数学建模例题

数学建模例题
数学建模例题

数学建模习题指导

第一章 初等模型

讨论与思考

讨论题1 大小包装问题

在超市购物时你注意到大包装商品比小包装商品便宜这种现象吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这种现象。

(1)分析商品价格C 与商品重量w 的关系。

(2)给出单位重量价格c 与w 的关系,并解释其实际意义。 提示:

决定商品价格的主要因素:生产成本、包装成本、其他成本。

单价随重量增加而减少

单价的减少随重量增加逐渐降低

思考题2 划艇比赛的成绩

赛艇是一种靠浆手划桨前进的小船,分单人艇、双人艇、四人艇、八人艇四种。各种艇虽大小不同,但形状相似。T.A.McMahon 比较了各种赛艇1964—1970年四次2000m 比赛的最好成绩(包括1964年和1968年两次奥运会和两次世界锦标赛),见下表。建立数学模型解释比赛成绩与浆手数量之间的关系。

各种艇的比赛成绩与规格

γβα++=32w w C w

w c γβα++=-3123431w w c γβ--='-3

29434w w c γβ+=''-

第二章 线性代数模型

森林管理问题

森林中的树木每年都要有一批砍伐出售。为了使这片森林不被耗尽且每年都有所收获,每当砍伐一棵树时,应该就地补种一棵幼苗,使森林树木的总数保持不变。被出售的树木,其价值取决于树木的高度。开始时森林中的树木有着不同的高度。我们希望能找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济价值。

思考:

试解释为什么模型中求解得到的 为每周平均销售量会略小于模型假设中给出的1。 练习:

将钢琴销售的存贮策略修改为:当周末库存量为0或1时订购,使下周初的库存

达到3架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。

2.将钢琴销售的存贮策略修改为:当周末库存量为0时订购本周销售量加2架;否则,不订购。建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。

第三章 优化模型

讨论题

1)最优下料问题

用已知尺寸的矩形板材加工半径一定的圆盘。给出几种加工排列方法,比较出最优下料方案。 2)广告促销竞争问题

甲乙两公司通过广告竞争销售商品,广告费分别为 x 和 y 。设甲乙公司商品的售量在两公司总售量中所占份额是它们的广告费在总广告费中所占份额的函数

又设公司的收入与售量成正比,从收入中扣除广告费后即为公司的利润。试构造模型的图形,并讨论甲公司怎样确定广告费才能使利润最大。

(1)令

(2)写出甲公司的利润表达式 对一定的 y ,使 p (x ) 最大的 x 的最优值应满足什么关系。用图解法确定这个最优值。 练习1

三个家具商店购买办公桌:A 需要30张,B 需要50张,C 需要45张。这些办公桌由两个工厂供应:工厂1生产70张,工厂2生产80张。下表给出了工厂和商店的距离(单位公里) ,

857.0=n R )

(),(y x y f y x x f ++的示意图。。画出则)()()(,t f t f t f y

x x

t 11=-++=

)(t p

1 B 2

练习2 下料问题

某车间有一批长度为180公分的钢管(数量充分多)今为制造零件,要将其截成三种不同长度的管料,70公分,52公分,35公分。生产任务规定,这三种料的需要量分别不少于100根,150根,100根。我们知道,截分钢管时不免要产生“边角料”,从节约原料的观点来考虑,应该采取怎样的截法,才能在完成任务的前提下,使总的边角料达到最小限度?

所 有 可 能 的 截 法 现用 分别表示采用每个截法的次数,则问题变成在约束条件:

()为正整数

且j j x j x x x x x x x x x x x x x x x x 821010053231502321002876431765324321,,,, =≥≥+++++≥++++≥+++

下求目标函数: 的最小值。 实例1 加工奶制品的生产计划

一奶制品厂用牛奶生产A 和B 两种奶制品,一桶牛奶可以在设备甲上用12 小时加工成3 公斤A ,或者在设备乙上用8 小时加工成4 公斤B 。根据市场需求,生产的A ,B 全能出售,且每公斤A 获利24元,每公斤B 获利16元。现在加工每天能得到50 桶牛奶的供应,每天正式工人总劳动时间为480小时,并且设备甲每天至多能加工100 公斤A ,设

.,,.,,.][.32121045

5030807052073051050231322122111232221131211232221131211==≥?

??

