华东师范大学 数学分析 第18章习题解答

华东师范大学 数学分析 第18章习题解答
华东师范大学 数学分析 第18章习题解答

第十八章 隐函数定理及其应用

§1 隐函数

1. 方程xy e y x =+sin cos 能否在原点的某邻域内确定隐函数()x f y =或()y g x =?

分析:隐函数是否存在只须验证题目是否满足隐函数存在定理的条件.

解 令()xy e y x y x F -+=sin cos ,,则有 (1) ()y x F ,在原点的某邻域内连续; (2) ()00,0=F ;

(3) xy y xy x xe y F ye x F -=--=cos ,sin 均在原点的上述邻域内连续; (4) ()()00,0,010,0=≠=x y F F .

故由隐函数存在定理知,方程xy

e y x =+sin cos 在原点的某邻域内能确定隐函数()x

f y =.

2. 方程1ln =++xz

e

y z xy 在点()1,1,0的某邻域内能否确定出某一个变量为另外两个变

量的函数?

分析: 本题的解题思路与1题一样.

解 令()1ln ,,-++=xz

e

y z xy z y x F ,则

(1) ()z y x F ,,在点()1,1,0的某邻域内连续; (2) ()01,1,0=F ; (3) xz z y xz

x xe y F y

z

x F ze y F +=+

=+=ln ,,均在原点的上述邻域内连续; (4) ()()()01,1,0,011,1,0,021,1,0=≠=≠=z y x F F F . 故由隐函数存在定理知,方程1ln =++xz

e

y z xy 在点()1,1,0的某邻域内能确定隐函数

()z y f x ,=和()z x g y ,=.

3. 求出下列方程所确定的隐函数的导数: (1) 043342=-+y x y x ,求

dx dy ; (2) x y y x arctan ln 2

2=+,求dx

dy ; (3)

,02=+--z

xy

e z e

求y x z z ,; (4) ()0,2

22

2

>-+=

=-+a a

y a x u ye y a a u

,求

22,dx

y

d dx dy ; (5) 05422222=--+-++z y x z y x ,求y x z z ,; (6) ()xyz z y x f z ,++=,求

z

y y x x z ??????,. 分析: 求隐函数的导数(偏导数)通常有三种方法:①用隐函数求导公式;②对所给方程(组) 两边直接求导(偏导数);③用全微分.另一种方法是将隐函数显化(如果可能而且又方便的话),但一般来说这种方法是不行的,只有在特殊条件下才可能使用.

解 (1) 解法1 令()43,3

4

2

-+=y x y x y x F ,则

3

3

122y x xy F x +=,2

429y x x F y +=,所以.91222

33

2y x x y x y F F dx dy y x ++-=-=

解法2 方程两边对x 求导,得0912224332

=+++dx

dy y x y x dx dy x

xy , 解得2

33

29122y

x x y x y dx dy ++-=. (2) 解法1令()x y y x y x F arctan

ln ,2

2

-+=,则222222y

x y

x y x y y x x F x ++=+++=, 2

22222y x x y y x x y x y F y +-=+-+=

,所以()y x y x y x F F dx dy

y x ≠-+=

-=.

解法2 方程两边对x 求导,得

2

2

2

22211

2221x y dx dy x

x y y x dx dy y

x y x -??

? ??+=+++,整理得

2

222y x y

dx dy

x y x dx dy y

x +-=++,所以()y x y x y x dx dy ≠-+=

.

解法3 方程两边分别微分,得

2

222y

x ydx

xdy y x ydy xdx +-=++,解得()y x y x y x dx dy ≠-+=.

(3) 解法1设()z xy e z e z y x F +-=-2,,,则z z xy y xy x e F xe F ye F +-=-=-=--2,,,

所以2

;2-=-=-=-=--z

xy

z y y z xy z x x e xe F F z e ye F F z . 解法2 方程两边分别对y x ,求偏导,得:

02,02=+--=+----y z

y xy

x z x xy

z e z xe

z e z ye

,所以2

;2-=-=--z xy

y z

xy x e xe z e ye z . 解法3 方程两边微分,得

()02=+----dz e dz xdy ydx e z xy ,即()

dy xe dx ye dz e xy xy z --+=-2,所以

dy e xe dx e ye dz z xy z xy 22-+-=--,由全微分公式得2

;2-=-=--z xy

y z xy x e xe z e ye z .

