激光原理及应用1-6章部分课后答案

合集下载

激光原理课后习题

激光原理课后习题

激光原理课后习题第1章习题1. 简述激光器的基本结构及各部分的作用。

2. 从能级跃迁角度分析,激光是受激辐射的光经放大后输出的光。

但是在工作物质中,自发辐射、受激辐射和受激吸收三个过程是同时存在的,使受激辐射占优势的条件是什么?采取什么措施能满足该条件?3. 叙述激光与普通光的区别,并从物理本质上阐明造成这一区别的原因。

4. 什么是粒子数反转分布?如何实现粒子数反转分布?5. 由两个反射镜组成的稳定光学谐振腔腔长为m,腔内振荡光的中心波长为 nm,求该光的单色性/的近似值。

6. 为使He-Ne激光器的相干长度达到1 km,它的单色性/应是多少?7. 在2cm3的空腔内存在着带宽为 nm,波长为m的自发辐射光。

试问:(1)此光的频带范围是多少?(2)在此频带范围内,腔内存在的模式数是多少?(3)一个自发辐射光子出现在某一模式的几率是多少?8. 设一光子的波长为510-1 m,单色性/=10-7,试求光子位置的不确定量x。

若光子波长变为510-4 m(X射线)和510-8 m(射线),则相应的x又是多少?9. 设一对激光(或微波辐射)能级为E2和E1,两能级的简并度相同,即g1=g2,两能级间跃迁频率为(相应的波长为),能级上的粒子数密度分别为n2和n1。

试求在热平衡时:(1)当=3000 MHz,T=300 K时,n2/n1=?(2)当=1 m,T=300 K时,n2/n1=?(3)当=1 m,n2/n1=时,T=?为1kHz,输出功率P为1 mW的单模He-Ne 10. 有一台输出波长为 nm,线宽s为1 mrad,试问:激光器,如果输出光束直径为1 mm,发散角(1)每秒发出的光子数目N 0是多少?(2)该激光束的单色亮度是多少?(提示,单模激光束的单色亮度为20)(πθννs A PB ?=) 11. 在2cm 3的空腔内存在着带宽为110-4 m ,波长为510-1 m 的自发辐射光。

试问:(1)此光的频带范围是多少?(2)在此频带宽度范围内,腔内存在的模式数是多少?(3)一个自发辐射光子出现在某一模式的几率是多少?第2章习题1. 均匀加宽和非均匀加宽的本质区别是什么?2. 为什么原子(分子,离子)在能级上的有限寿命会造成谱线加宽?从量子理论出发,阐明当下能级不是基态时,自然线宽不仅和上能级的自发辐射寿命有关,而且和下能级的自发辐射寿命有关,并给出谱线宽度与激光上、下能级寿命的关系式。

激光原理部分课后习题答案

激光原理部分课后习题答案

µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e

激光原理作业答案

激光原理作业答案

J / K *300K
47.99
21
n1
h c
(3)n2
e
kT
T
h c
6252.9K
n1
k ln
n2 n1

2:
n2
E2 E1
e kbT
其中
h*c
h*c
n1
E E2 E1
E h *c h
(1) n e e e 1 2
h*c kb *T
6.63*1034 *3*109 1.38*10 23 *300
*
8
*
3.14 * 6.63 *1034 (6*107 )3
7.71*105 s1
s
1 A21
1.297 *106 s
(3) 60nm时 A21 7.71*108 s1
(4) 0.6nm时 A21 7.71*1014 s1
(5) v
I S
10 106
105 w / m2
W 21 B21 * 1019 *105 1014 m * s3
目录
第一章 ..............................................................................................................................................2 第二章 ..............................................................................................................................................2 第三章 ..............................................................................................................................................7 第四章 ............................................................................................................................................17 第五章 ............................................................................................................................................28 第六章 ............................................................................................................................................30 第七章 ............................................................................................................................................31 第八章 ............................................................................................................................................32 第九章 ............................................................................................................................................33

激光原理及应用陈鹤鸣答案

激光原理及应用陈鹤鸣答案

激光原理及应用陈鹤鸣答案1、4.列车员说火车8点42分到站,8点42分指的是时间间隔.[判断题] *对错(正确答案)2、59.1911年,卢瑟福在α粒子散射实验的基础上,提出了原子核式结构模型。