??=+=+=+???≤++≤+++++++=j i x x x x x x x x x x x x x t s x x x x x x u ij

8218765432152362452365x x x x x x x x f +++++++=

备乙的加工能力没有限制。试为该厂制订一个生产计划,使每天获利最大,并试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:

(1)若用35元买到1 桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?(2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(3)由于市场需求变化,每公斤A获利增加到30元,应否改变生产计划?

第四章概率统计模型

练习:

利用上述模型计算,若每份报纸的购进价为0.75元,售出价为1元,退回价为0.6元,需求量服从均值500份,均方差50份的正态分布,报童每天应购进多少份报纸才能使平均收入最高,最高收入是多少?

用本章所学方法,思考以下几个方面的问题:

1)酒店

酒店接受房间预订主要是建立在诚信之上,因此通常不会再接受有过失信记录的顾客的预订。一些酒店在接受预订时会要求顾客交纳押金,以此来确保顾客住房的概率(施行这种方案的一般是低价酒店,因为它们的周转资金往往不多),而另一些酒店则可能会给长期订房或是预付房费的顾客打折。这种多价格系统的经营方式是可以考虑的。

2)汽车出租公司

汽车出租公司一般会保留固定数量的汽车(至少在短期内)以出租给顾客。出租公司可能会为频繁租借汽车的顾客打折,以此来确保公司能有最低量的收入。而一些长期出租品(一次出租一周或一个月)也会标上优惠的价格,因为这给出了一个至少确定了未来的一段日子会有收入的策略。在预测一些车辆的预订可能会被取消的情况下,一间公司有可能充分地留出比它们计划中要多的汽车。

3)图书馆

图书馆都有可能购买一些畅销书籍的多种版本。特别是在学院或大学图书馆里,时常购买一系列课本。某些版本极有可能仅限在图书馆内,以方便学生们的使用。可以尝试建立书籍使用的模型。

练习:

下表给出了某工厂产品的生产批量与单位成本(元)的数据,从散点图,可以明显的发现,生产批量在500以内时,单位成本对生产批量服从一种线性关系,生产批量超过500时服从另一种线性关系,此时单位成本明显下降。希望你构造一个合适的回归模型全面地描述生产批量与单位成本的关系。

第五章离散模型

思考:多名专家的综合决策问题

五练习

1合理分配资金问题

某工厂有一笔企业留成利润,要由领导决定如何利用。可供选择的方案有:以奖金名义发给职工;扩建集体福利设施;购进新设备等。为了进一步促进企业发展,如何合理使用这笔利润。

2 足球队排名次(CUMCM)1993年 B 题

China Undergraduate Mathematical Contest in Modeling

3 自己设计有关题目

如:高考填报志愿问题,选择职业问题,排名(排序)问题。

合理分配资金问题

1 层次结构模型

2 求解

Z-C矩阵

{0.667, 0.333, 0}

第六章 微分方程模型 思考2 屋檐的水槽问题

房屋管理部门想在房顶的边檐安装一个檐槽,其目的是为了雨天出入方便。从屋脊到屋

檐的房顶可看成是一个12米长,6米宽的矩形平面,房顶与水平方向的倾斜角度一般在 。

现有一公司想承接这项业务,允诺:提供一种新型的檐槽,包括一个横截面为半圆形(半径为7.5cm )的水槽和一个竖直的排水管(直径为10cm ),不论天气情况如何,这种檐槽都能排掉房顶的雨水。房管部门犹豫,考虑公司的承诺能否实现。请你建立数学模型,论证这个方案的可行性。

1 问题的简化

水槽的容量能否足以排出雨水的问题,简化为水箱的流入流出问题。从房顶上流下的雨水量是流入量;顺垂直于房顶的排水管排出的是流出量。水槽能否在没有溢出的情况下将全部雨水排出,即就是要研究水槽中水的深度与时间的函数关系。 2 假设

(1)雨水垂直下落并且直接落在房顶上; (2)落在房顶上的雨水全部迅速流入水槽中; (3)直接落入水槽中的雨水可忽略不计; (4)落在房顶上的雨没有溅到外面去;

(5)在排水系统中不存在一些预料不到的障碍,象落在房顶上的杂物、树叶等。

50~20

4 模型的建立

根据速度平衡原理,对于房顶排水系统水槽中水的容量的变化率=雨水的流入速度 - 排水管流出的速度。

01,Q Q

()t r 表示单位时间里落在水平面上雨水的深度,房顶的面积实际受雨的水平面积αcos bd ,房顶上雨水的流速()cos bd t r 流入水槽的速度应是在铅垂方向的分量 排水管的流出速度应与水槽中水的深度有关。 根据能量守恒原理 , ,

水槽中水的体积为 , θ

h

5模型的求解与分析

接下来请同学们自己完成。

古尸年代鉴定问题

在巴基斯坦一个洞穴里,发现了具有古代尼安德特人特征的人骨碎片,科学家把它带到实验室,作碳14年代测定,分析表明,14

c 与12

c 的比例仅仅是活组织内的6.24%,能否判断此人生活在多少年前?