(4) 令()a

y a x ye

y a a y x F 2

222,-+--+

=,则

()2

222,y a a y ye e y a y F e a y F u

u y u x ------=-=,于是 (

)

(

)()

2

2

2

22

22

2

2

22

2y

a y y a y

a a y y

y

a a a y a ay y a a F F dx dy

y

x --

=--+

+-+-

--

-+-=-=,

()

2

22

22

2222

222y

a

y

a y a dx dy y a y y dx dy y a dx dy dx d dx y d -=

-----=??

?

??=.

(5) 令()5422,,22--+-+=z y x y x z y x F ,则()()()22,12,12-=+-=z F y F x F z y x , 所以2

1

,21-+-

=---=-

=z y z z x F F z y z x x . (6) 把z 看成y x ,的函数,方程两边对x 求偏导数,则有

()()2

12

12111xyf f yzf f z z xy yz f z f z x x x x --+=

??+?++?=.

把x 看成z y ,的函数,方程两边对y 求偏导数,则有

()()().110212121yzf f xyf f x xz x yz f x f y y y ++-=

?+??++?= 把y 看成z x ,的函数,方程两边对z 求偏导数,则有

()()2

12121)

(111xzf f xyf f y y xz xy f y f z z z ++-=

??+?++?=.

4. 设2

2

y x z +=,其中()x f y =为由方程12

2

=+-y xy x 所确定的隐函数,求

22,dx

z d dx dz . 解 由12

2

=+-y xy x 得,y x y x dx dy 22--=,又由2

2y x z +=,得()

y

x y x dx dy y x dx dz 222222--=+=. 故()()

()()

2

2222226224221224y x x y x y x y x dx dy y x y x dx dy y x dx dz dx d dx z d -+--=-?

?? ??----??? ??-=??? ??=. 5. 设2

2

2

z y x u ++=,其中()y x f z ,=是由方程xyz z y x 33

3

3

=++所确定的隐函数,

求x u 及xx u .

解 令()xyz z y x z y x F 3,,3

3

3

-++=,得2

2z xy yz

x F F z z x x --=

-=.于是 ???

?

??--+=?+=222222z xy yz zx x z z x u x x ,

(

)()()()()

(

)

()

2

23332222223222212z xy xya z x y xz z xy zz y yz zx z xy yzz zx x z u x x x xx --++=???

?????------+?+=

6. 求由下列方程所确定的隐函数的偏导数:

(1) ()z y x e z y x ++-=++,求z 对于y x ,的一阶偏导数和二阶偏导数;

(2)()0,,=+++z y x y x x F ,求22,,x

z

y z x z ??????和.

解 (1) 令()()

z y x e

z y x z y x F ++--++=,,,则

()0,11===-==?==+=++-yy xy xx y x z y z y x x z z z z z F F e F .

(2) 等式两边分别对y x ,求偏导数,得

()()???? ??++-=?=++=+++32132321101,01F F F z z F F z F F F x y x ,???

?

??+-=321F F z y . 再将x z 对x 求偏导数,得

()()[]()()[]{}x x x x z F F F F F z F F F z F F F F F z ++++-+++++++-

=1111

33323121232221131211323

2 =()()()(){}

3322

123133212212112

32

3221F F F F F F F F F F F F F ++++-++-

. 7. 证明:设方程()0,=y x F 所确定的隐函数()x f y =具有二阶导数,则当0≠y F 时,有

3y

x

y yy xy

x xy xx

y F F F F F F F F y F =''?. 证 直接对原方程接连求导两次

()0,0≠-

='?='?+y

y

x y x F

F F y y F F .,01

1122=''++--

y F F F F F F F F F F F y yy x y

yx x y xy x y xx

于是0

22

2

3

y

x

y yy xy

x xy xx

yy x xx y xy y x y F F F F F F F F F F F F F F F y F =--=''?. 8. 设f 是一元函数,试问应对f 提出什么条件,方程()()()y f x f xy f +=2在点()1,1的邻域内就能确定出唯一的y 为x 的函数?