下列关于这个模型的说法中正确的是()[单选题] *A.原子核位于原子的中心(正确答案)B.电子静止在原子核周围C.原子核带负电D.原子核占据了原子内大部分空3、2.运动员将足球踢出,球在空中飞行是因为球受到一个向前的推力.[判断题] *对错(正确答案)4、53.下列实例中不能用光的直线传播解释的是()[单选题] *A.水中倒影(正确答案)B.手影的形成C.日食和月食D.小孔成像5、其原因错误的是()*A.使用的用电器总功率过大B.电路中有断路(正确答案)C.开关接触不良(正确答案)D.电路的总电阻过大(正确答案)6、关于家庭电路和安全用电,下列说法正确的是()[单选题]A.我国家庭电路电压为380VB.发生短路会导致家庭电路中总电流过大(正确答案)C.用湿布擦正在发光的台灯D.在未断开电源开关的情况下更换灯泡7、验电器是实验室里常常用验电器来检验物体是否带电。

用带正电的玻璃棒接触验电器的金属球,可以发现验电器原来闭合的两片金属箔张开一定的角度,如图61所示。

以下判断中正确的是()[单选题]A.金属球带正电,金箔片都带负电,它们因排斥而张开B.金属球带正电,金箔片都带正电,它们因排斥而张开(正确答案)C.金属球带负电,金箔片都带正电,它们因吸引而张开D.金属球带负电,金箔片都带负电,它们因吸引而张开8、54.如图所示,2019年4月10日人类首张黑洞照片的问世,除了帮助我们直接确认了黑洞的存在外,还证实了爱因斯坦广义相对论的正确性。

下列关于宇宙的描述中,不正确的是()[单选题] *A.地球是太阳系内的一颗行星B.太阳和太阳系最终会走向“死亡”C.宇宙处于普遍的膨胀之中D.太阳是宇宙的中心(正确答案)9、考虑空气阻力,在空气中竖直向上抛出的小球,上升时受到的合力大于下降时受到的合力[判断题] *对(正确答案)错答案解析:上升时合力等于重力加上空气阻力,下降时合力等于重力减去空气阻力10、在图65的四种情境中,人对物体做功的是()[单选题]A.提着桶在水平地面上匀速前进B.举着杠铃保持杠铃静止C.用力搬石头但没有搬动D.推着小车前进(正确答案)11、23.三个质量相等的实心球,分别由铝、铁、铜制成,分别放在三个大小相同的空水杯中,再向三个空水杯中倒满水(物体都能浸没,水没有溢出,ρ铝<ρ铁<ρ铜),则倒入水的质量最多的是()[单选题] *A.铝球B.铁球C.铜球(正确答案)D.无法判断12、司机驾车时必须系安全带,这是为了防止向前加速时惯性带来的危害[判断题] *对错(正确答案)答案解析:防止刹车时惯性带来的危害13、关于物质的密度,下列说法正确的是()[单选题] *A. 一罐氧气用掉部分后,罐内氧气的质量变小,密度不变B. 一只气球受热膨胀后,球内气体的质量不变,密度变大C. 一支粉笔用掉部分后,它的体积变小,密度变小D. 一块冰熔化成水后,它的体积变小,密度变大(正确答案)14、能量在转化过程中是守恒的,所以能源是“取之不尽,用之不竭”的[判断题] *对错(正确答案)答案解析:能量在转化和转移的过程中是有方向的,所以需要节能15、如图59所示,“蛟龙号”载人深潜器是我国首台自主设计、研制的作业型深海载人潜水器,设计最大下潜深度为级,是目前世界上下潜最深的作业型载人潜水器。

