4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。 2.抽样脉冲形成电路模块 它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。P09 测试点可用于抽样脉冲的连接和测量。该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。 3.PAM 脉冲调幅模块 它采用模拟开关CD4066 实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。因此,本模块实现的是自然抽样。在32TP01 测试点可以测量到已调信号波形。 调制信号和抽样脉冲都需要外接连线输入。已调信号经过PAM 模拟信道(模拟实际信道的惰性)的传输,从32P03 铆孔输出,可能会产生波形失真。PAM 模拟信道电路示意图如下图所示,32W01(R1)电位器可改变模拟信道的传输特性。

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

通信原理实验报告一

中央民族大学实验报告 学生姓名:马丽娜学号:0938087 专业班级:09电子班 实验类型:□√验证□综合□设计□创新实验日期:2012年3月21日实验成绩: 指导老师:邹慧兰 一、实验项目名称 模拟锁相环模块 二、实验目的 1、熟悉模拟锁相环的基本工作原理 2、掌握模拟字锁相环的基本参数及设计 三、实验基本原理 模拟锁相环模块在通信原理综合实验系统中可作为一个独立的模块进行测试。在系统256KHz时钟锁在发端的256KHz的时钟上,来获得系统的同步时钟,如HDB3接受的同步时钟以及后续电路同步时钟。 该模块主要由模拟锁相环UP01(MC4066)、数字分频器UP02(74LS161)、D触发器UP04(74LS74)、环路滤波器和运放UP03(TEL2702)及阻容器件构成的输入带通滤波器(中心频率:256KHz)组成。在UP01内部有一个振荡器与一个高速鉴相器组成。

该模拟锁相环的框图见图2.1.1。因来自发端信道的HDB3码为归零码,归零码中含有256KHz时钟分量,经UP03B构成中心频率为256KHz有源由带通滤波器后,滤出256KHz时钟信号,该信号再通过UP03A放大,然后经UP04A和UP04B两个除二分频器(共四分频)变为64KHz信号,进入UP01鉴相器输入A脚;VCO输出的512KHz 输出信号经UP02进行八分频变为64KHz信号,送入UP01的鉴相输入B脚;经UP01内部鉴相器鉴相之后的误差控制信号经环路滤波器送入UP01的压控振荡器输入端;WP01可以改变模拟锁相环的环路参数。正常时,VCO锁定在外来的256KHz频率上。模拟锁相环模块各跳线开关功能如下: 1、跳线开关KP01用于选择UP01的鉴相输出。当KP01设置于1_2时(左端),选择异或门鉴相输出,环路锁定时TPP03、TPP05输出信号将存在一定相差;当KP01设置于2_3时(右端),选择三态门鉴相输出,环路锁定时TPP03、TPP05将不存在相差,调整电位器WP01可以改变模拟锁相环的环路参数。 2、跳线开关KP021是用于选择输入锁相信号,当KP021设置于1_2时(HDB3:左端),输入信号来自HDB3编码模块的HDB3码信号;当KP021设置于2_3时(TEST:右端)选择外部的测试信号(J007输入),此信号用于测量该模拟锁相环模块的性能。 在该模块中,各测试点的定义如下: 1、TPP01:256KHz带通滤波器输出 2、TPP02:隔离放大器输出 3、TPP03:鉴相器A输入信号(64KHz) 4、TPP04:VCO输出信号(512KHz) 5、TPP05:鉴相器B输入信号(64KHz) 6、TPP06:环路滤波器输出 7、TPP07:锁定指示检测(锁定时为高电平) 以上测试点通过JP01测试头引出,JPO1的排列如下图所示

通信原理实验报告资料

CPLD可编程数字信号发生器实验 一、实验目的 1、熟悉各种时钟信号的特点及波形。 2、熟悉各种数字信号的特点及波形。 二、实验内容 1、熟悉CPLD可编程信号发生器各测量点波形。 2、测量并分析各测量点波形及数据。 三、实验仪器 1、通信原理 0 号模块一块 2、示波器一台 四、实验原理 1、CPLD数字信号发生器,包括以下五个部分: ①时钟信号产生电路; ②伪随机码产生电路; ③帧同步信号产生电路; ④ NRZ码复用电路及码选信号产生电路; ⑤终端接收解复用电路。 2、24位NRZ码产生电路 本单元产生NRZ信号,信号速率可根据输入时钟不同自行选择,帧结构如下图所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16路为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号。LED亮状态表示1码,熄状态表示0码。