解 设()()()()xy f y f x f y x F 2,-+=,则()()()()xy f x y f F xy f y x f F y x '-'='-'=2,2,且()()()()()()()()11211,1,012111,1f f f F f f f F y '-='-'==-+=.因此,当()x f '在1=x 的某邻域内连续,且()01≠'f 时,方程()()()y f x f xy f +=2就能唯一确定y 为x 的函数.

§2 隐函数组

1. 试讨论方程组?????=++=+.

2,2

222z y x z y x 在点)2,1,1(-的附近能否确定形如()()z g y z f x ==,

的隐函数组?

分析:隐函数组是否存在只须验证题目是否满足隐函数组存在定理的条件.

解 令()2

,,2

2

2

z y x z y x F -+=,()2,,-++=z y x z y x G ,则

(1) G F ,在点)2,1,1(-的某邻域内连续; (2) ()();02,1,1,02,1,1=-=-G F (3) 1,,2,2===-===z y x z y x G G G z F y F x F 均在点)2,1,1(-的上述某邻域内连续; (4)

()()()041

122,,2,1,1≠=-=??-y x G F .

由隐函数组存在定理,在点)2,1,1(-的附近能确定形如()()z g y z f x ==,的隐函数组. 2. 求下列方程组所确定的隐函数组的导数:

(1) ???=+=++,

,2

22222ax y x a z y x 求;,dx dz

dx dy (2) ???=--=-+,

0,02

22xu v y yv u x 求;,y v

y u x v x u ????????

(3) ()()

??

?-=+=,,,,2

y v x u g v y v ux f u 求x

v

x u ????,. (分析: 解由方程组确定的隐函数的导数问题,方程组确定了几个隐函数和隐函数的自变量的个数,其次,还要弄清楚哪些是自变量,哪些是因变量.只有将函数关系弄清楚了,才能正确地进行求导(偏导).

解 (1) 设方程组确定的隐函数组为()()???==x z z x y y .对方程组两边关于x 求导,得

??

???

=+=++,

22,0222a dx dy y x dx dy z dx dy y x 解方程组,得z a dx dz y x a dx dy 2,22-=-=. (2) 对方程组两边关于x 求偏导数,得

??

???=??--??-=??-??-,

02,021x u x u x v v x v y x u u 解方程组,得uv xy x u x v xy uv uy v x u 42,422-+=??-+=??. 对方程组两边关于y 求偏导数,得

???

????=??-??-=??--??-,

021,02y u x y v v y

v y v y u u 解方程组,得xy uv xv u y v uv xy y v y u -+=??-+=??42,422. (3) 两个方程包含u y x ,,和v 四个变量,可以确定两个二元函数,因为是求x

v

x u ????,,自然v u ,是因变量,y x ,是自变量.

对方程组两边关于x 求偏导数,得

?????????? ????+??? ??-??=????+??? ??

??+=??,21,2121x v vy g x u g x

v x v f x u x u f x u 解方程组,得()()()()()1

2211112112211212211,21121g f vyg xf g g xf g uf x v

g f vyg xf g f f vyg u x u ----+=

??-----=??. 3. 求下列函数组所确定的反函数组的偏导数:

(1) ???-=+=,

cos ,

sin v u e y v u e x u

u 求y x y x v v u u ,,,. (2) ??

?

??+=+=+=,,3322v u z v u y v

u x 求x z . 解 (1) 函数组两边关于x 求偏导数,得

(

)()

???=+-=++????+-=++=.

0sin cos ,

1cos sin sin cos 0,cos sin 1v uv u v e v uv u v e v uv v u u e v uv v u u e x x u x x u x x x u

x x x u 解方程组,得()()u

v v ue e v x v v v e v x u u

u

u

+--=??-+=??cos sin cos ,cos sin 1sin . 函数组两边关于y 求偏导数,得

()()

??