2023大学_激光原理及应用(陈家璧著)课后习题答案下载

2023大学_激光原理及应用(陈家璧著)课后习题答案下载

2023激光原理及应用(陈家璧著)课后习题答案下载激光原理及应用(陈家璧著)课后答案下载绪论一、激光的发展简史二、激光的特点三、本课程的学习方法第1章光和物质的近共振相互作用1.1 电磁波的吸收和发射1.2 电磁场吸收和发射的唯象理论1.3 光谱线加宽1.4 激光器中常见的谱线加宽1.5 光和物质相互作用的近代理论简介思考和练习题第2章速率方程理论2.1 典型激光器的工作能级2.2 三能级系统单模速率方程组2.3 四能级系统单模速率方程组2.4 小信号光的介质增益2.5 均匀加宽介质的增益饱和2.6 非均匀加宽介质的增益饱和2.7 超辐射激光器思考和练习题第3章连续激光器的工作特性3.1 均匀加宽介质激光器速率方程3.2 激光振荡阈值3.3 均匀加宽介质激光器中的'模竞争3.4 非均匀加宽介质激光器的多纵模振荡 3.5 激光器输出特性思考和练习题第4章光学谐振腔理论4.1 光学谐振腔的研究方法4.2 光学谐振腔的基本知识4.3 光学谐振腔的矩阵光学理论4.4 光学谐振腔的衍射积分理论4.5 平行平面腔的自再现模4.6 对称共焦腔的自再现模思考和练习题第5章高斯光束5.1 高斯光束的基本特点5.2 高斯光束的传输5.3 高斯光束的特性改善思考和练习题第6章典型激光器6.1 概述6.2 气体激光器6.3 固体激光器6.4 染料激光器6.5 半导体激光器6.6 其他激光器思考和练习题第7章激光的应用7.1 激光在基础科学研究中的应用 7.2 激光在通信及信息处理中的应用 7.3 激光在军事技术中的应用7.4 激光在生物及医学中的应用7.5 激光在材料加工中的应用7.6 激光在测量技术(计量学)中的应用7.7 激光在能源、环境中的应用7.8 激光在土木、建筑中的应用思考和练习题附录A.常用物理常数表B.常见激光器的典型技术参数C.常用电光晶体的典型技术参数D.常用光学非线性晶体的典型技术参数E.常用激光晶体的典型技术参数F.常见光功率计型号和厂家G.典型激光波长使用的光学零件及其材料性能参数H.常见光路和光学元件的传播矩阵参考文献激光原理及应用(陈家璧著):内容简介点击此处下载激光原理及应用(陈家璧著)课后答案激光原理及应用(陈家璧著):目录主要介绍了激光发展简史及激光的特性,激光产生的基本原理,光学谐振腔与激光模式,高斯光束,激光工作物质的增益特性,激光器的工作特性,激光特性的控制与改善,典型激光器,半导体激光器,光通信系统中的激光器和放大器,激光全息技术,激光与物质的相互作用,以及激光在其他领域的应用等内容。

《激光原理及技术》1-4习题答案

《激光原理及技术》1-4习题答案

激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少?解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=?解:Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λνλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk chb λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α (2)010010100003660I .e I e I e I I .z ====-⨯-α即经过厚度为0.1m 时光能通过36.6%10.解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。

(完整版)激光原理第一章答案

(完整版)激光原理第一章答案

第一章 激光的基本原理1. 为使He-Ne 激光器的相干长度达到1km ,它的单色性0/λλ∆应是多少? 提示: He-Ne 激光器输出中心波长632.8o nm λ= 解: 根据c λν=得 2cd d d d ννλνλλλ=-⇒=-则 ooνλνλ∆∆=再有 c c cL c τν==∆得106.32810o o o c o c c L L λλνλνν-∆∆====⨯ 2. 如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000MHz ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少?解:设输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则:由此可得:其中346.62610J s h -=⨯⋅为普朗克常数,8310m/s c =⨯为真空中光速。

所以,将已知数据代入可得:=10μm λ时: 19-1=510s n ⨯=500nm λ时:18-1=2.510s n ⨯ =3000MHz ν时:23-1=510s n ⨯3.设一对激光能级为2E 和1E (21f f =),相应的频率为ν(波长为λ),能级上的粒子数密度分别为2n 和1n ,求(a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=?解:当物质处于热平衡状态时,各能级上的粒子数服从玻尔兹曼统计分布,则(a) 当ν=3000MHz ,T=300K 时:(b) 当λ=1μm ,T=300K 时:cP nh nh νλ==PP n h hcλν==2211()exp exp exp b b b n E E h hc n k T k T k T νλ⎡⎤⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭3492231 6.62610310exp 11.3810300n n --⎛⎫⨯⨯⨯=-≈ ⎪⨯⨯⎝⎭34822361 6.62610310exp 01.381010300n n ---⎛⎫⨯⨯⨯=-≈ ⎪⨯⨯⨯⎝⎭(c) 当λ=1μm ,21/0.1n n =时:4. 在红宝石调Q 激光器中,有可能将几乎全部3+r C 离子激发到激光上能级并产生激光巨脉冲。