第六章 其他模型

某大楼人员的疏散问题

01)(Q Q t V -='α

αsin cos )(1bd t r Q =)(21

2t mgh mv =)(2t gh v =)(20t gh A Q =)

cos sin ()(2θθθ-=d a t V a h a -=θcos a h ah 2

2sin -=θ()a

h a a 22sin --=θ)2)((cos )(2

212a h ah h a a h a d a t V ----=-)()(2)(2)(2t h t ah t h d t V -'=')()(2)(22t h t ah t h d -'ααsin cos )(bd t r =)(2t gh A -)

()(22)

(2cos sin )(2t h t ah d t gh A bd t r dt

dh --=αα

商品价格与重量的关系

一、 问题描述

在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。

二、 问题分析

商品价格是由成本决定的,成本可分为生产成本、包装成本和其他成本。单位重量商品价格为:总价格/总重量

三、 模型假设

设如下变量: 商品价格:P 商品重量:W 单位重量价格:X 商品包装面积:S 商品总成本:C 生产成本:1C 包装成本:2C 其它成本:3C

四、 模型建立与求解

一般地,商品包装面积S 与3

/2W

成正比,设S=a*3

/2W

,a 为大于0的常数

设生产成本1C 与重量W 成正比,1C =b*W ,b 为大于0的常数 设包装成本2C 与包装面积S 成正比, 2C =c*S=ac 3

/2W

,c 为大于0的常数

3C 为固定常数,与W 、S 无关

因此33/2321C acW bW C C C C ++=++= 则W C W

ac b W P X 1133++==

五、 模型解释

X-W 的简图如下图所示:

X

对X 求导:01

)1(312343'<--=W C W

ac X ,说明随着W 的增加,X 的减小量始

终在减少。当W 很大时,0'>-X ,即X 不再减小。由上图分析,亦可得到同样的结论。因此不能盲目地认为越大包装的商品就越便宜。

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模竞赛的准备、技巧、选题、写作等各方面得总结

数学建模竞赛的准备、技巧、选题、写作等各方面得总结 一、如何准备数学建模 下面结合我的建模经历给建模新手一些指导,顺便给大家一些建议和推荐些好书,本文属本人原创若要转载请注明出自:校苑资源网。 我是从大一下学期开始接触数学建模的,当时我的感觉就是一个字——晕,自己什么都不懂,想学习却又无从下手。记得我一次接触的数学建模题目是艾滋病的传播,当时就吓蒙了,这样的东西也能建模,艾滋病怎么能和数学联系到一起了呢?硬着头皮听完学长的一堂讲座,什么也没听懂,只是朦胧的记得有说什么微分方程,还有什么马尔萨斯之类,看他们说的像是家常便饭,而我却是在听天书。尤其是问了数学建模的论文一般写多少页,一位学长告诉我说20多页吧,至少也得15页多,听完以后真的吓坏了,要写15页的论文这是从来也没敢想过的事情。 我相信好多同学也都像我这样迷茫过,不知该从什么地方抓起。当时就想要放弃,但是看到那么多同学都坚持了,自己也就跟着每天去学习,半途而废太丢人了,只好一直往前走,糊里糊涂的参加了全国竞赛,结果和想象的一样,奇迹终究还是没有发生,呵呵,什么奖也没拿到。回头一想,自己就没付出什么这样的结果也是应该的,就是那三天三夜的煎熬,还有在做建模的过程中学到的知识还是记忆犹新。也是从此我就深深的迷上了数学建模,主动找学长请教,最终加入学校的数学建模工作室(相当于社团),和同学老师一起系统的学习数学建模。 1.先是从看优秀论文学起,起初先看一些简单的全国论文,比如:易拉罐的设计、手机套餐的设计,雨量预报等专科生论文(可以到这里下载),通过这个先熟悉建模题目、了解建模的一些方法; 2.然后就是建模方法的学习,用的教材当然是姜启源的数学模型了(【推荐】数学模型姜启源第三版),同时我还发现了一本更简单点的建模书:数学建模引论,唐焕文和贺明峰教授主编的,这本书页里面的内容非常好也很易学,推荐建模新手去参考一下(在网上搜索了好长时间还没有找到电子书,希望有的同学共享给大家,或者也可以参考这本书:数学建模引论阮晓青周义仓主编,数学建模引论--新手推荐书)。看书每周看1-2章的内容,看完后大家组织在一起讨论、评讲。 3.与此同时还有每周的Matlab讲座和作业(【推荐】大连大学数学建模工作室matlab讲座提要与练习),都是有精通Matlab的同学讲的,然后下来自己做练习题;不会时候就去查书,或者在百度上搜索,其实百度是个非常大的资源应该好好利用,有什么不懂的先百度一下,然后再问别人或者查书。个人感觉Matlab学习还是比较简单的关键看你自己用不用功,不是学不懂而是自己不知道,我认为很好的书在校苑数模论坛2009年全国数学建模培训一(初级入门辅导)里面已经说过了,可以点击去看看,还有这里校苑数模论坛2009 年全国竞赛培训二(Matlab强化训练)也都推荐了好书。 4.最后一个环节就是真题实战了,可以组队也可以单独做,仍然是从简单题目练起,一般都是全国赛的大专组题目,比如手机套餐资费问题、DVD在线租赁、体检时间安排问题等

