高分子物理

高分子物理
高分子物理

一、高分子结晶结构的主要特点与形态特征怎样?影响因素主要有哪些?主要研究方法有哪些?其在高分子结晶研究中的应用怎样?

Ⅰ结构与形态:

高分子之所以能够形成结晶,需要两个条件:(1)高分子链的构象要处于能量最低的状态;(2)链与链之间要平行排列而且能紧密堆砌。但高分子结晶不同于低分子物质的结晶。主要区别是晶体不整齐、结晶不完全、结晶速度慢及没有固定熔点。其特点有:

1.晶区与非晶区共存。由于高分子为长链结构,链上的原子通过共价键相

连接,因此结晶时链段是不能充分自由运动的,必定妨碍其作规整的堆积和排列,使得在高分子晶体内部往往含有比低分子晶体更多的晶格缺陷。如果晶格缺陷比较严重的话,会导致出现所谓的准晶结构,甚至会成为非晶区。

2.基本结构单元为分子链段。

3.晶区部分与非晶区部分并不是有着明显的分界线,每个高分子可以同时

贯穿几个晶区和非晶区,而在晶区和非晶区两相间的交替部分有着局部有序的过渡状态,即使晶区也存在许多缺陷。

4.对于缨状微束模型,晶区和非晶区相互穿插,同时存在,一根分子链可

以同时穿过几个晶区和非晶区,在晶区中分子链相互平行排列形成规整的结构但尺寸很小,在非晶区中分子链的堆砌是完全无序的;对于折叠链模型,大分子链以折叠链的形式堆砌形成结晶,由于每一根高聚物链在晶区连续折叠,相连的链段在晶片中的空间排列是相邻的;而对于插线板模型,在晶片中,同一分子相连的两链段并不像折叠链模型那样,都是相邻排列的,也有非相邻排列的,或相邻排列的链段可以属于不同的分子。

聚合物在不同的结晶条件下形成的形态极为不同的宏观或亚微观晶体,包括单晶,球晶,树枝状晶,孪晶,伸直链片晶,纤维状晶,串晶,横晶等。Ⅱ影响因素:

高分子的结晶能力主要取决于:

1.链的对称性。高分子链的对称性越高,越容易结晶;

2.链的规整性。对于主链含有手性中心的聚合物,如果手性中心的构型完

全是无规的,使高分子链的对称性和规整性都被破坏,这样的高分子一

般不能结晶;

3.共聚、支化和交联。无规共聚通常会破坏链的对称性和规整性,从而使

结晶能力降低甚至完全丧失。

聚合物的结晶形态主要受结晶条件的影响:

1.单晶:通常只能在特殊条件下(极稀溶液,缓慢结晶)得到,是具有规则

几何形状的薄片状晶体,厚度通常约10nm,大小几个至几十μm甚至更

大。

2.球晶:是高聚物结晶最常见的特征形式。当结晶性聚合物从浓溶液析出

或熔体冷却结晶时,在不存在应力或流动的情况下都倾向于生成球晶。

其直径通常为0.5~100μm,大的可达cm级。在PLM下观察,球晶呈

现特有的黑十字(Maltese cross)消光图像,是其双折射性质和对称性的

反映。

3.树枝状晶:从溶液析出结晶时,当结晶温度较低,或浓度较大,或分子

量较大时,高分子的扩散成了结晶生长的控制步骤,此时突出的棱角在

几何上学上,将比生长面上的临近的其它点更为有利,能从更大的主体

角接受结晶分子,因此棱角处倾向于在其余晶粒前头向前生长变细变尖,从而形成树枝状晶。

4.伸直链晶:主要形成于极高压力下PE的熔融结晶,或对熔体结晶加压

热处理。其它聚合物高压下也可形成伸直链片晶。

5.孪晶:大多数从溶液中生长,低分子量的高聚物结晶中特别常见。

6.纤维状晶:当存在流动熵时,高分子链的构象发生畸变,成为伸展的形

式,并沿着流动方向平行排列。

7.串晶:在搅拌情况下于较低温度结晶是,在纤维的表面上外延生长许多

片状附晶,形成类似串珠似结构的特殊结晶形态。

8.横晶:在接近熔点时慢慢结晶,IPP能形成横晶(transcystalline),在有外部

裂纹和包埋电线时,可以看到这种形态。横晶是在表面上异相成核的结

果,在这种表面上晶核密度高,且球晶垂直于表面增长。

Ⅲ研究方法及应用:

结晶度的测定方法:X-射线衍射法、量热法、红外光谱法、密度法。

1. 波谱法:

1)红外光谱(IR):结晶谱带是由结晶中相邻分子链间的相互作用形成的,

与高分子链的三维长程有序有关。这些谱带在高聚物结晶研究中具有特

别重要的意义。利用IR法可研究高聚物的结晶度、取向度,高聚物的

形变过程和固态转变,结晶动力学等。

2)13C核磁共振(13CNMR):高分辨13CNMR可用来测定聚合物的结晶度,

构象和构型、结晶结构、聚合物形态,取向过程和取向度。

3)拉曼光谱:应用Raman光谱可研究聚合物结晶的下述特性:聚合物和共

聚物链的构型和构象的研究;螺旋形成的研究;聚合物晶体和晶体层间

力的研究;织态结构的研究;熔化过程的研究;聚合物中晶区和非晶区

的取向的研究。

4)电子自旋共振波谱(ESR):ESR使用的局限性较大,在高聚物的结晶研

究中仅用来研究高聚物分子的断裂。

2.显微镜法:

1)偏光显微镜(PLM):PLM主要用来研究结晶聚合物的形态,观察球晶

结构,球晶的光学正负性,以揭示球晶中分子链的排列情形。加上热台

后,可用来测定球晶生长速率和动力学,升、降温过程中球晶的转变和

熔融。利用“浸油法”(贝克法)和“光程差法”(贝克瑞补偿器或色那

蒙补偿器),可用于测定取向高聚物的双折射,后者还可用来测定球晶

的双折射。

2)相差显微镜(PCM):利用相差显微镜可以看到不吸收光的样品上的细

胞结构。

3)透射电子显微镜(TEM):用TEM可观察到聚合物结晶的各种形态,如

球晶,片晶,树枝晶,伸直链晶等,特别是内部细微的形态与结构。利

用投影技术可以计算出分子的体积和分子量。还可以配上热台的情况下

测定球晶的生长速率和等温结晶动力学。

4)扫描电子显微镜(SEM):SEM主要用来研究聚合物的表面形态与结构。

广泛用于研究各种聚合物极其共混体系,是形态研究的强有利工具。

3.热分析:

1) 差热分析(DTA):可用来测定高聚物的结晶温度及结晶熔点,测定T g。

2) 差示扫描量热(DSC):由于能定量测定热量,除能测定各种转化温度

外,还能测定结晶热和熔化热,从而求得结晶度和结晶动力学,还可测

定样品的比热,进而求得样品的结晶度。

4. 衍射与散射:

1)广角Χ射线衍射(WAXD):WAXD广泛用于聚合物晶体的结晶研究,

已被用来进行聚合物的鉴定,晶粒取向的分析,晶粒与晶片尺寸的测定,

晶体取向类型和取向度的测定,结晶度的测定,聚合物构象,特别是螺

旋形构象的研究,聚合物形变和退火,晶体的熔融和熔融聚合物研究,

晶体中分子运动的研究,结晶动力学研究,晶胞参数的确定,单胞内原

子位置的确定等。

2)小角Χ射线散射(SAXS):SAXS主要用来测定片晶、球晶、分离相和

空隙等形态微区的外部尺寸,晶态-非晶态中间层的测定,聚合物的形变

和退火过程的研究。

3)电子衍射:电子衍射可用来测定聚合物的结晶度,单晶的晶胞参数和晶

体取向,多晶结构分析,拉伸及取向聚合物的观察等。

4)小角光散射(SALS):可用于研究高聚物的结晶过程与动力学,球

晶的大小和形态,球晶生长速率,各种结晶聚合物拉伸变形时球晶的变

形,晶粒取向等方面的研究。

5. 膨胀计法:通过测量在升温过程中聚合物体积的变化,可测定T g和T m,

通过测定恒温过程中的体积变化,可测定等温结晶动力学。

6. 密度法:利用比重瓶或密度管,密度梯度管,可求得结晶聚合物的密度,

进而计算其结晶度,是一种简单而常用的结晶度测量方法。

主要参考文献:《高分子物理(第三版)》,何曼君等,复旦大学出版社

《聚合物结构分析》,朱诚身等,科学出版社

四、影响高分子玻璃化转变的主要因素有哪些?玻璃化转变的多维性及其实质怎样?

Ⅰ Tg的影响因素:

玻璃化温度是高分子的链段从冻结到运动(或反之)的一个转变温度,而链段运动是通过主链的单键内旋转来实现的,因此,凡是能影响高分子链柔性的因素,都对Tg有影响。减弱高分子链柔顺性或增加分子间作用力的因素,如引入刚性基团或极性基团、交联和结晶都使Tg升高,而增加高分子链柔性的因素,如加入增塑剂或溶剂构成的聚合物,因为分子链可以围绕单键进行内旋转,所以一般Tg都不太高,特别是没有极性侧基取代时,其Tg就更低。当主链中引入苯

基、、引入柔性基团都使Tg降低。

1. 化学结构的影响:

1)主链结构:主链由饱和单键联苯基、萘基及均苯四酸二酰亚胺基等芳香

环以后,链上可以进行内旋转的单键比例相对减少,分子链的刚性增大,因此有利于Tg的提高。

与此相反,主链中含有孤立双键的高分子链都比较柔顺,所以Tg都比较

低,天然橡胶和许多合成橡胶的分子都属于这种结构。在共轭二烯烃聚

合物中,存在几何异构体,通常分子链较为刚性的反式异构体都具有较

高的Tg。

-CHX)n中,随

2)取代基团的空间位阻和侧链的柔性:在取代基聚合物(CH

2

着取代基-X的体积增大,分子链内旋转位阻增加,Tg将升高。在1,1-

双取代的烯类聚合物(CH

-CXY)n中,有两种情况:如果在主链的季碳原

2

子上,不对称取代时,其空间位阻增加,Tg将提高;如果在季碳原子上

作对称双取代,则主链内旋转位垒反而比单取代时小,链柔顺性回升,

因而Tg下降。但并不是侧基的体积增大,Tg就一定要提高。例如甲基丙

烯酸酯类的侧基增大,Tg范儿下降,这是因为它的侧基是柔性的。侧基

越大则柔性越大,这种柔性侧基的存在相当于起了柔顺性的作用,所以

使Tg下降。在单取代和1,1-不对称双取代的烯类聚合物中,存在旋光异

构体。通常单取代聚烯烃的不同旋光异构体,不表现出Tg的差别,而1,1-

不对称双取代烯类聚合物中,全同和间同异构体的Tg差别却十分明显。

通常,间同聚合物有高得多的Tg。

3)分子间力的影响:旁侧基团的极性,对分子链的内旋转和分子间的相互

作用都会产生很大的影响。侧基的极性越强,Tg越高。分子间氢键可使

Tg显著升高。含离子聚合物中的离子键对Tg的影响很大。

2.其他结构因素的影响:

1)共聚与共混:无规共聚的Tg介于两种共聚组分单体的均聚物的Tg之间,

随着共聚物组成的变化,其Tg值在两均聚物Tg之间作线性的或非线性

的变化。对Tg较高的组分而言,另一个Tg较低组分的引入,其作用与

增塑剂相似。如果两种单体性质相差较大,使其共聚物分子堆砌紧密程

度较差,分子链的活动性增加,因此Tg偏低;反之,如果两种单体间存

在极性基团或氢键相互作用,致使其共聚物分子链的活性降低,则Tg偏

高。

对于交替共聚物,它可以看作是有两种单体组成一个重复单元的均聚物,因此仍然只有一个Tg。

嵌段或接枝共聚物与共混的情况相似,决定性的因素是两种组分均聚物是否相容。如果能够相容,则可形成均相材料,只有一个Tg,其值介于两种组分均聚物的Tg之间;而若不能相容,则发生相分离,形成两相体系,每一个相各有一个Tg;如果两种组分均聚物部分相容,则发生Tg内移,即两个相的的Tg都向彼此靠拢的方向移动,移动多少与两个组分相容程度有关。嵌段共聚物的嵌段数目和嵌段长度,接枝共聚物的接枝密度和支链长度,以及组分的比例,都对组分的相容性有影响,因此也对Tg有影响。

2)交联:随着交联点密度的增加,聚合物的自由体积减少,分子链的活动

受到约束的程度也增加,相邻交联点(化学交联点和物理交联点全考虑

在内)之间的平均链长变小,所以交联作用使Tg升高。

3)分子量:分子量的增加使Tg升高,特别是当分子量较低时,这种影响更

为明显。当分子量超过一定程度以后,Tg随分子量的增加就不明显了。

4)增塑剂或稀释剂:增塑剂对Tg的影响是相当显著的。玻璃化温度较高的

聚合物,在加入增塑剂以后,可以使Tg明显下降。

3.外界条件的影响:

1)升温速度:由于玻璃化转变不是热力学平衡过程,测量Tg时,随着升温

速度的减慢,所得数值偏低。在降温测量中,降温速度减慢,测得的Tg

也向低温方向移动。

2)外力:单向的外力促使链段运动,因而使Tg降低,外力越大Tg降低越

多。

3)围压力:随着聚合物周围流体静压力的增加,许多聚合物的Tg线性的升

高。

4)测量的频率:由于玻璃化转变是一个松弛过程,外力作用的速度不同将

引起转变点的移动。用动态方法测量的玻璃化转变温度Tg通常要比静态

的膨胀计法得到的Tg高,而且Tg随着测量频率的增加而升高。

Ⅱ玻璃化转变的多维性及实质:

任何影响玻璃化转变的因素都可作为研究的一个方面,因而是多维的。不仅温度的变化能够引起玻璃化转变,在等温或其它一些状态下也有玻璃化转变的现象。

1.玻璃化转变压力Pg:温度恒定,压力改变导致玻璃化转变;

2.玻璃化转变的浓度C g:在不同浓度研究高聚物的模量与温度的关系时,

发现在某一浓度时有一转折点,叫Cg;

3.玻璃化转变的分子量M g:恒定温度,比容时对M作图,对PMMA在375K,

M≈15×103时,有一转化点,此即M g;

4.玻璃化转变频率Fg;

5.玻璃化转变增塑剂浓度;

6.玻璃化转变共聚物的组成。

玻璃化转变的实质是:高聚物分子运动模式的变化。玻璃化转变的时候,链段开始运动。

主要参考文献:《高分子物理(第三版)》,何曼君等,复旦大学出版社

五、常见液晶相的主要种类及其特点如何?液晶高分子的常用表征方法及其应用怎样?