(完整word版)《激光原理》课后题答案

(完整word版)《激光原理》课后题答案

《激光原理》习题解答第一章习题解答1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λλ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为γνλλ∆=∆,0λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm 解答完毕。

2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。

解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。

由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数 根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λν z H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即:TK E E T k h f f n n b b )(ex p ex p 121212--=-=ν (统计权重21f f =) 其中1231038062.1--⨯=JK k b为波尔兹曼常数,T 为热力学温度。

激光原理作业答案

激光原理作业答案

h
h*c 6.63 *10 34 * 3 *108 6.26 *103 K 所以 T 23 6 n 1.38 *10 *10 * ln(0.1) kb ln 2 n1
5 解: (1) E E2 E1 h * v 6.63 *10 34 *
n (2) 2 e n1
第一章
4 为使氦氖激光器的相干长度达到 1km, 它的单色性 / 0 应当是多 少? 解:相干长度 LC
c , 是光源频带宽度
c 3*108 m / s 3*105 Hz LC 1km
c (c / ) 2 632.8nm *3*105 Hz 6.328*1010 8 c 3*10 m / s

解 1:
当 10 m 时 当 500nm 时
n
1*1*10 *106 P *t * 5.03 *1019 6.63 *1034 * 3 *108 h*c
1*1* 500 *10 9 P *t * n 2.51*1018 8 34 6.63 *10 * 3 *10 h*c
h
c
n k ln 2 n1

6252.9 K
n 解 2: 2 e n1
E2 E1 k bT
其中
h*c h*c E E2 E1
E
h*c

h
4 n (1) 2 e kb *T e 1.38*1023 *300 e 4.8*10 1 n1
) *0.1
lny (G 0 ) * 0.1
所以: 36.6%
lny 100 y (0.99)100 0.366 即经过厚度为 0.1m 时光能通过 ln 0.99

激光原理——课后习题解答

激光原理——课后习题解答
其中(II)式可以改写为
因为 与 相比很大,这表示粒子在 能级上停留的时间很短,因此可以认为 能级上的粒子数 ,因此有 。这样做实际上是将三能级问题简化为二能级问题来求解。
由(I)式可得:
代入式(V)得:
由于
所以
红宝石对波长为694.3nm的光透明,意思是在能量密度为 的入射光的作用下,红宝石介质内虽然有受激吸收和受激辐射,但是出射光的能量密度仍然是 。而要使入射光的能量密度等于出射光的能量密度,必须有 为常数,即 ,这样式(VI)变为:
第四章电磁场和物质的共振相互作用
习题
2.设有一台迈克尔逊干涉仪,其光源波长为 。试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期地变化 次。
证明:如右图所示,光源S发出频率为 的光,从M上反射的光为 ,它被 反射并且透过M,由图中的I所标记;透过M的光记为 ,它被 反射后又被M反射,此光记为II。由于M和 均为固定镜,所以I光的频率不变,仍为 。将 看作光接收器,由于它以速度v运动,故它感受到的光的频率为:
解:入射高斯光束的共焦参数
根据 ,可得
束腰处的q参数为:
与束腰相距30cm处的q参数为:
与束腰相距无穷远处的q参数为:
16.某高斯光束 =1.2mm, 。今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时,求焦斑的大小和位置,并分析所得的结果。
解:入射高斯光束的共焦参数
又已知 ,根据
解: 气体在室温(300K)下的多普勒线宽 为
气体的碰撞线宽系数 为实验测得,其值为
气体的碰撞线宽与气压p的关系近似为
当 时,其气压为
所以,当气压小于 的时候以多普勒加宽为主,当气压高于 的时候,变为以均匀加宽为主。