数学建模竞赛题目

西安科技大学第二届数学建模竞赛题目 A题:垃圾分类处理与清运方案设计 垃圾分类化收集与处理是有利于减少垃圾的产生,有益于环境保护,同时也有利于资源回收与再利用的城市绿色工程。在发达国家普遍实现了垃圾分类化,随着国民经济发展与城市化进程加快,我国大城市的垃圾分类化已经提到日程上来。2010年5月国家发改委、住房和城乡建设部、环境保护部、农业部联合印发了《关于组织开展城市餐厨废弃物资源化利用和无害化处理试点工作的通知》,并且在北京、上海、重庆和深圳都取得一定成果,但是许多问题仍然是垃圾分类化进程中需要深入研究的。 在深圳,垃圾分为四类:橱余垃圾、可回收垃圾、有害垃圾和其他不可回收垃圾,这种分类顾名思义不难理解。其中对于居民垃圾,基本的分类处理流程如下:

在垃圾分类收集与处理中,不同类的垃圾有不同的处理方式,简述如下:1)橱余垃圾可以使用脱水干燥处理装置,处理后的干物质运送饲料加工厂做原料。不同处理规模的设备成本和运行成本(分大型和小型)见附录1说明。2)可回收垃圾将收集后分类再利用。 3)有害垃圾,运送到固废处理中心集中处理。 4)其他不可回收垃圾将运送到填埋场或焚烧场处理。 所有垃圾将从小区运送到附近的转运站,再运送到少数几个垃圾处理中心。显然,1)和2)两项中,经过处理,回收和利用,产生经济效益,而3)和4)只有消耗处理费用,不产生经济效益。 本项研究课题旨在为深圳市的垃圾分类化进程作出贡献。为此请你们运用数学建模方法对深圳市南山区的分类化垃圾的实现做一些研究,具体的研究目标是: 1)假定现有垃圾转运站规模与位置不变条件下,给出大、小型设备(橱余垃圾)的分布设计,同时在目前的运输装备条件下给出清运路线的具体方案。以期达到最佳经济效益和环保效果。 2)假设转运站允许重新设计,请为问题1)的目标重新设计。 仅仅为了查询方便,在题目附录2所指出的网页中,给出了深圳市南山区所有小区的相关资料,同时给出了现有垃圾处理的数据和转运站的位置。其他所需数据资料自行解决。 附录1 1)大型厨余垃圾处理设备(如南山餐厨垃圾综合利用项目,处理能力为200吨/日,投资额约为4500万元,运行成本为150元/吨。小型餐厨垃圾处理机,处理能力为200-300公斤/日,投资额约为28万元,运行成本为200元/吨。橱余垃圾处理后产物价格在1000-1500元/吨。 2)四类垃圾的平均比例 橱余垃圾:可回收垃圾:有害垃圾:其他不可回收垃圾比例约为4:2:1:3。可回收垃圾划分为纸类、塑料、玻璃、金属四大类,大概比例分别是:55%、35%、6%、4%。纸类、塑料、玻璃、金属四类的废品回收价格是每公斤:1元、2.5元、0.5元、2.5元。

2016年数学建模大赛试题B题

2016高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”) B题小区开放对道路通行的影响 2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。 除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。 城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题: 1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。 2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。交通流分配模型 3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。 4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学建模竞赛前的学习与准备

