发酵法生产核黄素菌种和工艺

发酵法生产核黄素菌种和工艺

发酵法生产核黄素菌种和工艺

维生素B2(Vitamin B2)又称核黄素,是一种重要的维生素。 它是人体细胞中促进氧化还原的重要物质之一,还参与体内糖、蛋白质、脂肪的代谢,并有维持正常视觉机能的作用,人体如果缺乏核黄素,就会影响体内生物氧化的进程而发生代谢障碍,继而出现口角炎、眼睑炎、结膜炎、唇炎、舌炎、耳鼻粘膜干燥、皮肤干燥脱屑等。

2004年我国维生素B2出口1633吨,出口金额2433万美元。主要出口国为日本、美国、德国、韩国、西班牙、英国等。低含量饲料级VB2产品主要出口荷兰与美国。而高含量(96%和98%)主要销往印度、美国和德国。

国外的主要生产商与提供商为美国的罗氏、德国的巴斯夫与日本的武田等,而我国的主要生产商为湖北广济药业与上海迪赛诺两家,只有他们能够提供高质量的维生素B2,广济药业为发酵法生产,专业生产维生素B2及衍生产品。而上海迪赛诺主要用合成法生产。

未来的需求主要是在饲料级产品,欧洲与北美需求增长适中,中欧、俄罗斯,特别是亚洲需求旺盛。国内肉制品行业现在过多依赖这些饲料添加剂。

目前,维生素B2的市场缺口为2000-3000吨,且市场需求增长率为14-15%,而广济药业的生产能力每年1300吨,上海迪赛诺为每年700吨,最近完成检修扩产,再进一步扩产还没有计划。在此时期生产维生素B2进入市场,发展空间巨大,利润丰厚。由于市场前景广阔,德国BASF公司正在扩产。

我们的技术:

生产菌:枯草芽胞杆菌(Bacillus subtilis)

发酵水平:20-25g/L

发酵时间:70小时

提取率:80-90%

产品规格:98% 与 80%

谷氨酸生产工艺

生物工程专业综合实训 (2016 年 11 月

谷氨酸生产工艺 摘要: 谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。现代生产谷氨酸的工艺主要是利用微生物发酵提取而来。不同的发酵方法和不同的发酵条件会造成产量的很大不同。本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法。关键词:谷氨酸;发酵;工艺;等电点。

引言 谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,有增香作用。甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

一、谷氨酸简介 谷氨酸一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L -谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在的。多种食品以及人体内都含有谷氨酸盐,它即是蛋白质或肽的结构氨基酸之一,又是游离氨基酸,L型氨基酸美味较浓。 L-谷氨酸又名“麸酸”或写作“夫酸”,发酵制造L-谷氨酸是以糖质为原料经微生物发酵,采用“等电点提取”加上“离子交换树脂”分离的方法而制得。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用, 但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。

年产2万吨谷氨酸发酵生产的初步设计

年产2万吨谷氨酸发酵生产的初步设计

第一章总论 一、设计项目: (1)设计课题:年产2万吨谷氨酸发酵工厂的初步设计 (2)厂址:某市 (3)重点工段:糖化 (4)重点设备:糖化罐 二、设计范围: (1)厂址选择及全厂概况介绍(地貌、资源、建设规模、人员);(2)产品的生产方案、生产方法、工艺流程及技术条件的制定;(3)重点车间详细工艺设计、工艺论证、设备选型及计算;(4)全厂的物料衡算; (5)全厂的水、电、热、冷、气的衡算; (6)车间的布置和说明; (7)重点设备的设计计算; (8)对锅炉、电站、空压站等提出要求及选型; (9)对生产和环境措施提出可行方案。 三、要完成的设计图纸: (1)全厂工艺流程图一张; (2)重点车间工艺流程图一张; (3)重点车间设备布置立面图一张;

(4)重点车间设备布置平面图一张; (5)重点设备装配图一张。 四、设计依据: (1)批准的设计任务书和附件可行性报告,以及可靠的设计基础资料。 (2)我国现行的有关设计和安装的设计规范和标准 (3)广东轻工职业技术学院食品系下达的毕业设计任务书 五、设计原则: (1)设计工作要围绕现代化建设这个中心,为这个中心服务。首先要有加速社会主义四个现代化早日实现的明确指导思想,做到精心设计,投资省,技术新,质量好,收效快,收回期短,使设计工作符合社会主义经济建设的总原则。 (2)要学会查阅文献,收集设计必要的技术基础资料,要善于从实际出发去分析研究问题,加强技术经济的分析工作。(3)要解放思想,积极采用技术,力求设计上具有现实性和先进性,在经济上具有合理性,尽可能做到能提高生产率,实现机械化和自动化,同时兼顾社会和环境的效益。 (4)设计必须结合实际,因地制宜,体现设计的通用性和独特性相结合,工厂生产规模、产品品种的确定,要适应国民经济的需求,要考虑资金的来源,建厂的地点、时间、三废综合