Ⅰ种类及特点:

液晶高分子按高分子的形状和液晶基元位置可分为主链型、侧链型、复合主侧链型、碗形、星形、网形、以及甲壳型等七类。按液晶晶型(液晶分子在空间的排列)可分为向列相、近晶A和C、胆甾相和盘状柱相[1]。按液晶的形成条件,可分为溶致性液晶、热致性液晶、场致性液晶。按形成高分子液晶的单体结构,

可分为两亲型和非两亲型两类。两亲型单体是指兼具亲水和亲油(亲有机溶剂)作用的分子。非两亲型单体则是一些几何形状不对称的刚性或半刚性的棒状或盘状分子。

与小分子化合物液晶相比,高聚物液晶有如下特点[2]:

1) 有很高的强度和模量或很小的膨胀系数。高聚物液晶在外力场中容易发生分

子链取向;在取向方向上呈现高拉伸强度和高模量。

2) 液晶的耐热性能得到大幅度提高。由于高聚物液晶是刚性部分大多由芳环构

成,其耐热性相对比较突出。

3) 阻燃性优异。高聚物液晶分子链由大量芳环构成,除了含有酰肼键的纤维外,

其他都特别难以燃烧。

4) 电性能优异。高聚物液晶的绝缘强度高,介电常数低,而且二者都很少随温

度的变化而变化,导热和导电性能低。

5) 加工性能优异。高聚物液晶的黏度都很大,其流变行为使液晶高聚物加工过

程中自动取向。

Ⅱ表征方法及应用:

1.偏光显微镜法(PLM)

1). 用直光系统研究液晶态:各种织构

2) 用锥光系统研究液晶态:确定液晶体的光轴个数和光性正负

3 ).高分子液晶常见织构

(1)丝状织构(2)纹影织构(3)焦锥织构

(4)假各向同性织构(5)层线织构(6)条带织构

4) 向列相织构

(1)球粒织构

i→n 形成球粒并有黑十字,相当于球晶溶致液晶也存在(2)向列相纹影织构

黑刷子起始于消光黑点,有的二把,有的四把,有的六把,

有的八把。近晶型无6、8刷。

(3)反向壁织构是种特殊的丝状或纹影结构

(4)丝状织构

(5)光学假各向同性及其它均匀结构

(6)条带织构

5) 近晶型液晶相织构

高分子常见的近晶相只近晶A、B、C(C*)形成焦锥→扇形,

油丝织构,层线织构,向列相无焦锥织构

6) 胆甾相织构

与近晶相有许多相似之处,有小棒粒子、焦锥、层线、指纹、虹彩颜色。

高旋光性。

2. DTA/DSC法:

1) 转变温度测定Tkn Tni

2) ΔSni

小分子2±1kJ/mol,侧链液晶高分子7±5kJ/mol,主链液晶高分子15±7kJ/mol

3. X射线衍射:

1) 向列相:

包括一弥散的外环(d=4~5?),内环弱而弥散,说明在分子链方向无序。

与各向同性液体无实质性差异。不能作为液晶相存在的判据。主要判据应用PLM

2) 近晶相:

有尖锐的外环与内环

高度有序的高分子液晶相的确认还需辅以其它手段,如Mossbauer效应等。

4.其它表征方法:

1)混溶实验:

唯有同相的液晶物质才可无限混溶,对小分子是如此。在高分子中可用此来肯定某种液晶相的存在,但不能用来下否定的结论。

2)IR:

可用来研究转变过程。用偏振红外可求有序参数。

3)NMR:

可研究相变(由不同相态下峰形与峰宽的不同),不同相态中的分子构象4)SANS:

研究分子构象

高聚物液晶可应用于:

1.制造具有高强度、高模量的纤维材料;

2.高聚物液晶显示材料;

3.紧密温度指示材料和痕量化学药品指示剂;

4.信息储存介质;

5.分子复合材料

参考文献:[1] 潘欣蔚,热致液晶高分子的组成及合成工艺研究,复旦大学博士论文

[2] 何平笙编著,新编高聚物的结构与性能

七、试述高聚物的取向机理,比较不同取向度测定方法所得结果的异同及其物理意义?

Ⅰ取向机理:

取向:高聚物在外力作用下形变时,分子链不同程度的沿作用力方向排列,称为取向。包括分子链、链段、晶片、晶带的取向。

机理:

1.分子取向:在粘流态进行,高分子各链段协同运动,明显各向异性

2.链段取向:在橡胶(高弹)态进行,通过单键内旋转取向,各向异性不明

显。

3.取向速度:链段取向比分子链取向阻力小,速度快。

4.取向与解取向:取向过程是有序化过程;解取向是自发过程,由热运动引

起的分子趋向紊乱无序。取向态在热力学是非平衡态,取向过程快的,解取向速度也快,故链段比分子链的解取向先发生。

5. 结晶高聚物的取向:按折叠链模型,非晶区取向到一定程度后,才发生晶区的破坏与重新排列,形成新的取向晶粒;而Flory 认为,每个高分子线团周围有近200个近邻分子与之缠结,结晶时缠结部分必浓集在非晶区,故非晶区中的分子链应比晶区中的缠结的结实。取向时应是晶区先破坏,而非晶区不可能一开始就产生较大的形变。

Ⅱ 取向度的测定:

不同方法测得的取向度可能表征的是不同取向单元的取向程度。

1) X-射线衍射法(可测出结晶高聚物中的fc 以及取向度的分布)。测定原理:无规取向的结晶高聚物的X-射线衍射图是一些封闭的同心圆;拉伸取向后,同心圆变成一段段圆弧,取向程度越高,圆弧越短,极高度取向时,各圆弧缩小为排列在取向方向上的衍射点。圆弧衍射强度分布反映了晶粒取向分布,可计算出取向函数fc 。

2) 声波传播法(测得的是晶区和非晶区的平均分子链取向度)。测定原理:声波在平行于主链轴方向的传播速度快于垂直于主链方向的传播速度。

3) 光学双折射法(测得的是晶区和非晶区的平均链段取向度)。测定原理:取向高聚物在平行于取向方向的折光指数(或折射率)n p 与垂直于取向方

向的折光指数n n 不相等。可用折光指数之差来衡量取向度的大小:

双折射度: (单轴取向时)

4) 二向色性(原则上可用二向色比分别测定晶区和非晶区的取向度。偏振荧

光法只反映非晶区的取向)。当振动方向相互垂直的两偏振光分别先后通过各向异性的物体时,一偏振光被吸收,另一透过,这种光性性质叫二向色性(dichroism )。以近红外偏振光最有效。若偏振光的电矢量与基团振动方向(跃迁偶极矩)平行,吸收光将是最大,垂直则吸收为零。若分子基团振动跃迁偶极矩和分子链主轴方向一致(如顺-1,4-聚丁二烯中的双键),对单轴取向有:

A -吸收率

对双轴取向,则有三个二向色比:

A 1、A 2、A 3-X 、Y 、Z 轴方向的吸收率。Y 、Z 是拉伸方向,X -入射光方向。A 1 不易测定。

5) 拉伸比。由于取向度不易测定,常用拉伸比作为取向度的量度,但此法不

好,因为极端情况下可不产生取向,而只发生粘流。

主要参考文献:《高分子物理(第三版)》,何曼君等,复旦大学出版社

⊥-=?n n n //21+-=D D f ⊥=A A D //

12

2113312332,,A A D A A D A A D ===

何曼君第三版高分子物理答案(新版答案)