1.数学建模竞赛的概述 数学建模竞赛是由美国工业与应用数学学会在1985 年发起的一项大学生竞赛活动,自1989 年起我国陆续有高校参加美国大学生数学建模竞赛。从1992 年开始由教育部高教司和中国工业与应用数学学会(CSIAM)举办我国自己的全国大学生数学建模竞赛、面向全国高等院校不分专业的、每年一届的通讯竞赛,比赛时间一般为每年9 月。其宗旨是:创新意识、团队精神、重在参与、公平竞争。 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,没有事先设定的标准答案,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其聪明才智和创造能力。竞赛形式是三名大学生组成一队,参赛者根据题目要求,可以自由地收集、查阅资料,调查研究,使用计算机、互联网和任何软件(但是不能与队外的任何人讨论问题)在三天时间内分工合作完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的检验和评价、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 2.赛前学习内容 2.1建模基础知识、常用工具软件的使用 一、掌握建模必备的数学基础知识(如初等数学、高等数学等),数学建模中常用的但尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。 二、,针对建模特点,结合典型的建模题型,重点学习一些实用数学软件(如Mathematica 、Matlab、Lindo 、Lingo、SPSS)的使用及一般性开发,尤其注意同一数学模型可以用多个软件求解的问题。 例如, 贷款买房问题: 某人贷款8 万元买房,每月还贷款880.87 元,月利率1%。 (1)已经还贷整6 年。还贷6 年后,某人想知道自己还欠银行多少钱,请你告诉他。 (2)此人忘记这笔贷款期限是多少年,请你告诉他。

2017年中国研究生数学建模竞赛题

2017年中国研究生数学建模竞赛D题 基于监控视频的前景目标提取 视频监控是中国安防产业中最为重要的信息获取手段。随着“平安城市”建设的顺利开展,各地普遍安装监控摄像头,利用大范围监控视频的信息,应对安防等领域存在的问题。近年来,中国各省市县乡的摄像头数目呈现井喷式增长,大量企业、部门甚至实现了监控视频的全方位覆盖。如北京、上海、杭州监控摄像头分布密度约分别为71、158、130个/平方公里,摄像头数量分别达到115万、100万、40万,为我们提供了丰富、海量的监控视频信息。 目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题[1-6]。这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。这一技术往往能够对一般的视频处理任务提供有效的辅助。以筛选与跟踪夜晚时罪犯这一应用为例:若能够预先提取视频前景目标,判断出哪些视频并未包含移动前景目标,并事先从公安人员的辨识范围中排除;而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。因此,这一技术已被广泛应用于视频目标追踪,城市交通检测,长时场景监测,视频动作捕捉,视频压缩等应用中。 下面简单介绍一下视频的存储格式与基本操作方法。一个视频由很多帧的图片构成,当逐帧播放这些图片时,类似放电影形成连续动态的视频效果。从数学表达上来看,存储于计算机中的视频,可理解为一个3维数据,其中代表视频帧的长,宽,代表视频帧的帧数。视频也可等价理解为逐帧图片的集合,即,其中为一张长宽分别为 的图片。3维矩阵的每个元素(代表各帧灰度图上每个像素的明暗程度)为0到255之间的某一个值,越接近0,像素越黑暗;越接近255,像素越明亮。通常对灰度值预先进行归一化处理(即将矩阵所有元素除以255),可将其近似认为[0,1]区间的某一实数取值,从而方便数据处理。一张彩色图片由R(红),G(绿),B(蓝)三个通道信息构成,每个通道均为同样长宽的一张灰度图。由彩色图片

数学建模典型例题

一、人体重变化 某人得食量就是10467焦/天,最基本新陈代谢要自动消耗其中得5038焦/天。每天得体育运动消耗热量大约就是69焦/(千克?天)乘以她得体重(千克)。假设以脂肪形式贮存得热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化得规律. 一、问题分析 人体重W(t)随时间t变化就是由于消耗量与吸收量得差值所引起得,假设人体重随时间得变化就是连续变化过程,因此可以通过研究在△t时间内体重W得变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存得热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重得变化就是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重得变化量为W(t+△t)—W(t); 身体一天内得热量得剩余为(10467—5038-69*W(t)) 将其乘以△t即为一小段时间内剩下得热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467—5038-69*W(t))dt; 四、模型求解 d(5429—69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即:

W(t)=5429/69—(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间得最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i得开始买进汽车并在年j得开始卖出汽车,将有净成本aij(购入价减去折旧加上运营与维修成本).以千元计数aij得由下面得表给出: 请寻找什么时间买进与卖出汽车得最便宜得策略。 二、问题分析 本问题就是寻找成本最低得投资策略,可视为寻找最短路径问题.因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本得投资策略。 三、条件假设 除购入价折旧以及运营与维护成本外无其她费用; 四、模型建立 二 5 11 7 三6 4

2003全国大学生数学建模竞赛B题优秀论文(出题人亲作)

2003高教社杯全国大学生数学建模竞赛 B 题参考答案 注意:以下答案是命题人给出的,仅供参考。各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 问题分析: 本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。 运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现; 第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从1207 10 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。 对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。 调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。 这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。 合理的假设主要有: 1. 卡车在一个班次中不应发生等待或熄火后再启动的情况; 2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即 可,不进行排时讨论; 3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量; 4. 卡车可提前退出系统。 符号:x ij ~ 从i 号铲位到j 号卸点的石料运量 单位 吨; c ij ~ 从i 号铲位到j 号卸点的距离 公里; T ij ~ 从i 号铲位到j 号卸点路线上运行一个周期平均所需时间 分; A ij ~ 从i 号铲位到j 号卸点最多能同时运行的卡车数 辆; B ij ~ 从i 号铲位到j 号卸点路线上一辆车最多可以运行的次数 次; p i ~ i 号铲位的矿石铁含量。 % p =(30,28,29,32,31,33,32,31,33,31) q j ~ j 号卸点任务需求 吨 q =(1.2,1.3,1.3,1.9,1.3)*10000

数学建模每年比赛介绍

苏北数学建模联赛 比赛时间:5月1日—5月4日 苏北数学建模联赛是由江苏省工业与应用数学学会、中国矿业大学、徐州市工业与应用数学学会联合主办,中国矿业大学理学院协办及数学建模协会筹办的面向苏北及全国其他地区的跨校、跨地区性数学建模竞赛,目的在于更好地促进数学建模事业的发展,扩大中国矿业大学在数学建模方面的影响力;同时,给全国广大数学建模爱好者提供锻炼的平台和更多的参赛机会,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识。 联赛由中国矿业大学数学建模协会组织,苏北数学建模联赛组织委员会负责每年发动报名、拟定赛题、组织优秀答卷的复审和评奖、印制获奖证书、举办颁奖仪式等。竞赛分学校组织进行,每个学校的参赛地点自行安排,没有院校统一组织的参赛队可以向苏北数学建模联赛组委会报名参赛。每个参赛队由三名具有正式学籍的在校大学生(本科或专科)组成,参赛队从A、B、C 题中任选一题完成论文,本科组和专科组分开评阅。竞赛按照全国大学生数学建模竞赛的程序进行,报名时间为每年4月1日—4月29日(直接由学校统一报名),竞赛时间为5月1日—5月4日,网址:https://www.360docs.net/doc/932673465.html, , 苏北数学建模联赛组委会聘请专家组成评阅委员会,评选一等奖占报名人数的5%、二等奖15%、三等奖25%,

如果有突出的论文将评为竞赛特等奖,凡成功提交论文的参赛队均获成功参赛奖。对于获奖队伍将给予一定的奖品奖励并颁发获奖证书。 全国大学生数学建模大赛 比赛时间:9月的第三个星期五上午8时至下一个星期一上午8时“全国大学生数学建模大赛”全称为“高教社杯全国大学生数学建模竞赛” 全国大学生数学建模大赛竞赛每年举办一次,每年的竞赛时间为9月的第三个星期五上午8时至下一个星期一上午8时。 报名时间:从大赛的通知文稿发出后,就可以报名了,报名截止时间一般在开始比赛的前7-10天。 大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。每队可设一名指导教师(或教师组)。 考核内容(竞赛内容): 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

数学建模知识竞赛题库

数学建模知识竞赛题库 1.请问计算机中的二进制源于我国古代的哪部经典? D A.《墨经》 B.《诗经》 C.《周书》 D.《周易》 2.世界上面积最大的高原是?D A.青藏高原 B.帕米尔高原 C.黄土高原 D.巴西高原 3.我国海洋国土面积约有多少万平方公里? B A.200 B.300 C.280 D.340 4.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是B A.猫 B.飞鸽 C.海鸥 D.鹰 5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?B A.红色 B.蓝色 C.灰色 D.绿色 6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D ) A. [1 0 1] B. [1 1 1] C. [0 0 1] D. [0 0 0] 7.秦始皇之后,有几个朝代对长城进行了修葺? A A.7个 B.8个 C.9个 D.10个 8.中国历史上历时最长的朝代是?A A.周朝 B.汉朝 C.唐朝 D.宋朝 9我国第一个获得世界冠军的是谁?C A 吴传玉 B 郑凤荣 C 荣国团 D 陈镜开 10.我国最早在奥运会上获得金牌的是哪位运动员?B A.李宁 B.许海峰 C.高凤莲 D.吴佳怩