发酵工艺流程

发酵工艺标准操作流程 (SOP) 一生产前准备 每次生产前按品种配方将所需原料称重准备齐全,并确认生产原料库存量,保证原料库存量足够下次生产所需、 二生产前检查 1检查蒸汽、压缩空气、冷却水进出的管路就是否畅通,所有阀门就是否良好,并关闭所有阀门、 2检查电路、控制柜、开关的状态,确保控制柜运行正常、 3检查空压机油表油表及轴承、三角带、气缸等就是否正常,确保空压机运行正常、 4检查发酵罐搅拌减速机的油量及密封轴降温水就是否正常、 三总过滤器灭菌 当蒸汽总管路上的压力为0、2-0、25MPa时,打开总过滤器进气阀输入蒸汽,同时打开出气阀的跑分阀、排气阀、排污阀,当三个阀均排出蒸汽时,调整进气阀、排污阀,稳定总过滤器压力0、15-0、2MPa,此时打开压力表下跑分,计时灭菌2-2、5小时、灭菌结束后启动空压机,当空气输入管道压力大于总过滤器压力时,关闭蒸汽阀,打开空气阀,将空气出入总过滤器,然后调整进气阀与排污阀,稳定总过滤器压力在0、15-0、2MPa,保持通气在15-20小时,当出气阀跑分与排污阀放出的空气为干燥空气时,完成灭菌、 四分过滤器灭菌 1当蒸汽管路压力为0、2-0、25MPa时,打开蒸汽过滤器的进气阀与排污阀,当蒸汽管路中无蒸汽凝结液后,再将蒸汽输入空气管路,然后打开分过滤器的进气阀、排污阀及出气阀上的跑分,当所有阀门均有蒸汽排出后,调整进气与排污阀,就是压力稳定在0、11-0、15MPa,计时灭菌30-35分钟、灭菌结束后,关闭蒸汽过滤器进出气阀、排污阀,并立即将空气输入预过滤器,使空气通过预过滤器进入到分过滤器,再调整分过滤器排污阀使压力稳定在0、11-0、15MPa,备用、

第三章 工业发酵菌种

第三章发酵工业微生物菌种 微生物发酵工业是利用微生物的生长和代谢活动生产各种有用物质的现代工业,它是以培养微生物进行发酵为主。而在这个过程中,优良的菌种是一个现代化的发酵工业必不可少的,最为重要的环节。其他如先进的生产工艺和先进的设备,则是为了更充分发挥优良菌种的性能而设计的。 第一节工业微生物菌种的分离和选育 第二节工业微生物菌种的改良 第三节发酵工业中菌种的退化 第四节工业微生物菌种的保藏 第五节工业微生物菌种的扩大培养 第一节工业微生物菌种的分离和选育 一般来说,从自然界直接分离到的菌种,不能立即适应实际的生产需要,只有通过选育,才能提高代谢产物的产量、改进产品质量直至简化工艺。在微生物发酵工业中生产菌种的选育方法有:?微生物菌种的分离和选育 ?菌种的改良 第一节工业微生物菌种的分离和选育 一、微生物菌种的选育 二、微生物常规育种 三、根据代谢的调节机理选择高产突变菌株 一、微生物菌种的选育 从自然界分离新菌种一般包括以下几个步骤: 1、采样 2、增殖培养 3、纯种分离 4、性能测定 1、采样 采样地点的确定要根据筛选的目的、微生物的分布概况及菌种的主要特征与外界环境关系等,进行综合、具体地分析来决定。如果不了解某种生产菌的具体来源,一般可以从土壤中分离。 ①、确定选好地点 取离地面5——15cm处的土壤几十克,盛入预先消毒好的牛皮纸袋或塑料袋中,扎好,记录采样时间、地点、环境情况等,以备查考。 ②、尽快分离 一般土壤中芽孢杆菌、放线菌和霉菌孢子忍耐不良环境能力较强,不太容易死亡。但一般应尽快分离。

③、酵母菌或霉菌类微生物采样 酵母菌或霉菌类微生物,它们对碳水化合物的需要量比较多,一般又喜欢偏酸环境,所以在普通植物花朵、瓜果种子及腐植质等上面比较多。 2、增殖培养 收集到的样品,如含有所需的菌种较多,可直接进行分离。如果样品含有所需要的菌种很少,就要设法增加该菌种的数量,进行增殖(富集)培养。 富集培养: 富集培养就是指利用不同微生物之间的生命活动特点的不同,制定出特定的环境条件,使仅仅适应于这种条件的微生物旺盛生长,从而使其在群落中的数量大大增加的微生物的分离方法。人们能够利用这种方法很容易地从自然界中分离到所需要的特定微生物。富集的条件可根据所需分离的微生物特点从物理、化学、生物及综合多个方面进行选择,如温度、紫外线、高压、光照、氧气、营养等许多方面。 3、纯种分离 通过增殖培养还不能得到微生物单一的纯种,有必要进行分离纯化,来获得纯种。 这是因为生产菌种在自然条件下通常是与各种菌混杂在一起的。 纯种的分离方法很多,常用的有划线法和稀释法。 ①、划线法 ①、划线法——是将含有菌样的样品在固体培养基表面作有规则的划线培养。 ?扇形划线法、 ?方格划线法 ?平行划线法等 菌样经过多次从点到线的稀释,最后经培养得到单菌落。 ②、稀释法。 是通过不断地稀释使被分离的样品分散到最低限度,然后吸取一定量注入平板,使每一微生物都远离其他微生物而单独生长成为菌落,从而得到纯种 ③、两种方法的比较 ③、两种方法的比较 ?划线法简单较快; ?稀释法在培养基上分离的菌落单一均匀,获得纯种的机率大,特别适宜于分离具有蔓延性的微生物。 为了提高筛选的工作效率,除增殖培养时应控制增殖条件外,在纯种分离时,培养条件对筛选结果影响也很大,一般可通过: ?控制营养成分 ?调节培养基PH ?添加抑制剂