五、实验框图 六、实验步骤 1、观测时钟信号输出波形。 信号源输出两组时钟信号,对应输出点为“CLK1”和“CLK2”,拨码开关S4的作用是改变第一组时钟“CLK1”的输出频率,拨码开关S5的作用是改变第二组时钟“CLK2”的输出频率。拨码开关拨上为1,拨下为0,拨码开关和时钟的对应关系如下表所示 按如下方式连接示波器和测试点:

启动仿真开关,开启各模块的电源开关。 1)根据表1-2改变S4,用示波器观测第一组时钟信号“CLK1”的输出波形;2)根据表1-2改变S5,用示波器观测第二组时钟信号“CLK2”的输出波形。 2、用示波器观测帧同步信号输出波形。 信号源提供脉冲编码调制的帧同步信号,在点“FS”输出,一般时钟设置为2.048M、256K,在后面的实验中有用到。 按如下方式连接示波器和测试点: 启动仿真开关,开启各模块的电源开关。 将拨码开关S4分别设置为“0100”、“0111”或别的数字,用示波器观测“FS”的输出波形。 3、用示波器观测伪随机信号输出波形 伪随机信号码型为111100010011010,码速率和第一组时钟速率相同,由S4控制。 按如下方式连接示波器和测试点: 4、观测NRZ码输出波形 信号源提供24位NRZ码,码型由拨码开关S1,S2,S3控制,码速率和第二组时钟速率相同,由S5控制。 按如下方式连接示波器和测试点: 示波器通道目标测试点说明 通道1PN PN序列 启动仿真开关,开启各模块的电源开关。 1)将拨码开关S1,S2,S3设置为“01110010 11001100 10101010”,S5设为“1010”,用示波器观测“NRZ”输出波形。`

数字通信原理实验一、二、四报告

中南大学 数字通信原理实验报告

目录 实验一:数字基带信号 (3) 实验二:数字调制 (7) 实验四:数字调解和眼图 (11)

实验内容:实验一、实验二、实验四 实验一:数字基带信号 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB 3 码的编码规则。 3、掌握从HDB 3 码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB 3 (AMI)编译码集成电路CD22103。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高 密度双极性码(HDB 3)、整流后的AMI码及整流后的HDB 3 码。 2、用示波器观察从HDB 3 码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB 3 、AMI译码输出波形。 三、实验步骤 本实验使用数字信源单元和HDB3编译码单元。 1.熟悉数字信源单元和HDB3编译码单元的工作原理。接好电源线,打开电源开关。 2.用示波器观察数字信源单元上的各种信号波形。 用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察: (1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄); (2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。 3.用示波器观察HDB 3 编译单元的各种波形。

通信原理实验三

通信原理实验报告 脉 冲 编 码 调 制 与 解 调 班级:电信0803 姓名:韩淑娟 学号:2008001247

脉冲编码调制与解调实验 一、实验目的 1、掌握脉冲编码调制与解调的原理。 2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。 3、了解脉冲编码调制信号的频谱特性。 4、了解大规模集成电路TP3067的使用方法。 二、实验内容 1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。 2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。 3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。 4、观察脉冲编码调制信号的频谱。 三、实验仪器 1、信号源模块 2、模拟信号数字化模块 3、频谱分析模块(可选) 4、终端模块(可选) 5、20M双踪示波器一台 6、音频信号发生器(可选)一台 7、立体声单放机(可选)一台 8、立体声耳机(可选)一副 9、连接线若干 四、实验原理 先规定模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。如果发送端用预的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。 脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。脉码系统原理框图如图3-1所示。 PCM主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。国际标准化的PCM码组(电话语音)是用八位码组代表一个抽样值。编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始语音信号的频带限制在300-3400Hz左右,所以预滤波会引入一定的频带失真。

相关文档
最新文档