课后作业答案: 第一章 2、 W 1=250/(250+280+300+350+400+450+500+600)=250/3130=0.0799 W 2=0.0895 W 3=0.0958 W 4=0.1118 W5=0.1278 W6=0.1438 W7=0.1597 W8=0.1917 111 3910.07990.08950.09580.11180.12780.14380.15970.19170.002556 250280300350400450500600n i i M w M = ===+++++++∑424w i i M w M ==∑; 2 2 (1)12903w n n n M M M σ=-=; 22 (1)15173w w V M d =-= 4、粘度法测定分子量,得到的数据为不同浓度的溶液流经乌氏粘度计的两到标志线所需的时间。粘度一方面与聚合物的分子量有关,另一方面也与聚合物分子的结构、形态和在溶剂中的扩张程度有关。因此,粘度法测得的分子量为相对分子量。 渗透压法测定分子量,得到的数据为不同浓度的溶液对应的平衡渗透压,与溶液中溶剂和溶质的摩尔分数有关,因此测得的是数均分子量。 光散射法测定分子量,是将固定波长的光线通过不同浓度的溶液,而散射光的强度是由各种大小不同的分子所贡献的。因此测得的分子量为重均分子量。 5、如知道分子量的数量微分分布函数N (m )和质量微分分布函数W(m),则可通过下式求出n M 和w M . 01 ()()n M N m MdM W N dM M ∞ ∞= = ? ? ()w M W m MdM ∞ = ? 6、 2i i i i i i w i i i i i i i i n M W M M W M n M W = ==∑∑∑∑∑ 1 i i i i i n i i i i i i i i n M W M W W n M M = = = ∑∑∑∑∑ 1/( )i i i M W M αα η=∑ ; 以为α值在-1到1之间,因此n w M M M η≤≤ 7、今有一混合物,有1克聚合物A 和2 克同样类型的聚合物B 组成,A 的分 子量M A = 1×105 g .mol -1; B 的分子量M B = 2×105 g .mol -1。计算该混合物的

高分子物理知识点总结

高分子物理知识点总结 导读:我根据大家的需要整理了一份关于《高分子物理知识点总结》的内容,具体内容:高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。高分子链的构型有旋光异构和几何异构两种类型。旋光异构是由于主链中的不对称碳原子形成的,有全同... 高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位

高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度) 聚合物在不同的条件下结晶,可以形成不同的形态。 聚合物的单晶一般只能在极稀溶液中(浓度小于0.1%)缓慢结晶才能形成。

高分子物理名词解释

一、概念与名词 第一章高分子链的结构 高聚物的结构 指组成高分子的不同尺度的结构单元在空间相对排列,包括高分子的链结构和聚集态结构。 高分子链结构 表明一个高分子链中原子或基团的几何排列情况。 聚集态结构 指高分子整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。 近程结构 指单个大分子内一个或几个结构单元的化学结构和立体化学结构。 远程结构 指单个高分子的大小和在空间所存在的各种形状称为远程结构 化学结构 除非通过化学键的断裂和生成新的化学键才能改变的分子结构为化学结构。 物理结构 而一个分子或其基团对另一个分子的相互作用 构型 分子中各原子在空间的相对位置和排列叫做构型,这种化学结构不经过键的破坏或生成是不能改变的。 旋光异构 结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三中键接方式,即全同、间同、无规立构,此即为旋光异构。 全同立构 结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的异构体是相同的,此即为全同立构。 间同立构 结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是交替出现的,此即为间同立构。 无规立构 结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是无规则出现的,此即为无规立构。

有规立构 全同和间同立构高分子统称为有规立构。 等规度 全同立构高分子或全同立构高分子和间同立构高分子在高聚物中的百分含量。 几何异构 当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。 顺反异构 当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。 键接异构 是指结构单元在高分子链中的联接方式,在烯类单体的加成聚合过程中,所形成的各种异构。如头头、头尾异构,异构化聚合,共聚合等。 序列 在多种结构单元组成的高分子链中,一种结构单元构成的链段称为序列。 序列分布 在多种结构单元组成的高分子链中,一种结构单元构成的链段称为序列,显然各个序列的长度是不同的,这种序列的长度的多分散性称为序列分布。 数均序列长度 在多种结构单元组成的高分子链中,一种结构单元构成的链段称为序列,显然各个序列的长度是不同的,若按数量进行统计平均所得到的序列长度。 支化度 指支化点的密度或两相邻支化点间链的平均分子量 交联度 相邻两个交联点之间的链的平均分子量(Mc)或交联点的密度。 IPN 两种不同的单体各自聚合形成的网络互相贯穿,称为互穿网络高分子。 Semi-IPN 当一线形聚合物在另一聚合物网络形成时均匀分散其中,宏观上成为一整体,称为半互穿网络,即Semi-IPN。 构象 由于单键的内旋转而产生的分子中原子在空间位置上的变化叫做构象

高分子物理习题及答案

一、单项选择题 1.高分子的基本运动是( B )。 A.整链运动 B.链段运动 C.链节运动 2.下列一组高聚物分子中,柔性最大的是( A )。 A.聚氯丁二烯 B.聚氯乙烯 C.聚苯乙烯 3. 下列一组高聚物中,最容易结晶的是( A ). A.聚对苯二甲酸乙二酯 B. 聚邻苯二甲酸乙二酯 C. 聚间苯二甲酸乙二酯 4.模拟线性聚合物的蠕变全过程可采用( C )模型。 A.Maxwell B. Kelvin C. 四元件 5.在半晶态聚合物中,发生下列转变时,判别熵值变大的是( A )。 (1)熔融(2)拉伸取向(3)结晶(4)高弹态转变为玻璃态 6.下列一组高聚物分子中,按分子刚性的大小从小到大的顺序是( ADBFC )。 A.聚甲醛; B.聚氯乙烯; C.聚苯乙烯; D. 聚乙烯;F. 聚苯醚 7..假塑性流体的特征是( B )。 A.剪切增稠 B.剪切变稀 C.粘度仅与分子结构和温度有关 8.热力学上最稳定的高分子晶体是( B )。 A.球晶 B.伸直链晶体 C.枝晶 9.下列高聚物中,只发生溶胀而不能溶解的是( B )。 A. 高交联酚醛树脂; B. 低交联酚醛树脂; C.聚甲基丙稀酸甲脂 10.高分子-溶剂相互作用参数χ 1 ( A )聚合物能溶解在所给定的溶剂中 A. χ 1<1/2 B. χ 1 >1/2 C. χ 1 =1/2 11.判断下列叙述中不正确的是( C )。 A.结晶温度越低,体系中晶核的密度越大,所得球晶越小; B.所有热固性塑料都是非晶态高聚物; C.在注射成型中,高聚物受到一定的应力场的作用,结果常常得到伸直链晶体。 12. 判断下列叙述中不正确的是( C )。 A.高聚物的取向状态是热力学上一种非平衡态;

高分子物理知识点总结与习题

聚合物的结构(计算题:均方末端距与结晶度) 1.简述聚合物的层次结构。 答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。一级结构包括化学组成、结构单元链接方式、构型、支化与交联。二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。 构型:是指分子中由化学键所固定的原子在空间的几何排列。 (要改变构型,必须经过化学键的断裂和重组。) 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成 间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。 构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位 高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,

可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。 这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。 自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度)