发酵工艺流程

发酵工艺标准操作流程(SOP) 生产前准备 每次生产前按品种配方将所需原料称重准备齐全,并确认生产原料库存量,保证原料库存量 足够下次生产所需. 二生产前检查 1检查蒸汽、压缩空气、冷却水进出的管路是否畅通, 所有阀门是否良好,并关闭所有阀门2检查电路、控制柜、开关的状态, 确保控制柜运行正常. 3检查空压机油表油表及轴承、三角带、气缸等是否正常,确保空压机运行正常. 4检查发酵罐搅拌减速机的油量及密封轴降温水是否正常. 三总过滤器灭菌 当蒸汽总管路上的压力为0.2-0.25MPa 时,打开总过滤器进气阀输入蒸汽,同时打开出气阀的跑分阀、排气阀、排污阀,当三个阀均排出蒸汽时,调整进气阀、排污阀,稳定总过滤器压力0.15-0.2MPa,此时打开压力表下跑分,计时灭菌2-2.5小时?灭菌结束后启动空压机,当空气输入管道压力大于总过滤器压力时,关闭蒸汽阀,打开空气阀,将空气出入总过滤器,然后调整进气阀与排污阀,稳定总过滤器压力在0.15-0.2MPa, 保持通气在15-20 小时,当出气阀跑分和排污阀放出的空气为干燥空气时,完成灭菌. 四分过滤器灭菌 1 当蒸汽管路压力为0.2-0.25MPa 时,打开蒸汽过滤器的进气阀和排污阀,当蒸汽管路中无蒸汽凝结液后,再将蒸汽输入空气管路,然后打开分过滤器的进气阀、排污阀及出气阀上的跑分,当所有阀门均有蒸汽排出后,调整进气与排污阀,是压力稳定在0.11-0.15MPa, 计时灭菌30-35 分钟.灭菌结束后,关闭蒸汽过滤器进出气阀、排污阀,并立即将空气输入预过滤器,使空气通过预过滤器进入到分过滤器,再调整分过滤器排污阀使压力稳定在0.11-0.15MPa,备用.

(完整版)谷氨酸发酵

1)生物素营养缺陷型 ?作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与 了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏. ?控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵 初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换. 2)油酸营养缺陷型 ?作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少 到正常量的1/2左右. ?控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换. (3)添加表面活性剂 ?添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨 酸. ?机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细 胞膜. ?关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在 下进行分裂,形成产酸型细胞. (4)添加青霉素 ?机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作 用下受损,向外泄露谷氨酸. ?控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不 能合成完整的细胞壁,完成细胞功能的转换. 谷氨酸发酵强制控制工艺 ?为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取 “强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法. ?控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料 中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。谷氨酸发酵 ? 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h. 措施:接种量和发酵条件控制使适应期缩短. ? 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧 下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h. 措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃ ? 3.菌体生长停止期:谷氨酸合成. 措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃. ? 4.发酵后期:菌体衰老,糖耗慢,残糖低. 措施:营养物耗尽酸浓度不增加时,及时放罐. 发酵周期一般为30h. 二、谷氨酸发酵的生化过程

谷氨酸发酵生产工艺

目录1.谷氨酸发酵生产工艺简介 1.1工艺流程 1.2工艺参数 1.3工艺要求 2串级控制系统特点与分析 2.1串级系统特点 2.2串级控制结构框图及分析 3控制方案 3.1总体方案 3.2系统放图 3.3待检测点的控制系统流程图 4仪表的选型 4.1热交换器 4.2仪表清单 5控制算法选择 5.1控制规律 5.2调节器正反作用的选择 6总结 7参考文献 附图

串级控制系统-----两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。 例:加热炉出口温度与炉膛温度串级控制系统 1. 基本概念即组成结构

串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。 前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。 整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。 在该反应中,主要控制的指标是釜温。但由于测量元件的测量滞后,以及由于测量套管插入其内,在套管的外表面有反应发生,很容易造成釜温的假象。因此在升温-恒温控制的过程中需要热水和冷水的交换切换,以便使谷氨酸发酵充分反应,提高产品质量。 主、副变量,主、副控制器(调节器),主、副对象,主、副检测变送器,主、副回路。 作用在主、副对象上的干扰分别为一、二次干扰 系统特点及分析 * 改善了过程的动态特性,提高了系统控制质量。 * 能迅速克服进入副回路的二次扰动。 * 提高了系统的工作频率。 * 对负荷变化的适应性较强 串级控制系统的特点:

谷氨酸发酵车间的物料衡算

工艺计算 生产方法:以工业淀粉为原料、双酶法糖化、流加糖发酵,低温浓缩、等电提取。主要技术指标: 淀粉液化工艺参数: 糖化工艺参数:

培养基配方: 灭菌各参数:

一、谷氨酸发酵车间的物料衡算 首先计算生产1000kg 纯度为100%的味精需耗用的原材料以及其他物料量。 (一)、发酵液量 设发酵液初糖和流加高浓糖最终发酵液总糖浓度为180kg/ ,则发酵液量为: )(0.8% 124%99%95%601801000 3 1m V =????= 式中 180——发酵培养基终糖浓度(kg/) 60%——糖酸转化率 95%——谷氨酸转化率 99%——除去倒罐率1%后的发酵成功率 124%——味精对谷氨酸的精制产率 (二)、发酵液配制需水解糖量,以纯糖计算: )(136017011kg V G =?= (三)、二级种液量: ) (4.0%53 12m V V == (四)、二级种子培养液所需水解糖量: )(164022kg V G == 式中 40——二级种液含糖量(kg/) (五)、生产1000kg 味精需水解糖总量: )(137616136021kg G G G =+=+= (六)、耗用淀粉原料量: 理论上,100kg 淀粉转化生成葡萄糖量为111kg ,故耗用淀粉量为: )(6.1572%)111%5.98%80(G kg G =??÷=淀粉 式中 80%—淀粉原料含纯淀粉量 98.5%—淀粉糖化转化率 (七)、液氨耗用量: 二级种液耗液氨量:2.4V 2=0.96(kg ) 发酵培养基耗液氨量:20V 1=160(kg ) 共耗液氨量:160+0.96=161.0(kg ) (八)、磷酸氢二钾耗量:

菌种的发酵工艺

第一章绪论 第一节概述 工业发酵是利用微生物的生长和代谢活动来生产各种有用物质的一门现代工业,而现代发酵工程则是指直接把微生物(或动植物细胞)应用于工业生产的一种技术体系,是在化学工程中结合了微生物特点的一门学科。因而发酵工程有时也称作微生物工程。在本章中,我们将对发酵的基本概念,工业上常用的微生物及其生长代谢特性,以及发酵工程原理作—简单介绍。 一、基本概念 1,发酵一词的来源 发酵现象早巳被人们所认识,但了解它的本质却是近200年来的事。英语中发酵一词fermentation是从拉丁语fervere派生而来的,原意为“翻腾”,它描述酵母作用于果汁或麦芽浸出液时的现象。沸腾现象是由浸出液中的糖在缺氧条件下降解而产生的二氧化碳所引起的。在生物化学中把酵母的无氧呼吸过程称作发酵。我们现在所指的发酵早已赋予了不同的含义。发酵是生命体所进行的化学反应和生理变化,是多种多样的生物化学反应根据生命体本身所具有的遗传信息去不断分解合成,以取得能量来维持生命活动的过程。发酵产物是指在反应过程当中或反应到达终点时所产生的能够调节代谢使之达到平衡的物质。实际上,发酵也是呼吸作用的一种,只不过呼吸作用最终生成CO2和水,而发酵最终是获得各种不同的代谢产物。因而,现代对发酵的定义应该是:通过微生物(或动植物细胞)的生长培养和化学变化,大量产生和积累专门的代谢产物的反应过程。 2,发酵的定义 (1)狭义“发酵”的定义 在生物化学或生理学上发酵是指微生物在无氧条件下,分解各种有机物质产生能量的一种方式,或者更严格地说,发酵是以有机物作为电子受体的氧化还原产能反应。如葡萄糖在无氧条件下被微生物利用产生酒精并放出二氧化碳。同时获得能量,丙酮酸被还原为乳酸而获得能量等等。 (2)广义“发酵”的定义 工业上所称的发酵是泛指利用生物细胞制造某些产品或净化环境的过程,它包括厌氧培养的生产过程,如酒精、丙酮丁醇、乳酸等,以及通气(有氧)培养的生产过程,如抗生素、氨基酸、酶制剂等的生产。产品即有细胞代谢产物,也包括菌体细胞、酶等。 3,发酵工程(Fermentation Engineering)的定义 应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会性服务的一门科学。 二、发酵的特点 发酵和其他化学工业的最大区别在于它是生物体所进行的化学反应。其主要特点如下: 1,发酵过程一般来说都是在常温常压下进行的生物化学反应,反应安全,要求条件也比较简单。 2,发酵所用的原料通常以淀粉、糖蜜或其他农副产品为主,只要加入少量的有机和无机氮源就可进行反应。微生物因不同的类别可以有选择地去利用它所需要的营养。基于这—特性,可以利用废水和废物等作为发酵的原料进行生物资源的改造和更新。 3,发酵过程是通过生物体的自动调节方式来完成的,反应的专一性强,因而可以得到较为单—的代谢产物。 4,由于生物体本身所具有的反应机制,能够专一性地和高度选择性地对某些较为复杂的化合物进行特定部位地氧化、还原等化学转化反应,也可以产生比较复杂的高分子化合物。 5,发酵过程中对杂菌污染的防治至关重要。除了必须对设备进行严格消毒处理和空气过滤外,反应必须在无菌条件下进行。如果污染了杂菌,生产上就要遭到巨大的经济损失,要是感染了噬菌体,对发酵就会造成更大的危害。因而维持无菌条件是发酵成败的关键。 6,微生物菌种是进行发酵的根本因素,通过变异和菌种筛选,可以获得高产的优良菌株并使生产设备得到充分

味精的生产工艺流程简介教程文件

1味精的生产工艺流程简介 味精的生产一般分为制糖、谷氨酸发酵、中和提取及精制 等4个主要工序。 1.1液化和糖化 因为大米涨价,目前大多数味精厂都使用淀粉作为原材 料。淀粉先要经过液化阶段。然后在与B一淀粉酶作用进入糖 化阶段。首先利用一淀粉酶将淀粉浆液化,降低淀粉粘度并 将其水解成糊精和低聚糖,应为淀粉中蛋白质的含量低于原来 的大米,所以经过液化的混合液可直接加入糖化酶进入糖化阶 段,而不用像以大米为原材料那样液化后需经过板筐压滤机滤 去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙, 整个液化时间约30min。一定温度下液化后的糊精及低聚糖在 糖化罐内进一步水解为葡萄糖。淀粉浆液化后,通过冷却器降 温至60℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60℃左右,PH值4.5,糖化时间18-32h。糖化结束后,将糖化罐加热至80 85℃,灭酶30min。过滤得葡萄糖液,经过压滤 机后进行油水分离(一冷分离,二冷分离),再经过滤后连续消 毒后进入发酵罐。 1.2谷氨酸发酵发酵 谷氨酸发酵过程消毒后的谷氨酸培养液在流量监控下进入谷氨酸发酵罐,经过罐内冷却蛇管将温度冷却至32℃,置入 菌种,氯化钾、硫酸锰、消泡剂及维生素等,通入消毒空气,经一