激光 原理课后习题答案

激光 原理课后习题答案

激光原理复习题第一章电磁波1、麦克斯韦方程中麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。

在方程组中是如何表示这一结果?答:每个方程的意义:1)第一个方程为法拉第电磁感应定律,揭示了变化的磁场能产生电场。

2)第二个方程则为Maxwell的位移电流假设。

这组方程描述了电荷和电流激发电磁场、以及变化的电场与变化的磁场互相激发转化的普遍规律。

第二个方程是全电流安培环路定理,描述了变化的电场激发磁场的规律,表示传导电流和位移电流(即变化的电场)都可以产生磁场。

第二个方程意味着磁场只能是由一对磁偶极子激发,不能存在单独的磁荷(至少目前没有发现单极磁荷)3)第三个方程静电场的高斯定理:描述了电荷可以产生电场的性质。

在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。

4)第四个方程是稳恒磁场的高斯定理,也称为磁通连续原理。

2、产生电磁波的典型实验是哪个?基于的基本原理是什么?答:赫兹根据电容器经由电火花隙会产生振荡原理设计的电磁波发生器实验。

(赫兹将一感应线圈的两端接于产生器二铜棒上。

当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。

瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。

有麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。

他将一小段导线弯成圆形,线的两端点间留有小电火花隙。

因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。

所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。

赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重叠应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。

赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。

《激光原理及应用》习题参考答案仅供大家学习参考用

《激光原理及应用》习题参考答案仅供大家学习参考用

《激光原理及应用》习题参考答案思考练习题11•解答:设每秒从上能级跃迁到下能级的粒子数为n 。

单个光子的能量:g = h v = he / Z 连续功率:p 二n ; 则,n = p/ ;a.对发射■ = 0.5000的光:p 1 0.5000 10-6 n — —he 6.63 10 ⑶ 3.0 108-2.514 1018(个)b.对发射、• = 3000 MHz 的光_________ 16.63 10 "4 3000 106= 5.028 1023(个)E 2 a 匹Tn 1hv些=小-1n 1hc 3T6.26 103(K)'■ ln 匹3.解答:(1) 由玻耳兹曼定律可得_E 2 -E 1e '丁 , m/g20且4g 1 =g 2, m • n 2 =10代入上式可得: n 2 :30 (个)(2 )由 (a ), (b ) ,(c)式可得:2.解答:E 2 - E<| = h..(a).(b) (1 )由 ■■■. = c/ ■ .......(a ), (b )式可得:.(c)n 2 /g 2(2) p =108 n 2(E 2 -EJ =5.028 10-(W) 4•解答:(1)由教材(1-43)式可得e kT —1因此:fT ' =2.82kh ,hc同样可求得: 一丄 =4.96九m kT故' m - m = 0.568c8h1 3 A-2000J s/m 3 -3.860 10, J s/m 3 (0.6328 10冷3 5.0 10*8- 6.63 10 ^4= 7.592 10 5•解答:(1)红宝石半径 r = 0.4cm ,长L -8cm ,铬离子浓度匸=2 1018cm‘,发射波长• =0.6943 10 “m ,巨脉冲宽度 -T = 10 ns 则输出最大能量2 ,、he18E - (:r L) 2 1034826.63 1030 108二 0.42 86(J)二 2.304(J)0.6943 10」脉冲的平均功率:P =E /.「23041010"2.304 叫) (2)自发辐射功率 _ hcN 2heP (兀r 2L)Q 自皿z-X663计 3° IO 8 *1。

激光原理及应用

激光原理及应用

激光原理及应用第1章 辐射理论概要与激光产生的条件1.光波:光波是一种电磁波,即变化的电场和变化的磁场相互激发,形成变化的电磁场在空间的传播.光波既是电矢量→E 的振动和传播,同时又是磁矢量→B 的振动和传播。

在均匀介质中,电矢量→E 的振动方向与磁矢量→B 的振动方向互相垂直,且→E 、→B 均垂直于光的传播方向→k 。

(填空)2.玻尔兹曼分布:e g n g n kT n n m mE E n m )(--=(计算) 3.光和物质的作用:原子、分子或离子辐射光和吸收光的过程是与原子的能级之间的跃迁联系在一起的。

物质(原子、分子等)的相互作用有三种不同的过程,即自发辐射、受激辐射及受激吸收。

对一个包含大量原子的系统,这三种过程总是同时存在并紧密联系的.在不同情况下,各个过程所占比例不同,普通光源中自发辐射起主要作用,激光器工作过程中受激辐射起主要作用.(填空)自发辐射:自发辐射的平均寿命A 211=τ(A 21指单位时间内发生自发辐射的粒子数密度,占处于E 2能级总粒子数密度的百分比)4.自发辐射、受激吸收和受激吸收之间的关系在光和大量原子系统的相互作用中,自发辐射、受激辐射和受激吸收三种过程是同时发生的,他们之间密切相关。