高分子物理试卷 及答案

高分子物理试卷二答案 一、单项选择题(10分) 1.全同聚乙烯醇的分子链所采取的构象是( A )。 (A )平面锯齿链 (B )扭曲的锯齿链 (C )螺旋链 2.下列聚合物找那个,熔点最高的是( C )。 (A )聚乙烯 (B )聚对二甲苯撑 (C )聚苯撑 3.聚合物分子链的刚性增大,则黏流温度( B )。 (A )降低 (B )升高 (C )基本不变 4.增加聚合物分子的极性,则黏流温度将( C )。 (A )降低 (B )基本不变 (C )升高 5.可以用来解释聚合物的零切黏度与相对分子质量之间相互关系的理论是( B )。 (A )分子链取向 (B )分子链缠结 (C )链段协同运动 6.在下列情况下,交联聚合物在溶剂中的平衡溶胀比最大的是( C )。 (A )高度交联 (B )中度交联 (C )轻度交联 7.光散射的散射体积与θsin 成( B )。 (A )正比 (B )反比 (C )相等 (D )没关系 8.高分子的特性黏数随相对分子质量愈大而( A )。 (A )增大 (B )不变 (C )降低 (D )不确定 9.理想橡胶的泊松比为( C )。 (A )21 < (B )21 > (C ) 21 10.交联高聚物蠕变过程中的形变包括( B )。 (A )普弹形变、高弹形变和黏性流动 (B )普弹形变和高弹形变 (C )高弹形变和黏性流动 二、多项选择题(20分) 1.以下化合物,哪些是天然高分子( AC )。 (A )蛋白质 (B )酚醛树脂 (C )淀粉 (D )PS 2.柔顺性可以通过以下哪些参数定量表征( ABCD )。 (A )链段长度 (B )刚性因子 (C )无扰尺寸 (D )极限特征比 3.以下哪些方法可以测量晶体的生长速度( AB )。 (A )偏光显微镜 (B )小脚激光光散射 (C )光学解偏振法 (D )示差扫描量热法 4.有关聚合物的分子运动,下列描述正确的有( ACD )。 (A )运动单元具有多重性 (B )运动速度不受温度影响 (C )热运动是一个松弛过程 (D )整个分子链的运动称为布朗运动 (E )运动但愿的大小不同,但松弛时间一样 5.下列有关聚合物熔体流变性能的叙述,正确的有( ABDE )。 (A )大多数聚合物熔体在通常的剪切速率范围内表现为假塑性非牛顿流体 (B )在极低的剪切速率范围内,表现为牛顿流体 (C )在通常的剪切速率范围内,黏度随剪切速率升高而增大 (D )黏度随温度升高而下降 (E )在无穷大剪切速率下,在恒定温度下的黏度为常数 6.下面有关聚合物黏流活化能的描述,正确的是( AD )。

最新高分子物理重要知识点复习课程

高分子物理重要知识点 第一章高分子链的结构 1.1高分子结构的特点和内容 高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。 英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。 与低分子相比,高分子化合物的主要结构特点是: (1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布; (2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性; (3)高分子结构不均一,分子间相互作用力大; (4)晶态有序性较差,但非晶态却具有一定的有序性。 (5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。 高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1): 表1-1高分子的结构层次及其研究内容 由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。 此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构 高分子链的化学结构可分为四类: (1)碳链高分子,主链全是碳以共价键相连:不易水解 (2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性 (4)梯形和螺旋形高分子:具有高热稳定性 由单体通过聚合反应连接而成的链状分子,称为高分子链。聚合度:高分子链中重复单元的数目; 除结构单元的组成外,端基对聚合物的性能影响很大:提高热稳定性 链接结构是指结构单元在高分子链的联接方式(主要对加聚产物而言,缩聚产物的链接方式一般是明确的)。

同济大学高分子物理习题及解答

第一章 高分子链的结构 1 写出由取代的二烯(1,3丁二烯衍生物) CH 3CH CH CH CH COOCH 3 经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体? 解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: CH CH CH CH CH 3 COOCH 3n 即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。 2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 4氧化,可得到丙酮和乙酸。由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论? 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基: CH 2 CH OH CH 2 CH OH CH 2 CH OH CH 2O CH 2 CH 2 O CH CH 2 CH 2 CH OH 同时若用HIO 4氧化处理时,可得到乙酸和丙酮: CH 2 CH CH 2 OH CH CH 2 OH CH OH HIO 4 CH 3C OH + CH 3C O CH 3 若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 4氧化处理时,也得不到丙酮: CH 2 CH CH CH 2 CH 2 CH CH 2O CH O 2 CH CH 2 CH 2 CH OH

CH 2 CH CH OH CH 2CH 2 CH OH OH 4 CH 3C OH O + OH C CH 2CH 2C OH 可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。 3 氯乙烯( CH 2CH Cl )和偏氯乙烯( CH 2CCl 2 )的共聚物,经脱除HCl 和裂解后,产物有: ,Cl , Cl Cl , Cl Cl Cl 等,其比例大致为10:1:1:10(重量),由以上 事实,则对这两种单体在共聚物的序列分布可得到什么结论? 解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元): CH 2 CH Cl CH 2 C Cl Cl + (V) (D) V V V V V D D D V D D D 这四种排列方式的裂解产物分别应为:,Cl , Cl Cl , Cl Cl Cl 而实验得到这四种裂解产物的组成是10:1:1:10,可见原共聚物中主要为: V V V 、 D D D 的序列分布,而其余两种情况的无规链节很少。 4 异戊二烯聚合时,主要有1,4-加聚和3,4-加聚方式,实验证明,主要裂解产物的组成与聚合时的加成方法有线形关系。今已证明天然橡胶的裂解产物中 C H 3C CH 3 2 C H 3CH C H 3CH 2 (A) (B) 和 的比例为96.6:3.4,据以上事实,则从天然橡胶中异戊二烯的加成方式,可得到什么结论? 解:若异戊二烯为1,4-加成,则裂解产物为:

高分子物理课后习题答案(详解)

高分子物理答案详解(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 等。 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。 3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象? 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶? 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。

6.从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯睛与碳纤维; (2)无规立构聚丙烯与等规立构聚丙烯; (3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。 (4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。 (1)线性高分子梯形高分子 (2 非晶高分子结晶性高分子 (3)柔性 (4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链C 原子中约含15~35 个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。 7.比较下列四组高分子链的柔顺性并简要加以解释。 解:

高分子物理课后答案(何曼君)

1 写出由取代的二烯(1,3丁二烯衍生物) CH 3CH CH CH CH COOCH 3 经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体 解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: CH CH CH CH CH 3 COOCH 3n 即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。 2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 氧化,可得到丙酮和乙酸。由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基: CH 2 CH OH CH 2 CH OH CH 2 CH OH CH 2 CH 2 O CH CH 2 CH 2 CH OH 同时若用HIO 氧化处理时,可得到乙酸和丙酮: CH 2 CH CH 2 OH CH CH 2 OH CH OH 4 CH 3C OH O + CH 3C O CH 3 若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 氧化处理时,也得不到丙酮: CH 2 CH CH OH CH 2 CH 2 CH OH OH CH O CH O 2 CH CH 2 CH 2 CH OH CH 2 CH CH OH CH 2CH 2 CH OH OH 4 CH 3C OH O + OH C O CH 2CH 2C OH O 可见聚乙烯醇高分子链中,单体主要为头- 尾键接方式。 3 氯乙烯(CH 2CH Cl )和偏氯乙烯( CH 2CCl 2 )的共聚物,经脱除HCl 和裂解后,产物 有: ,Cl ,Cl Cl ,Cl Cl Cl 等,其比例大致为10:1:1:10(重量), 由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论 解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元): CH 2 CH Cl CH 2 C Cl Cl + (V) (D)