段时间适应后,发酵过程即开始缓慢进行。谷氨酸发酵是一个 复杂的微生物生长过程,谷氨酸菌摄取原料的营养,并通过体 内特定的酶进行复杂的生化反应。培养液中的反应物透过细胞 壁和细胞膜进入细胞体内,将反应物转化为谷氨酸产物。整个 发酵过程一般要经历3个时期,即适应期、对数增长期和衰亡期。每个时期对培养液浓度、温度、PH值及供风量都有不同的 要求。因此,在发酵过程中,必须为菌体的生长代谢提供适宜的生长环境。经过大约34小时的培养,当产酸、残糖、光密度等指标均达到一定要求时即可放罐。 1.3 谷氨酸提取与谷氨酸钠生产工艺 该过程在提取罐中进行。利用氨基酸两性的性质,谷氨酸 的等电点在为pH3.0处,谷氨酸在此酸碱度时溶解度最低,可经长时间的沉淀得到谷氨酸。粗得的官司谷氨酸经过于燥后分 装成袋保存。 1.4谷氨酸钠的精制 谷氨酸钠溶液经过活性碳脱色及离子交换柱除去C a 、 Mg 、F e 离子,即可得到高纯度的谷氨酸钠溶液。将纯净的 谷氨酸钠溶液导入结晶罐,进行减压蒸发,当波美度达到295 时放入晶种,进入育晶阶段,根据结晶罐内溶液的饱和度和结 晶情况实时控制谷氨酸钠溶液输入量及进水量。经过十几小时 的蒸发结晶,当结晶形体达到一定要求、物料积累到80%高度时,将料液放至助晶槽,结晶长成后分离出味精,送去干燥和筛

各种氨基酸的生产工艺

各种氨基酸的生产工艺 1、谷氨酸 (1)等电离交工艺方法一一从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0- 3.2),温度降到10 以下沉淀,离心分离谷氨酸,再将上清 液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗 脱下来的高流分再用硫酸调pH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。 该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。 ⑵连续等电工艺一一将谷氨酸发酵液适当浓缩后控制40 C左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40 C进行结晶。 该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。 (3) 发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行 超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20?3.25,然后进入常温的 等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整 pH值至4.5?7,蒸发、浓缩、再在第三调酸罐中调pH值至 3.20?3.25后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。 (4) 水解等电点法 发酵液-一浓缩(78.9kPa , 0.15MPa 蒸汽)----盐酸水解(130 C, 4h ) 一过滤-- ---滤液脱色-----浓缩-----中和,调pH至3.0-3.2 ( NaOH或发酵液) 一-低温放置, 析晶---- 谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑸低温等电点法 发酵液-----边冷却边加硫酸调节PH4.0-4.5----- 加晶种,育晶2h-----边冷却边加硫酸 调至pH3.0-3.2——冷却降温——搅拌16h——4 C 静置4h——离心分离—— --谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑹直接常温等电点法 发酵液-----加硫酸调节PH4.0-4.5----- 育晶2-4h----- 加硫酸调至pH3.5-3.8------ 育 晶2h------加硫酸调至pH3.0-3.2------ 育晶2h------冷却降温------搅拌16-20h------ 沉淀2-4h ------- 谷氨酸晶体 此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。 2、L-亮氨酸 (1) 浓缩段原料:蒸汽将一次母液通入浓缩罐内,通入蒸汽,温度120度,气压-0.09Mpa ,浓缩时间6h,结晶。 终点产物:结晶液(去一次中和段) (2 ) 一次中和段辅料:硫酸,纯水结晶液进入一次中和罐,通入硫酸,纯水,温度80,中和时间4h,过滤

发酵工艺流程

发酵工艺标准操作流程 (SOP) 一生产前准备 每次生产前按品种配方将所需原料称重准备齐全,并确认生产原料库存量,保证原料库存量足够下次生产所需. 二生产前检查 1检查蒸汽、压缩空气、冷却水进出的管路是否畅通,所有阀门是否良好,并关闭所有阀门. 2检查电路、控制柜、开关的状态,确保控制柜运行正常. 3检查空压机油表油表及轴承、三角带、气缸等是否正常,确保空压机运行正常. 4检查发酵罐搅拌减速机的油量及密封轴降温水是否正常. 三总过滤器灭菌 当蒸汽总管路上的压力为0.2-0.25MPa时,打开总过滤器进气阀输入蒸汽,同时打开出气阀的跑分阀、排气阀、排污阀,当三个阀均排出蒸汽时,调整进气阀、排污阀,稳定总过滤器压力0.15-0.2MPa,此时打开压力表下跑分,计时灭菌2-2.5小时.灭菌结束后启动空压机,当空气输入管道压力大于总过滤器压力时,关闭蒸汽阀,打开空气阀,将空气出入总过滤器,然后调整进气阀与排污阀,稳定总过滤器压力在0.15-0.2MPa,保持通气在15-20小时,当出气阀跑分和排污阀放出的空气为干燥空气时,完成灭菌. 四分过滤器灭菌 1当蒸汽管路压力为0.2-0.25MPa时,打开蒸汽过滤器的进气阀和排污阀,当蒸汽管路中无蒸汽凝结液后,再将蒸汽输入空气管路,然后打开分过滤器的进气阀、排污阀及出气阀上的跑 分,当所有阀门均有蒸汽排出后,调整进气与排污阀,是压力稳定在0.11-0.15MPa,计时灭菌30-35分钟.灭菌结束后,关闭蒸汽过滤器进出气阀、排污阀,并立即将空气输入预过滤器,使空气通过预过滤器进入到分过滤器,再调整分过滤器排污阀使压力稳定在0.11-0.15MPa,备用.