在单色能量密度为ρV 的光照射下,dt 时间内在光和原子相互作用达到动平衡的条件下有下述关系:dt dt dt v v n B n B n A ρρ112221221=+ (自发辐射光子数) (受激辐射光子数) (受激吸收光子数)即单位体积中,在dt 时间内,由高能级E2通过自发辐射和受激辐射而跃迁到低能级E1的原子数应等于低能级E1吸收光子而跃迁到高能级E2的原子数。

(简答) 5.光谱线增宽:光谱的线型和宽度与光的时间相干性直接相关,对许多激光器的输出特性(如激光的增益、模式、功率等)都有影响,所以光谱线的线型和宽度在激光的实际应用中是很重要的问题。

(填空)光谱线增宽的分类:自然增宽、碰撞增宽、多普勒增宽自然增宽:自然增宽的线型函数的值降至其最大值的1/2时所对应的两个频率之差称作原子谱线的半值宽度,也叫作自然增宽.碰撞增宽:是由于发光原子间的相互作用造成的。

激光原理答案

激光原理答案

《激光原理》习题解答第一章习题解答1为了使氦氖激光器的相干长度达到 1KM ,它的单色性丸0应为多少?解答:设相干时间为.,则相干长度为光速与相干时间的乘积,即L c = c由以上各关系及数据可以得到如下形式: 解答完毕。

2如果激光器和微波激射器分别在10 gm> 500nm 和f =3000MH Z输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。

解答:功率是单位时间内输出的能量,因此,我们设在 dt 时间内输出的能量为dE ,则功率=dE/dt激光或微波激射器输岀的能量就是电磁波与普朗克常数的乘积,即d E nh 、..,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在 dt 时间辐射跃迁到低能级的数目(能级间的频率为 v )。

由以上分析可以得到如下的形式:n 妙-功―hv每秒钟发射的光子数目为:N=n/dt,带入上式,得到:每秒钟发射的光子数二N 」二功率 J sdt h 、. 6.626 10 J s •根据题中给岀的数据可知:c 3汉 108ms*“13「163 10 H z、10 10》m c3IO 8ms' (15)291.5 10 H z■2500 10 m把三个数据带入,得到如下结果:N 1=5.031 1019,N 2=2.5 1018,N^ 5.031 10233设一对激光能级为 E1和E2 (f1=f2 ),相应的频率为 v (波长为入),能级上的粒子数密度分别为 n2和n1,求 (a) 当v =3000兆赫兹,T=300K 的时候,n2/n 仁? (b) 当 入=1卩m T=300K 的时候,n2/n 仁? (c) 当入=1 卩 m n2/n1=0.1 时,温度 T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即:,. —6.626汉10亠(」_h 21exp 23 1 1.38 101.38062 10 J k T根据相干时间和谱线宽度的关系L c又因为Av■ 0 = 632.8nm单色性= Av632^m=6.328 10-10L c 1 1012 nmn2 _ exp n 1f 1其中k b =1.38062 10 - h exp • 0.99 2—小=exp _(E ^E 1) k b T(统计权重f 1 =n 2(a) exp K b T^3 JK 4为波尔兹曼常数,T 为热力学温度。

激光原理及应用(第二版)课后习题答案(全).

激光原理及应用(第二版)课后习题答案(全).

思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。

(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高?答:(1)(//m n E E m m kTn n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kT h e n n ν(2)K T Te n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。

设原子按玻尔兹曼分布,且4g 1=g 2。

求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为0.6328μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。

激光原理答案 周炳琨

激光原理答案 周炳琨


R12(R 2 − L) L(R1− L)(R1+ R 2−
L)

4
=
λ π
1
[L(R2−L)] 4
(R → ∞) 1
=4 3 λ ≈1.7*10−3m

1
ω s2 =
λL π

R 22(R1− L) L(R 2− L)(R1+ R 2−
L)