11.围棋共有多少个棋子?B A.360 B.361 C.362 D.365 12下列属于物理模型的是:A A水箱中的舰艇 B分子结构图 C火箭模型 D电路图 13名言:生命在于运动是谁说的?C A.车尔尼夫斯基 B.普希金 C.伏尔泰 D.契诃夫 14.饱食后不宜剧烈运动是因为B A.会得阑尾炎 B.有障消化 C.导致神经衰弱 D.呕吐 15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?A A.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役 17色盲患者最普遍的不易分辨的颜色是什么?A A.红绿 B.蓝绿 C.红蓝 D.绿蓝 18下列哪种症状是没有理由遗传的? A.精神分裂症 B.近视 C.糖尿病 D.口吃 19下面哪个变量是正无穷大变量?(A )

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

浅谈对数学建模竞赛的认识与体会

龙源期刊网 https://www.360docs.net/doc/932673465.html, 浅谈对数学建模竞赛的认识与体会 作者:马瑞婷 来源:《科技风》2018年第20期 摘要:本文以参赛大学生的视角,依据作者的参赛经历,主要以建模竞赛中的三类角 色,分别为:数学建模、计算机编程、论文写作,作为切入角度,从题目选择、前期准备、团队协作、精神品质四方面,浅谈对于数学建模竞赛的认识和体会,为广大备战数学建模竞赛的学生提供一定的帮助。 关键词:数学建模竞赛;认识与体会 近几年,数学建模竞赛的规模不断扩大,影响力不断上升,受到广大高等院校师生的欢迎和重视,吸引了大批数学建模爱好者。[1]其比赛类型也从最初的全国大学生建模比赛、美国 大学生数学建模比赛,扩展到了现在的亚太地区大学生数学建模竞赛(APMCM)、五一数学建模联赛等。数学建模是沟通现实世界和数学科学之间的桥梁,是数学走向应用的必经之路。 [2]随着题目类型的丰富,来自各领域的大学生逐步将数学理论知识运用到解决实际问题中 去,提高了当代大学生对数学领域的探索和研究。本文以作者的参赛经历为基础,从题目选择、前期准备、团队协作、精神品质四方面,总结了一定经验和心得,希望能为参赛大学生提供一些参考。 1 尽早确定选题方向 选题对于建模竞赛来说十分必要,它可以使得竞赛的准备更有针对性。选择合适题目对于竞赛事半功倍。在参赛之前,小组成员可以针对兴趣,多尝试不同类型的赛题,通过实际的训练来切实的提高解题能力,确定主要研究方向。之后,可针对确定的选题方向,缩小前期准备的知识学习范围。以大数据赛题为例,可以多学习各类回归模型、优化模型等,积累和总结同类题目的解题思路,加强Excel、R语言等数据处理软件的应用能力。这在真正比赛中可以为团队节省不少时间。 2 重视前期准备工作 对于主攻论文写作的学生,首先,应该熟练掌握一种写作软件,如:Word,Latex。论文排版的美观,是一篇论文能够顺利通过评审的关键条件之一。在此基础上,还要提高论文写作的速度,掌握软件中可能遇到的问题。并且,要善于学习论文写作的格式。其中,摘要的写作尤其重要。在摘要中,一定要明确写出解决的问题、运用的方法、得到的结论,使用最简洁明了的语言展示论文成果。对于擅长计算机编程的学生,第一,熟悉各类建模软件,如:MATLAB、R语言等,选择最适合研究方向的软件进行深究。其重点在于,可以积累与选题相契合的各类代码,在遇到相应问题时可以迅速做出选择。第二,熟悉图形的代码。图片通常比文字和表格更加直观,对写作思路、结论的展示都有一定的帮助。第三,将理论付诸实践。当