发酵剂的制备

发酵剂的制备 (长春师范大学生命科学学院生物技术班) 摘要:发酵剂是指用于酸奶、酸牛乳酒、奶油、干酪和其他发酵产品生产的细菌以及其他微生物的培养物。当发酵剂接种到处理过程的原料中,在一定条件下繁殖,其代谢产物使发酵乳制品具有一定酸度、滋味、香味和变稠等特性。菌种活化将保藏状态的菌种放入适宜的培养基中培养,逐级扩大培养是为了得到纯而壮的培养物,即获得活力旺盛的、接种数量足够的培养物。菌种发酵有一般需要2-3代的复壮过程,因为保存时的条件往往和培养时的条件不相同,所以要活化,让菌种逐渐适应培养环境。通过菌的增殖培养、高密度发酵、真空冷冻及干燥等工艺技术的研究制备出发酵剂。 关键词:麦麸培养基糖化酶干酵母霉菌细菌 1 前言 麦麸,即麦皮,小麦加工面粉副产品,麦黄色,片状或粉状。主要是纤维、糊粉、一些矿物质和维生素性味甘凉,可收敛汗液。富含纤维素和维生素,主要用途有食用、入药、饲料原料、酿酒等。 纯净的酒精水溶液几乎是没有香味的,而一般的白酒具有独特的香、味、色。这是因为白酒里除了含有酒精之外,还含有糖类、甘油、氨基酸、有机酯和多种维生素等。所以闻起来就有特殊的香味了,而又因酿造所采用的原料不同,有的是高粱,有的是大米;所选用的糖化发酵剂不同,有的是大麦和豌豆制成的中温大曲,有的是小麦制成的中温大曲或高温大曲,有的是大米制成的小曲、麸皮和各种不同微生物制成麸曲等,因此,酒的香味也不同。麸曲是采用纯种霉菌菌种,以麸皮为原料经人工控制温度和湿度培养而成的,它主要起糖化作用。酿酒时需要与酵母菌混合进行酒精发酵,从而得到大量的酒精,制作麦麸培养基进行霉菌的培养,然后与先前诱变得到的淀粉产生菌按一定的比例混合,再加入糖化酶,干酵母,配置得到的酒曲,与原料混合后进行酒精发酵。 2 材料与方法 2.1 材料与仪器 诱变得到的细菌,霉菌菌种12.96g,糖化酶21.6g,酵母,细菌菌种8.64g 三角瓶,高压蒸汽灭菌锅,超净工作台,恒温培养箱,电子秤 2.2 实验步骤 1.菌体的培养: (1)麦麸培养基的制备 将适量的麦麸用水混合,并且搅拌均匀(麦麸培养基的含水量为60%,最终得到的培养基,用手握紧时,指缝间有水渗出即可)。 (2)接种霉菌和细菌 准备两只干净的三角瓶,装入适量的麦麸培养基。在超净工作台上,向两瓶麦麸培养基里分别接入霉菌的菌种和细菌的菌种,将霉菌至于霉菌培养箱中培养 4-5天,将细菌放入恒温培养箱中适温培养4-5天。 2.酒曲的制备: (1)将培养好的霉菌和细菌从恒温培养箱中取出来,将培养基进行风干(不可高温烘干,会造成培养基中菌体死亡);

菌种的选育

第一章菌种选育 第一节工业常用微生物及要求 一、常见微生物 (一)细菌(bacteria) 发酵工业中常用的细菌主要是杆菌,主要有: Acetobacter)醋杆菌属( Lactobacillus)乳杆菌属( Bacillus):α-淀粉酶,蛋白酶,肌苷、鸟苷等核苷。其中最为重要的是枯草芽孢杆菌杆菌属(Bacillus subtilis)( (Brevibacterium):谷氨酸短杆菌属 Corynebacterium):谷氨酸棒杆菌属((二)放线菌(actinomyces) 属原核微生物(有菌丝体,无横隔,不具完整的核。)最大的经济价值在于产生多种抗生素(antibiotic)。 Streptomyces):红,金,土,氯,链霉素链霉菌(Micromonospora):庆大霉素小单孢菌属((三)霉菌(mould) 亦称丝状真菌(不是分类学上的名词,凡在营养基质上形成绒毛状,网状或絮状菌丝的真菌统称霉菌。) Aspergillus)曲霉属(1. A. niger)产蛋白酶,淀粉酶,果酸酶,变异菌株产柠檬黑曲霉( 酸 A. oryzae)产淀粉酶,蛋白酶,酿酒的糖化曲和酱油曲米曲霉( A. flavus)产黄曲霉毒素黄曲霉( 米曲霉和黄曲霉均为半知菌。 Penicillum):例如桔子上的绿色斑点青霉属( 2. P. citrinum):产生5'-磷酸二酯酶,降解核糖核酸为桔青霉(四个单核苷酸。 Rhizopus 3.)接合菌根霉属( . R. oryzae)米根霉( R. chinensis)华根霉( 酒药和酒曲中含有米根霉或华根霉。 Monascus) 4.红曲霉属( 淀粉酶,麦芽糖酶,蛋白酶,柠檬酸等。可生产食用红色素。 (四)酵母(yeast) 单细胞真核微生物,低等真菌。 Saccharomyces)①酵母属(Saccharomyces cerevisiae)啤酒酵母(Candida)②假丝酵母属(Candida utilis)生产饲料酵母,其蛋白质和维生素含量都产朊假丝酵母( 比啤酒酵母高。可利用糖蜜,土豆淀粉废液生产人畜可食用蛋白质。 Pichia)③毕赤酵母属(

发酵车间工艺流程

发酵车间工艺文字流程 葡萄糖酸钠既是一种优良的食品添加剂,又是良好的水质稳定剂,还是改善建筑质量的缓凝剂和泵送剂。我公司采用食品级玉米淀粉为原料,经葡萄糖酸钠专用菌种,经一系列生化反应转化成葡萄糖酸钠。发酵车间包括制糖工段和发酵工段。 一、制糖工段 在制糖工段,玉米淀粉在调浆工序制成玉米浆,调节好各个指标,加入耐高温淀粉酶,经高压蒸汽喷射液化,经各层流罐保温,在高温酶的作用下,大分子淀粉颗粒转化成小分子糊精、低聚糖后,调节好各指标,加入复合糖化酶,进入糖化罐保温,在糖化酶的作用下,将液化液中的小分子片段分解转化成单分子的葡萄糖。当糖化各指标合格,糖化液经压滤系统过滤得到纯净的葡萄糖液,送发酵工段。 二、发酵工段 发酵工段采用使用菌种的三级发酵法和双酶发酵法。 (一)三级发酵法:一级种子扩培、二级种子扩培、发酵 1、一级种子扩培:从制糖工段来的葡萄糖液以适当的碳氮比加入一级种子罐,加以合适的微量元素,经中温中压蒸汽灭菌后,合适条件下接入菌种,保证通风溶氧温度等条件适宜,培养的菌种以合适的种龄,菌丝健壮无杂菌,各指标正常条件下在无菌条件下转入二级种子培养。这里的种子是菌种室对原始菌种进行一系列的高渗等培育筛选出的适合生产的优良菌株,在经过一系列扩培后达到的足够数量接种一级罐的菌种。 2、二级种子扩培:从制糖工段来的葡萄糖液以适当的碳氮比加以合适的微量元素,经中温中压蒸汽灭菌后,进入二级种子罐,在合适的条件下转入一级