4
=
λ
(
L
R
2 2
1 4
R=∞
R
R
R=∞
该三镜环形腔的往返矩阵为:
T = 10
10 10
L1
1 -1
f
10
1 0
L 1

1 -1
f
10
1 0
L 1

=

A C
B D

A = D = 1− 3 L + L 2 f f
能级之间实现了集居数反转。
τ (1) 4 =
A43
+
1 A42
+
A41
=
1.1*10−8
s
(2) 在稳定状态时,不考虑无辐射跃迁和热驰豫过程,
E 对 : 3
A43 n4 =
n3 τ3

n3 n4
=
A43τ
3
=5*10−1
E E 实现 和 能级集居数反转
4
3

E2 : A42 n4 =
n2 τ2

n2 n4
(2) n=
1W *500nm 6.626*10−34 Js*3*108
ms−1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光原理及应用部分课后答案
1-4为使He-Ne 激光器的相干长度达到1KM ,它的单色性0λλ∆应是多少?2-2当每个模式内的平均光子数(光子简并数)大于1时,以受激辐射为主。

2-3如果激光器和微波激射器分别在um 10=λm 500n =λ和z 3000MH =ν输出1W 连续功率,问美秒从激光上能级向下能级跃迁的粒子数是多少?
2-4当一对激光能级为E2和E1(f1=f2),相应的频率为v (波长为λ),能级上的粒子数密度分别为n2和n1,q 求:
(1)当v=3000MHZ ,T=3000K 时,n2/n1=?
(2)当λ=1um ,T=3000K 时,n2/n1=?
(3)当λ=1um ,n2/n1=0时,温度T=?
解:
2-5激发态的原子从能级E2跃迁到E1时,释放出λ=5um的光子,求这个两个能级的能量差。

若能级E1和E2上的原子数分别为N1和N2,试计算室温T=300K的N2/N值。

2-7如果工作物质的某一跃迁是波长为100nm的远紫外光,自发辐射跃迁概率
1
6
21
s
10-
=
A,
试问:
(1)改跃迁的受激辐射爱因斯坦系数B21是多少?
(2)为使受激辐射跃迁概率比自发辐射跃迁概率大三倍,腔内的单色能量密度
ν
ρ应为多少?
2-9某一物质受光照射,沿物质传播1mm的距离时被吸收了1%,如果该物质的厚度是0.1m,那么入射光中有百分之几能通过该物质?并计算该物质的吸收系数α。

2-10激光在0.2m 长的增益介质中往复运动过程中,其增强了30%。

求该介质的小信号增益系数0G 。

假设激光在往复运动中没有损耗。

3-2CO2激光器的腔长L=100cm,反射镜直径D=1.5cm,两镜的光强反射系数分别为r1=0.985,r2=0.8.求由衍射损耗及输出损耗所分别引起的δ,τ。

3-4,分别按下图中的往返顺序,推导近轴光线往返一周的光学变换矩阵⎪⎪⎭⎫ ⎝
⎛D C B A ,并证明这两种情况下的)(D A +21相等。

3-5激光的谐振腔由一面曲率半径为1m的凸面镜和曲率半径为2m的凹面镜组成,工作物质长0.5m,其折射率为 1.52,求腔长L在什么范围内是稳定腔。

3-6设光学谐振腔两镜面曲率半径为R1=—1m.,R2=1.5m,试问:腔长L在什么范围内变化时该腔为稳定腔。

3-7R=100cm ,L=40cm 的对称腔,相邻纵膜的频率差是多少?3-8腔长为0.5m 的氩离子激光器,发射中心频率z 1085.5140H ⨯=ν,荧光线宽Hz 8106⨯=∆ν。

问可能存在几个纵模?相应的q 值为多少?
3-9He-Ne 激光器的中心频率z 1074.4140H ⨯=ν,荧光线宽Hz
9105.1⨯=∆ν,腔长L=1m,
问可能存在几个纵模?为获得单纵模输出,腔长最长为多少?
3-10有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反。

半反镜反射系数r=0.99.求在1500MHz 的范围内所包含的纵模数,及每个纵模的线宽(不考虑其他损耗)。

3-11求方形镜共焦腔镜面上的30TEM 模的节线位置,这些节线是等距分布吗?(可以s 0 为参数)
3-13从镜面上的光斑大小来分析,当它超过镜子额的线宽时,这样的横模就不可能存在。