高分子物理重要知识点

高分子物理重要知识点 (1人评价)|95人阅读|8次下载|举报文档 高分子物理重要知识点 (1人评价)|96人阅读|8次下载|举报文档 1 高分子物理重要知识点第一章高分子链的结构 1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对

分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容 名称内容备注链结构一级结构(近程结构)结构单元的化学组成键接方式构型(旋光异构,几何异构)几何形状(线形,支化,网状等)共聚物的结构指单个大分子与基本结构单元有关的结构二级结构(远程结构)构象(高分子链的形状)相对分子质量及其分布指由若干重复单元组成的链段的排列形状三级结构(聚集态结构、聚态结构、超分子结构)晶态非晶态取向态液晶态织态指在单个大分子二级结构的基础上,许多这样的大分子聚集在一起而成的聚合物材料的结构由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m 高 熔融熵?S m :与分子间链柔顺性有关。分子链越刚,?S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系: 结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物, 在该体系中存在两种或两种以上不同的聚合物, θ θθ22sin 2 3 1)1cos 3(2 1-=-=f

高分子物理习题册 (8)

第八章 8.1 黏弹性现象与力学模型 8.1.1 黏弹性与松弛 例8-1 根据下表数据,表中ν为松弛过程的频率,绘图并求出这一过程的活化能。 T(℃) -32 -11 5 21 44 63 85 ν 1.9 4.0 7.1 15 21 28 57 (104S-1) 解:Arrhénius方程可以写作: ν=1/τ=ν0exp[-E/(RT)] 因而lnν=lnν0-E/(RT) E/R=2453K E=2453×8.31J·mol-1=2.04KJ·mol-1 图8-9 从lnν~1/T曲线求松弛过程的活化能 8.1.2 静态黏弹性与相关力学模型 例8-2 讨论下述因素对蠕变实验的影响。 1.相对分子质量;b.交联;c.缠结数 解:a.相对分子质量:低于Tg时,非晶聚合物的蠕变行为与相对分子质量无关,高于Tg时,非晶或未交联的高聚物的蠕变受相对分子质量影响很大,这是因为蠕变速率首先决定于聚合物的黏度,而黏度又决定于相对分子质量。根据3.4次规律,聚合物的平衡零剪切黏度随重均相对分子质量的3.4次方增加。于是平衡流动区的斜率随相对分子质量增加而大为减少,另一方面永久形变量也因此减少。相对分子质量较大(黏度较大)蠕变速率较小(图8-10)。 b.交联:低于Tg时,链的运动很小,交联对蠕变性能的影响很小,除非交联度很高。但是,高于Tg时交联极大地影响蠕变,交联能使聚合物从黏稠液体变为弹性体。对于理想的弹性体,当加负荷时马上伸长一定量,而且伸长率不随时间而变化,当负荷移去后,该聚合物能迅速回复到原来长度。当交联度增

加,聚合物表现出低的“蠕变”(图8-10)。轻度交联的影响就好像相对分子质量无限增加的影响,分子链不能相互滑移,所以变成无穷大,而且永久形变也消失了。进一步交联,材料的模量增加,很高度交联时,材料成为玻璃态,在外力下行为就像虎克弹簧。 c. 缠结数:已发现低于一定相对分子质量时,黏度与相对分子质量成比例。因为这一相对分子质量相应的分子链长已足以使聚合物产生缠结。这种缠结如同暂时交联,使聚合物具有一定弹性。因此相对分子质量增加时,缠结数增加,弹性和可回复蠕变量也增加。但必须指出聚合物受拉伸,缠结减少,因此实验时间愈长则可回复蠕变愈小。 图8-10 相对分子质量和交联对蠕变的影响 例8-3 一块橡胶,直径60mm,长度200mm,当作用力施加于橡胶下部,半个小时后拉长至300%(最大伸长600%)。问:(1)松弛时间? (2)如果伸长至400%,需多长时间? 解:(1)(蠕变方程) 已知 (注意:ε为应变,而非伸长率λ,ε=λ-1) ∴ (2) 例8-4 有一未硫化生胶,已知其η=1010泊,E=109达因/厘米2,作应力松弛实验,当所加的原始应力为100达因/cm2时,求此试验开始后5秒钟时的残余应力。 解:∵ ∴

高分子物理课后答案

第9章聚合物的流变性 1.什么是假塑性流体绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈现 假塑性流体的性质试用缠结理论加以解释。 答:(1)流动指数n<1的流体称为假塑性流体; (2)略 2.聚合物的粘性流动有何特点为什么 3.为什么聚合物的粘流活化能与分子量无关 答:根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。形象的说,这种流动的类似于蚯蚓的蠕动。因而其流动 活化能与分子的长短无关。,由实验结果可知当碳链不长时,随碳数的增加而增加,但当碳数大于30时,不再增大,因此聚合物超过一定数值后,与相对分子质量无关。 4.讨论聚合物的分子量和分子量分布对熔体粘度和流变性的影响。 答:低切变速率下,当时,略依赖于聚合物化学结构和温度,当 时,与聚合物化学结构,分子量分布及温度无关;增大切变速率,链缠结结构破坏程度增加,分子量对体系粘度影响减小。 聚合物熔体非牛顿流动时的切变速率随分子量加大向低切变速率移动,剪切引起的粘度下降,分子量低的试样也比分子量高的试样小一些。分子量相同时分子量分布宽的聚合物熔体出现非牛顿流动的切变速率比分布窄的要低的多。 5.从结构观点分析温度、切变速率对聚合物熔体粘度的影响规律,举例说明这一规律在成型加工中的应用。 答:a.温度升高,粘度下降,在较高温度的情况下,聚合物熔体内自由体积相当大,流动粘度的大小主要取决于高分子链本身的结构,即链段跃迁运动的能力,一般分子链越刚硬,或分子间作用力越大,则流动活化能越高,这类聚合物是温