扩培的种子。进入二级种子培养的菌丝在充足的溶氧条件下,经过短暂的调整期后会在这个新环境里迅速进入另一个对数生长期。当各项指标合格,菌丝健壮无杂菌,无菌条件下转入到发酵罐。 3、发酵罐:从制糖工段来的葡萄糖液以适当的碳氮比加以合适的微量元素,经中温中压蒸汽灭菌后,进入发酵罐。当温度溶氧等条件适宜时,转入二级种子培养物。在发酵罐中,种子经由短暂的调整期后,迅速生长,很快进入稳定期。在这个时期里,菌种代谢旺盛,在各种酶系的作用下,将葡萄糖转化成葡萄糖酸。这时加入高纯度的离子膜碱,一方面中和葡萄糖酸生成我们的目的产物葡萄糖酸钠,另一方面保证菌种代谢旺盛的最佳PH值范围。当发酵罐中的葡萄糖被转化完后,得到葡萄糖酸钠发酵液,送提取车间提纯得到合格的产品。 (二)双酶法发酵 双酶法发酵是我公司经过多次试验成功的一种新式发酵法。是和普通发酵法不同的一种发酵方法。省去菌种的扩培过程,直接利用葡萄糖氧化酶和过氧化氢酶转化葡萄糖成葡萄糖酸,在中和生成葡萄糖酸钠。具体操作为:从制糖工段来的葡萄糖液,经中温中压蒸汽灭菌后,进入发酵罐,在适宜条件下加入适量的双酶,保证溶氧温度等条件下,双酶迅速作用,将葡萄糖转化成葡萄糖酸,加高浓度离子膜碱中和成葡萄糖酸钠。 双酶法较发酵法发酵周期短,设备利用率高,在国内同行业数先进水平。

味精的工艺流程

味精的生产 一、味精及其生理作用 1. 味精的种类 按谷氨酸的含量分类:99%、95%、90%、80%四种 按外观形状分类:结晶味精、粉末味精 2.味精的生理作用和安全性 (1)参与人体代谢活动:合成氨基酸 (2)作为能源 (3)解氨毒 味精的毒性试验表明是安全的。 二、味精的生产方法 味精的生产方法:水解法、发酵法、合成法和提取法。 1、水解 原理:蛋白质原料经酸水解生成谷氨酸,利用谷氨酸盐酸盐在盐酸中的溶解度最小的性质,将谷氨酸分离提取出来,再经 中和处理制成味精。 生产上常用的蛋白质原料——面筋、大豆及玉米等。 水解中和,提取 蛋白质原料——谷氨酸————味精 2、发酵法 原理: 淀粉质原料水解生成葡萄糖,或直接以糖蜜或醋酸为 原料,利用谷氨酸生产菌生物合成谷氨酸,然后中和、提取 制得味精。 淀粉质原料—→糖液—→谷氨酸发酵—→中和—→味精 3、合成法 原理:石油裂解气丙烯氧化氨化生成丙烯腈,通过羰化、 氰氨化、水解等反应生成消旋谷氨酸,再经分割制成L-谷氨酸, 然后制成味精。 丙烯→氧化、氨化→丙烯睛→谷氨酸→味精 4、提取法 原理:以废糖蜜为原料,先将废糖蜜中的蔗糖回收,再将废液用碱法水解浓缩,提取谷氨酸,然后制得味精。 水解、浓缩中和,提取 废糖蜜————→谷氨酸————→味精

二、味精的生产工艺图 三、原料来源 谷氨酸发酵以糖蜜和淀粉为主要原料。 糖蜜:是制糖工厂的副产物,分为甘蔗糖蜜和甜菜糖蜜两大类。 淀粉:来自薯类、玉米、小麦、大米等 1、淀粉的预处理 (1)淀粉的水解 原料→粉碎→加水→液化→糖化→淀粉水解糖

(2)淀粉的液化 在 -淀粉酶的作用将淀粉水解生成糊精和低聚糖。 (3)淀粉的糖化 在糖化酶(如曲霉菌糖化剂)的作用下将糊精和低聚糖水解成葡萄糖。 喷射液化器出口温度控制在100-105℃,层流罐温度维持在95-100 ℃,液化时间约1h,然后进行高温灭酶。淀粉浆液化后,通过冷却器降温至60 ℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60 ℃左右,pH值4.0-4.4,糖化时间48h.糖化结束后,将糖化罐加热至80-85 ℃,灭酶30min.过滤得葡萄糖液。 喷射液化器层流罐 糖化罐 四、谷氨酸菌种的培养 1、谷氨酸发酵菌的特征和分类 谷氨酸发酵菌分属于棒杆菌属、短杆菌属、小节菌属和节杆菌属中的细菌。 ⑴棒杆菌属 细胞为直或微弯的杆菌,常呈一端膨大的棒状,不运动,革兰氏染色阳性。例如,AS.1.299,AS.1.542等。