试估算在腔长L=30cm,镜面线宽2a=0.2cm的He-Ne激光方形镜共焦腔中所有可能出现的最高阶横模的阶次最大?
3-15对称双凹球面腔腔长L,反射镜曲率半径R=2.5L。

光波长为 ,求镜面上的基膜光斑半径。

3-16有一凹凸腔He-Ne激光器,腔长L=30cm,凹面镜的曲率半径为R1=50cm,凸面镜的曲率半径为R2=30cm。

(1)利用稳定性条件证明此腔为稳定腔;
(2)求此腔产生的基膜高斯光束的腰斑半径及束腰位置;
(3)基膜高斯光束的腰斑发散角。

3-17有一平凹腔,凹面镜曲率半径R=5m,腔长L=1m,光波长m。

求:
5.0
(1)两镜面的基膜光斑半径;
(2)基膜高斯光束的腰斑半径及束腰位置;
(3)基膜高斯光束的远场发散角。

3-19某共焦腔He-Ne激光器,波长m
λ若镜面上基膜光斑尺寸为0.5mm,试求
=
.0u
6328
共焦腔腔长,若腔长保持不变,而波长m
λ此时镜面上光斑尺寸为多大?
=
39
.3u
3-21一台激光器如图3-50所示,一个长度为d的激光介质激光介质置于腔长为L的平凹腔中,平面镜M1为全反镜(∞
R,反射系数r1=1),球面镜M2的曲率半径为R2,透射系
=
数为r2,不考虑增益介质
(1)确定该激光器的稳定性条件
(2)求束腰的大小及位置
(3)求输出镜的光束曲率半径
4.1一对称公焦腔的腔长L=0.4m,激光波长λ=0.6328m,求束腰半径和离腰56cm处光斑半径。

ω=1.14cm,λ=10.6m,求与束腰相距30cm,10m,1000m处的光4.2某高斯光束束腰半径o
斑半径w及波前曲率半径R.
4.4CO2激光器,采用平凹腔,凹面镜的曲率半径R=2m,腔长L=1m.求它所产生的高斯光束的光腰大小和位置,共焦参量以及远场发散角。

4.6CO2激光器输出光波长 =10.6m,w0=3mm,用一个焦距F=2cm的凸透镜聚焦,求欲得到w0=20m及2.5m时透镜应该放在什么位置。

4.9如图,波长λ=1.06m的玻璃激光器的全反射镜的曲率半径R=1m距全发射镜l1=0.44m 处放置长为l2=0.1m的玻璃棒,其折射率为n=1.7。

棒的一端直接镀上半反射膜作为腔的输出端。

(1)判断该腔的稳定性。

(2)求输出光斑的大小。

(3)若输出端刚好位于F=0.1m的透镜的焦平面上,求经透镜聚焦后的光腰大小和位置。

4.12一高斯光束的光腰半径w0=2cm,波长λ=1m,从距离透镜为d的地方垂直入射焦距f=4cm的透镜上,求(1)d=0,(2)d=1m时,出射光束的光腰位置和光束发散角。

5.2某发光原子静止时发出0.488m的光,当它以0.2c速度背离观察者运动,则观察者认为它发出的光波长变为多大。

5.4CO2气体在室温下(300k)的碰撞线宽比例系数∂≈49KHZ/Pa,试估算其多普勒线宽∆vD 和碰撞线宽∆vL,并讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。

5.7计算红宝石激光器当v=v0时的峰值发射截面,已知λ0=0.6943m,∆vF=3.3*1011HZ,T2=4.2ms,n=1.7
6.
5.10根据
6.2所列红宝石的跃迁概率数据,估算w13等于多少时红宝石对λ=6994.3nm的光是透明的,并计算该系统的荧光量子效率ηL和总量子效率ηF。

(对红宝石,激光上,下能级的统计权重f1=f2=4,计算中可不计光的各种损耗。


5.13考虑某二能级工作物质,其E2能级的自发辐射寿命为ts2,无辐射跃迁寿命为tw2,假定在t=0时刻E2上的原子数密度为n20,工作物质的体积为v,自发辐射光的频率为v,求:(1)自发辐射光功率随时间t的变化规律;
(2)能级E上的原子在其衰减过程中总共发出的自发辐射光子数。

(3)自发辐射光子数与初始时刻能级E2上的粒子数之比(即 2)。

相关文档
最新文档