敏性的;当温度处于一定范围即Tg

高分子物理期末知识点总结

UNIT1.碳链高分子:主链全部由C以共价键相连接;杂链:主链含C,以及O、S等两种或以上的原子以共价键相连接;构造:聚合物分子的各种形状(线形、枝化、交联、梯形、螺旋)构型:由化学键固定的原子在空间几何排列;构像:原子或原子团绕单键内旋转所产生的空间排布。旋光异构体:结构单元为-CH2-CHX-型,包含一个不对称C,所形成的异构体;分为全同:取代基都在主平面一侧或都由一种旋光异构单元键接而成;间同:相间分布于或两种交替链接;无规:不规则分布或两种无规链接。链段:高分子链中的单键旋转时互相牵制,一个键转动,要带动附近的一段链一起运动,把若干个键组成的一段链作为一个独立运动的单元。自由连结链:一个孤立高分子链在旋转时不考虑键角限制和位垒的障碍,每个分子由足够过的不占有体积的化学键自由结合而成的,每个键在任方向取向几率相等的理想模型。自由旋转链:分子链中每个键在键角所允许的方向自由转动,不考虑空间位阻对旋转的影响;等效自由:将一个原来有n个键长为l键角固定旋转不自由的键组成的链可视为Z个长度为b的自由结合链段的的高分子链;链的柔性:分子链能够改变其构象的性质.(不但高分子本身是一个独立运动单元,而且在每个高分子中还存在能独立运动的小单元,他们热运动的结果 使链有强烈的卷曲倾向,这是大分子链具备柔性的最根本内在原因)柔性实质:构象数增,S增,分子链卷曲程度增,分子链在无外力作用下总是自发采取卷曲形态,使构象熵最大。平衡态柔性:热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差ΔUtg。动态柔性:在外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式和旁式构象之间的位垒ΔUb与外场作用能之间的关系(ΔUb与kT).影响柔性的因素:分子结构:a主链结构1主链全部由单键组成,一般柔性较好,PE PP;不同单键,柔性不同Si-O>C-N>C-O>C-C.2有孤立双键,柔性大,顺式聚1,4-丁二烯;共轭双键,不能内旋转,分子刚性,聚乙炔,聚苯;有芳杂环,柔性差,芳香尼龙.b取代基1极性大作用力大,内旋转受阻,柔性差,PAN聚氯乙烯>聚1,2-二氯乙烯.3极性取代基的分布对柔性有影响,聚偏二氯乙烯>聚氯乙烯.4非极性取代基,基团体积大,空间位阻大,内旋困难,柔性差,PS1/2不良溶剂。χ1kT的物理意义:把一个溶剂分子放入高聚物中时引起的能量变化。高分子aq与小分子aq区别?什么时候可当成理想aq?比小分子aq溶解的缓慢的多,粘度明显大于小分子aq,性质存在相对摩尔质量的依赖性,而分子量有分散性,故研究很复杂;当链段与溶剂相互作用产生的混合热和混合熵相互抵消时。X1=1/2,U1e=0的溶液才能将此高分子溶液看做是理想溶液,但即使是X1=1/2,高分子溶液的ΔHm也不为0.符合理想溶液条件的高分子溶液混合自由能来源于混合热和混合熵。X1=1/2的高分子溶液宏观上热力学性质遵从理想溶液规律,其微观状态与小分子理想溶液有本质区别。过量化学位:Flory-Krigbaum稀溶液理论:1高分子稀溶液中链段的分布是不均匀的,而是以链段云得形式分布在溶剂中,每一链段云可近似球体.2在连段云内,以质心为中心,链段的径向分布符合高斯分布.3链段云彼此接近要引起自由能的变化,每个高分子链段云有其排斥体积。(引入热参数,令,定义θ=)θ温度:超额混合热/超额混合熵;θ溶液:当T=θ时,Δu1E为零,链段间与溶剂间作用能抵消,无扰状态,排斥体积为零;当T=θ,此时的高分子aq,在宏观上看热力学性质遵从理想aq,但微观状态仍是非理想,因混合热和混合熵均不为零,只是两者的效应刚好抵消,所以Δu1E=0,这一条件为θ条件或θ状态,(θ条件:选择合适的溶剂和温度,可以使溶剂分子对高分子构象所产生的干扰忽略不计(此时高分子“链段”间的相互作用等于”链段”与溶剂分子间的相互作用).在θ条件下测得的高分子尺寸为无干扰尺寸,只有无干扰尺寸才是高分子本身结构的反应)对应为θ溶剂,对应温度为θ温度。。第二维利系数A2:与χ1一样,表征高分子链段与溶剂分子之间的相互作用。凝胶:交联聚合物溶胀体,不熔不溶,既是聚合物浓溶液,又是高弹性固体;冻胶:由范德华力交联形成,加热或拆散可拆散范德华力交联而溶解。 UNIT4.数均分子量Mn:按物质的量统计的平均分子量;重均分子量Mw:按质量统计的平均分子量;Z均分子量Mz:按Z量的统计平均分子量;黏均分子量Mη:用稀溶液黏度法测得的平均分子量(z ≥w≥η≥n)。单分散:z=w=n。为什么z≥w≥η≥n?因为Mn靠近低分子量部分,则低分子量部分对其影响大,Mw靠近高分子量部分,则高分子量对其影响较大,一般用Mw表征比Mn更恰当,聚合物熔体粘度依赖于高分子量部分。分子量测定方法:端基分析(Mn)、沸点升高或冰点降低(Mn)、气相渗透法VPO(Mn)、渗透压法(Mn)、黏度法(Mη)。沸升冰降测的是Mn?是的,通过热力学推导,可知,溶液的沸点升高值ΔTb和冰点降低值ΔTf正比于溶液浓度,即正比于溶质分子数,而与溶质的分子量成反比,由此可推导出高分子数均分子量Mn。稀溶液依数性:沸点升高、冰点下降、蒸汽压下降、渗透压等数值仅与溶液中的溶质数有关,而与溶质的本性无关。特性粘度[η](表示高分子aq的c趋于0时,单位浓度的增加对增比浓度或相对粘度对数的贡献);体积排除色谱法(SEC):又称凝胶渗透色谱法(GPC),分离机理:在分离作用由于大小不同的分子在色谱柱中的多孔性填料中占据的空间体积不同造成的。色谱柱中装填表面和内部有着各种大小不同的空洞和通道的多孔填料,以待测样品的某种溶剂充满柱子,最大的分子,只能留在填料颗粒之间,走的路径最短,先被溶剂冲出来,较大的分子,走颗粒间的路径和颗粒内较大的孔,路径长一些,较后被冲出来,较小的分子,颗粒间、颗粒内的大孔,还进入颗粒内的小孔,走的路径最多,最后被溶剂冲洗出来(大分子Ve小,小分子Ve大)SEM纵坐标记录洗提液与纯溶剂折射率差值Δn,在极稀溶液中,相当与Δc(洗提液的相对浓度),横坐标是保留体积Vr(淋出体积Ve),表征分子尺寸大小。保留体积小,分子尺寸大。 VPO:加入不挥发溶质沸点升高冰点降低蒸汽压下降。由于溶液的依数性,沸点升高值正比于浓度反比与分子量。由于高分子溶液热力学性质与理想溶液偏差,只有无限稀释才符合。所以测各种浓度,外推在恒温密闭容器内充有溶剂饱和蒸汽,将一滴不挥发溶质的溶液滴1和溶剂滴2悬在这个饱和蒸气中。由于1中溶剂的蒸气压较低,就会有溶剂分子从饱和蒸气相凝聚到溶液滴上。并放出凝聚热,使1温度升高。由于依数性,达平衡时,两液滴温差与溶质摩尔分数成正比。ΔT=AX2,ΔT温度差,X2溶质摩尔分数。 UNIT5.分子运动及转变特点:①运功单元的多重性A高分子链的整体运动:分子分子链质量中心的相对移动。B链段运动:区别于小分子的特殊运动形式。质量中心不变,一部分链段通过单键内旋转而相对于另一部分链段运动,使大分子可以伸展或卷曲。C链节、支链、侧击的运动。