对数学建模竞赛的一些思考

对数学建模竞赛的一些思考 又到了一年一度的美赛季,按照往年的情况又会有一大批大二大三的同学牺牲春节假期留在学校参加比赛,同时也会有一批大一大二的同学跃跃欲试计划着为明年的比赛提前准备。每到了这个时候,人人、论坛就会充斥着各种经验帖、速成贴甚至吐槽贴。接着到了4月美赛出结果的时候,社交网络上又会掀起新一轮关于建模的讨论。9月初的国赛到11月下旬公布结果的时候也同样如此。讨论无非分为以下几点:有人说建模比赛的诚信存在问题,并指出有同学依靠老师或高年级的学长学姐帮忙获奖。印象特别深刻的就是12年我参加国赛那一年,有天大的同学在数学中国论坛发帖子爆料称B题太阳能小屋是天大某位老师指导的科研项目,参与项目的同学直接把项目成果作为论文参赛,成功报送全国奖了。同时13年美赛B题Water Water Everywhere居然是09年HIMCM的原题,很有一部分人直接把09年的O奖论文作一番修改后上交,最后也拿到了M奖。有人说评卷不公,因为评卷老师自身的水平或者疏忽致使一些层次不高的论文获奖。有人说参加美赛的基本都是中国人,没有多大的价值。有人说国赛水平太低,不被国外承认,对出国用处不大。还有人抱怨这个比赛拿奖太容易,与ACM智能车电子设计等一系列比赛比起来投入产出比过高,但同时在北邮推荐免试研究生时,建模的加分还不少(特别是在果园国赛美赛还能累加),严重影响了保研的公平性。另一方面,一些获奖了的同学互相攀比,沾沾自喜,似乎觉得数学建模也不过如此,还想得到更多人的承认。有人嫌获奖人数太多,有人讨论可能会有的奖金,加分,保研,出国等可能的收获···· 我并是想说上述行为不对。人都是有虚荣心的,同时也是贪心的。就像大家付出了汗水都期待收获一样,参加比赛本来就应该去获奖。但是有时候成果带来的一时兴奋往往会让人盲目。我曾经也是这样,当我12年成为北邮当年国赛唯一的一个全国一等奖得主,前面提到的每一个“有人说”我都是深有体会。但现在再回过头来看,我已经不完全同意上述看法了。网上已经有很多帖子回击了这些观点,已经不需要我再多此一举。 在这里我想先简单谈一谈美赛和国赛。 美赛分为MCM(Mathematical Contest in Modeling)和ICM(Interdisciplinary Contest in Modeling),即“数学建模竞赛”和“交叉学科建模竞赛”,由COMAP美国数学及应用联合会主办,同时得到INFORMS,NSA等的赞助。据说,美赛的部分题目来源于一些未曾完善解决的课题,因此COMAP也有借美赛征集合适解决方案的目的。美赛的宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种结构鼓励师生积极参与并强调实现完整的模型构造的过程[1]。同时要指出的是美赛是一个带商业性质的比赛。这从每年大幅增加的参与人数和获奖率就能看出。2013年中国参加MCM的有5122队,占总数的90.9%,参加ICM的有931队,占总数的97.3%。2013年整体MCM获奖率44%,ICM获奖率54%[2]。 国赛全称全国大学生数学建模竞赛,CUMCM由教育部高教司和中国工业与应用数学学会主办。国赛的宣传口号是“一次参赛终身受益”。目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革[3]。国赛的题目由组委会面向全国高校教师征集。2013年国赛一共有23193个队伍(本科组19747队、专科组3446队)参加,本科组全国一等奖273队,二等奖1292队,分别占参赛总数的1.3%和6.5%[4]。 可以看出无论美赛还是国赛的举办都不是为了颁奖更不是为了分出胜负。在高校学生普及数学知识的运用是组委会一个重要的出发点。注重创新,强调团队,公平竞争,重在参与,这才是数学建模比赛开展的宗旨。把获奖作为参加比赛的唯一目的是毫无意义的,为了获奖去做有违诚信的事更是毫无意义的。但在这个充满浮躁,只笃信结果忽视过程的时代,

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览! CUMCM历年赛题一览!! CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览 1992年A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(复旦大学:谭永基) 1993年A)非线性交调的频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福) (B)节水洗衣机问题(重庆大学:付鹂) 1997年:(A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年:(A)投资的收益和风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化车床管理问题(北京大学:孙山泽) (B)钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年:(A)DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购和运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年:(A)血管的三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D)公交车调度问题(清华大学:谭泽光) 2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B)彩票中的数学问题(解放军信息工程大学:韩中庚) (C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))

相关文档
最新文档