谷氨酸的发酵和提取工艺综述

综述:谷氨酸的发酵与提取工艺 第一部分谷氨酸概述 谷氨酸非人体所必需氨基酸,但它参与许多代谢过程,因而具有较高的营养价值,在人体内,谷氨酸能与血氨结合生成谷氨酰胺,解除组织代谢过程中所产生的氨毒害作用,可作为治疗肝病的辅助药物,谷氨酸还参与脑蛋白代谢和糖代谢,对改进和维持脑功能有益。另外,众所周知的谷氨酸钠盐即味精有很强烈的鲜味,是重要的调味品。 1996、1997、1998年味精年产量分别为55.0万吨、56.64万吨、59.03万吨。尽管如此,我国人均年消耗味精量还只有400g左右,而台湾省已达2000g。因此,中国将是世界上最大的潜在味精消费市场,也就是说,味精生产会稳步发展。这也意味着谷氨酸的生产不断在扩大[1]。 谷氨酸生产走到今天就生产技术而言已有了长足进步,无论是规模还是产能都今非昔比,与此同时各厂家还在追求完美, 这是行业进步的动力,也是生存之所需。实际上生产工艺是与时俱进的,没有瑕疵的工艺是不存在的。如:配方及提取方法现在是多种多样,有单一用纯生物素的,也有用甘蔗糖蜜加纯生物素的, 还有加玉米浆干粉或麸皮水解液及豆粕水解液等等;提取方法有:等电-离交、等电-离交-转晶、连续等点-转晶等等[2]。 本综述简述谷氨酸生产的流程及发酵机制,着重介绍谷氨酸的提取工艺。 第二部分谷氨酸生产原料及其处理 谷氨酸发酵的主要原料有淀粉、甘蔗糖蜜、甜菜糖蜜、醋酸、乙醇、正烷烃(液体石蜡)等。国内多数谷氨酸生产厂家是以淀粉为原料生产谷氨酸的,少数厂家是以糖蜜为原料进行谷氨酸生产的,这些原料在使用前一般需进行预处理。 (一)糖蜜的预处理 谷氨酸生产糖蜜预处理的目的是为了降低生物素的含量。因为糖蜜中特别是甘蔗糖蜜中含有过量的生物素,会影响谷氨酸积累。故在以糖蜜为原料进行谷氨酸发酵时,常常采用一定的措施来降低生物素的含量,常用的方法有以下几种:(1)活性炭处理法; (2)水解活性炭处理法;(3)树脂处理法。 (二)淀粉的糖化 绝大多数的谷氨酸生产菌都不能直接利用淀粉,因此,以淀粉为原料进行谷氨酸生产时,必须将淀粉质原料水解成葡萄糖后才能供使用。可用来制成淀粉水解糖的原料很多,主要有薯类、玉米、小麦、大米等,我国主要以甘薯淀粉或大米制备水解糖。 淀粉水解的方法有三种:①酸解法;②酶解法;③酸酶(或酶酸)结合法。 1.酸解法用酸解法生产水解糖,其工艺流程如下: 原料(淀粉、水、盐酸)调浆→糖化→冷却→中和→脱色→过滤除杂→糖液2.酶解法先用α-淀粉酶将淀粉水解成糊精和低聚糖,然后再用糖化酶将糊精和低聚糖进一步水解成葡萄糖的方法,称为酶解法。 与淀粉的酸解相比,酶解法具有以下一些优点:①酶解反应条件比较温和。细菌α-淀粉酶是在pH6.0~7.0、温度85~90℃条件下,将淀粉液化成能溶解于水的糊精和低聚糖;而糖化酶是在pH4.0~4.5、温度58—60℃条件下,完成糖化反应的。②由于酶的作用专一性强,因此水解过程中很少有副反应发生。③淀粉乳

谷氨酸发酵工艺研究

山东大学 硕士学位论文 谷氨酸发酵工艺研究 姓名:王勇 申请学位级别:硕士 专业:生物化学与分子生物学指导教师:王玉萍 2002.5.8

摘要 L.谷氨酸又叫麸酸,化学名称为L-ct.氨基戊二酸,是制造味精的前体物质。谷氨酸有着广泛的用途,最主要的就是用来制造作为食品风味增强剂的一水谷氨酸一钠。 /谷氨酸的生产方法主要有三种:一是水解提取法:二是化学合成法;三是微生物发酵法。目前,世界上谷氨酸生产厂商主要采用微生物发酵法来生产谷氨酸。微生物发酵法比其它两种方法更具优点。 当前,国内的谷氨酸发酵与国际水平相比还有一定差距,主要表现为菌种培养、发酵产酸率、糖酸转化率等方面,其实质是谷氨酸发酵工艺水平的落后。卟 本论文实验主要对一级种子的培养和发酵条件及其控制进行了优化。力图通过这些实验,找出更适合谷氨酸生产菌S9114的菌种培养条件和发酵环境,来提高发酵过程中的产酸率和糖酸转化率,以达到提高经济效益的目的。 (种子培养的质量好坏是谷氨酸发酵的重要因素。谷氨酸发酵一级种子的培养过程是:分纯后的谷氨酸生产菌划斜面一传二代斜面一传三代即用有糖斜面对谷氨酸生产菌进行活化一接入摇瓶培养获得生产用一级种子。笔者对菌种活化进行了大胆改进,用肉汤培养基替代有糖斜面。从而使菌种活化缩短了时间,减少了工作量。又对一级种子的培养基进行了优化,调整了葡萄糖和尿素的用量,增加了酵母粉、蛋白胨等成分,得到的一级种子形态均匀、活力旺盛。杖 谷氨酸发酵是一个复杂的生化过程,发酵法生产谷氨酸的基本要素之一就是选择适宜的发酵工艺,控制最佳的工艺条件。培养基是提供谷氨酸生产菌生长繁殖及其代谢生产谷氨酸的营养物质,培养基的各组分对产酸影响很大。通过多次实验,确定了双

相关文档
最新文档