D晶区内的分子运动②分子运动的时间依耐性:外因作用下,聚合物从一平衡态通过分子运动过渡到另一与外界条件相连的新的平衡总需要时间,原因是整个分子链,链段、链节等运动单元的运动都需要克服内摩擦阻力,不可能瞬间完成③分子运动的温度依耐性:升温,一方面运动单元热运动能量提高,另一方面由于体积膨胀,分子距离增加,运动单元活动空间增大,松弛加快,松弛时间减小。聚合物分子运动特点:a.运动单元的多重性,包括整分子链平移、链段运动、链节支链侧基等小尺寸单元的流动、原子在平衡位置的振动、晶区的运动b.高分子运动的时间依赖性c.分子运动的温度依赖性松弛时间:橡皮由Δx(t)变为Δx(0)的1/e倍时所需要的时间,表征松弛过程快慢。(开始较快,后来越慢)。论述自由体积理论:液体或固体,它的整个体积包括两个部分:一部分是为分子本身占据的,称占有体积;另一部分是分子间的空隙,称自由体积,它以大小不等的空穴无规分布在聚合物中,提供了分子的活动空间,使分子链可能通过转动和位移而调整构象。在玻璃化温度以下,链段运动被冻结,自由体积也处于冻结状态,其空穴尺寸和分布基本上保持固定。聚合物的玻璃化温度为自由体积降至最低值的临界温度。在此温度下,自由体积提供的空间已不足以使聚合物分子链发生构象调整,随着温度升高,聚合物的体积膨胀只是由于分子振幅、链长等的变化,即分子占有体积的膨胀,而在玻璃化温度以上,自由体积开始膨胀,为链段运动提供了空间保障,链段由冻结状态进入运动状态,随着温度升高,聚合物的体积膨胀除了分子占有体积的膨胀之外,还有自由体积的膨胀,体积随温度的变化率比玻璃化温度以下为大。为此,聚合物的比体积-温度曲线在Tg时发生转折,热膨胀系数在Tg发生突变。影响Tg的因素:①主链的柔性:柔性越高,Tg高②取代基:侧基极性强,Tg高;极性基数高,Tg高;取代基位阻高,内旋转受阻程度高,Tg高③构型:全同Tg较低;顺反异构中,反式分子柔性差,Tg较高④分子量:M较低时,M高,Tg高;当分子量超过一定值后,Tg不再依赖分子量⑤外力速率:张力可强迫链段沿张力方向运动,Tg低,压力使分子链运动困难,Tg升高;冷却速率快,Tg高。另外:调节Tg手段:增塑、共聚、共混。聚合物Tg开始时随相对分子质量增大而升高,当达到一定值之后,Tg变为与相之无关的常数?相对分子质量对Tg的影响主要是链端的影响,处于链末端的链段比链中间的链段受的牵制要小些,因而有比较剧烈的运动,链端浓度的增加预期Tg会降低,链端浓度与数均相对分子质量成反比,超过临界相对分子质量后链端的比例很小,其对Tg影响可以忽略。聚合物中加入单体、溶剂、增塑剂等低分子物时导致Tg下降:Tg具有可加和性,这些物质Tg较高分子低许多,所以混和Tg比聚合物低。分子结构与结晶能力的关系(为什么结晶聚合物结晶不完整?)a.链的对称性、规整性越高,结晶能力越强b.共聚,无规共聚降低结晶能力c.链柔性差降低结晶能力,柔性太好不能结晶d.分子间作用力过大降低结晶能力e.交联降低结晶能力f.分子量增大限制结晶。{高压力下形成的结晶高聚物结晶体密度高,拉应力可以加速高聚物结晶}。结晶聚合物边熔融边升温的现象是由于试样中含有完善程度不同的晶体。结晶时,如果降温程度不是足够的慢,随着熔体黏度的增加,分子链的活动性减小,来不及作充分的位置调整,则结晶停留在不同的阶段上;等温结晶过程中,也存在着完善程度不同的晶体。这时再升温,在通常的升温速度下,比较不完善的晶体将在较低的温度下熔融,比较完善的晶体则要在较高的温度下熔融,因而出现较宽的熔融范围。结晶过程的特点:结晶温度区间在Tg与Tm之间;同一聚合物在同一结晶温度下,结晶速度随结晶时间过程而变化;结晶聚合物结晶不完善,没有精确的熔点,存在容限。 UNIT6.什么情况下符合虎克定律?在形变很小时,交联橡胶的应力应变关系才符合虎克定律。 UNIT7.五个区域:玻璃态区、玻璃—橡胶转变区、橡胶—弹性平台区、橡胶流动区、液体流动区。力学松弛:聚合物的各种性能表现出对时间的依赖性。蠕变:一定的温度、较小恒应力持续作用下,材料应变随时间增加而增大的现象(包括瞬时可逆的普弹形变ε1、滞后可逆高弹形变ε2、不可逆的黏性形变ε3;Tg以下,链段运动松弛时间很长,ε2很小;材料本体粘度很大,ε3很小;因此蠕变主要由ε1构成,蠕变量很小。Tg以上,链段运动的松弛时间变短,导致ε2较大,材料的本体粘度η3仍很大,ε3较小,蠕变主要由ε2构成,夹杂少量ε3。同时,ε 3 随时间的发展而发展,导致总形变不断发展)。应力松弛:恒定温度和形变保持不变时,聚合物内部应力随时间增加而逐渐衰减的现象;产生原因:当聚合物受到外力作用发生变形时,分子链段要沿着外力方向伸展与外力相适应,因而在材料内部产生内应力。但是链段的热运动又可以使某些链缠结散开,以至于分子链之间可以产生小的相对滑移;同时链段运动也会调整构象使分子链逐渐地回复到原来蜷曲状态,从而使内应力逐渐地消除掉。(当温度远小于Tg时,链段运动的能力很弱,应力松弛非常慢;当温度太高时,应力松弛过程进行太迅速。只有在Tg温度附近几十度的范围内,应力松弛现象才比较明显)。滞后:聚合物在交变应力作用下形变落后于应力变化的现象;产生原因:链段的运动受到内摩擦阻力作用的结果,当外力变化时,链段的运动受到内摩擦阻力的作用跟不上外力的变化,所以形变总是落后于应力,滞后了一个相位差δ。(外力作用频率适中,链段一方面可以运动,但又不能完全跟上应力的变化,这时滞后现象才能充分体现出来)力学损耗或内耗:在有滞后现象存在时,由于形变的发展落后于应力的变化,当第一周期的形变还没有完全恢复时,材料又会受到第二个周期应力的作用,因此每个周期都会有一部分弹性储能没有释放出来,这部分能量最终转变为热能,以热量的形式释放出来,造成损耗。影响因素:1温度a温度低,分子运动弱,不运动摩擦消耗能量小,内耗小.b温度高,分子运动快,应变跟得上应力变化,δ小,内耗小.c温度适中,跟不上应力变化, δ大,内耗大.2频率a频率快,分子运动跟不上应力的交换频率,摩擦消耗能量小,内耗小b频率很慢,应变跟得上应力变化, δ小,内耗小c频率适中,分子可以运动但跟不上应力频率变化, δ大,内耗大.3次级运动的影响:次级运动越多,所做的功可以通过次级运动耗散掉.时温等效原理:对于同一个力学松弛过程,既可以在较高温度和较短的外力作用时间下表现出来,也可以在较低温度和较长的外力作用时间下表 现出来。即:升高温度与延长外力作用时间对分子运动是等效的,对聚合物的粘弹性是等效的。 UNIT8.非晶态聚合物应力应变曲线:1.弹性形变区:直线斜率即为杨氏模量,此阶段普弹性,由于高分子键长键角和小运动单元的变化产生。2.屈服阶段:应变软化点,超过此点,大外力使本来冻结的链段开始运动,为大形变提供条件。3.大变形区:高弹性形变区,本质上与高弹形变一样是链段运动,它在外力作用发生。4.应变硬化区:分子链取向排列使强度提高。5.断裂。。屈服点以后,材料大变形的分子机理主要是g的链段运动,即在外力作用下,玻璃态p原来被冻结的链段开始运动,g链的伸展提供了材料的大变形,此时,p处于玻璃态,即使去除外力形变不能自动回复,只有升到 Tg以上链段运动解冻,分子链重新蜷曲,形变才可回复)。

相关文档
最新文档