???=+-=++??????+-=++=.1sin cos ,

0cos sin sin cos 1,cos sin 0v uv u v e v uv u v e v uv v u u e v uv v u u e y y u y y u

y y y u

y y y u 解方程组,得()()u

v v ue v

e y v v v e v y u u

u u

+-+=??-+-=??cos sin sin ,cos sin 1cos . (2) 因为x x x v v u u z 2233+=中的x x v u ,可通过函数组?

?

?+=+=,,

2

2v u y v u x 两边关于x 求导,得 v

u u

v u v v u x x -=-=

,.所以uv z x 3-=. 4. 设函数()y x z z ,=是由方程组v u uv z e y e x v u v

u ,(,,===-+为参量)所定义的函数,

求当0,0==v u 时的dz .

解 因为y y y x x x y x uv v u z uv v u z dy z dx z dz +=+=+=,,,所以,当0,0==v u 时, dz =0. 5. 以v u ,为新的自变量变换下列方程: (1) ()

()0=??--??+y

z

y x x z y x ,设x y v y x u arctan ,ln 22=+=;

(2) 0

2

2

2222

=??-??y z y x z x ,设y x v xy u ==,. 分析: 要将微分方程中的未知函数z 的自变量y x ,用新的变量v u ,替代,也就是要将y

x z z ,

转换成v u z z ,,通常有直接法与反逆法两种转换方法.而这种引入新的变量将微分方程变形,其目的在于简化方程,从而便于对方程的研究.

解 (1) 解法1 把y x ,作为自变量,z 看作y x ,的复合函数,于是有

.,2

2

2

2

22

22

v

z y x x u z y x y y v v z y u u z y z v z y x y u z y x x x v v z x u u z x z ??++??+=????+????=????+-??+=????+????=??

将以上结果代入()

()0=??--??+y

z

y x x z y x ,得 ()()022222222=???

?

????++??+--????

??

??+-??++v z y x x u z y x y y x v z y x y u z y x x y x ,化简,得v z u z ??=??. 解法2 把v u ,作为自变量,假设变换的逆变换()()v u y y v u x x ,,,==存在,因此

.,v

y y z v x x z v z u

y y z u x x z u z ????+????=??????+????=?? ① 其中

u y v x u x ??????,,和v y ??由反函数组求导得,再由①解出y x z z ,代入原方程,并化简得v

z u z ??=??. (2)

v

z

y x u z x y v v z y u u z y z v z y u z y x v v z x u u z x z ??-??=????+????=????+??=????+????=??2

,1, v

z y x v u z y x v z y x u z x y z v z y v u z u z y x v v z x u v u z y x v v u z x u u z y x z ??+???-??+??=????+???+??=???

? ??????+?????+???? ???????+????=??322222422222222222222

222222222,121

代入原方程,并化简得v

z

v u z u ??=???22. 6. 设函数()y x u u ,=由方程组()()()0,,0,,,,,,===t z h t z y g t z y x f u 所确定,求

x u ??和y

u ??.

分析: 由()y x u u ,=知u 是y x ,的二元函数,于是t z ,均是y x ,的函数.由()0,=t z h 得,t 是

z 的函数()z t ?=,代入()()[]0,,0,,=?=z z y g t z y g ?,又可确定z 是y 的函数()y z ψ=,将

其代入()t z y x f u ,,,=得()()()[]y y y x f u ψ?ψ,,,=,因而u 是y x ,的二元函数. 解 方程组分别关于y x ,求偏导数,得

?????=+=+++=,0,0,

x t x z x t x z x t x z x x t h x h t g z g t f z f f u ,解得x f x u =??.???

??=+=+++=,

0,0,y t y z y

t y z y t y z y y t h x h t g z g t f z f f u ,解得()()()()

.,,,,y y g t z h g t z f h f x u ????=??

§3 几何应用 1. 求平面曲线()03/23/23

/2>=+a a y x

上任一点处的切线方程,并证明这些切线被坐标

轴所截取的线段等长.

解 令()3

/23/23/2,a y x y x F -+=,则()()31

313

2,,32,--==y y x F x y x F y x .于是,曲线上任

一点()00,y x 处的切线方程为:()()003

1003

1

=-+--

-y y y x x x ,即3/23

103

10

a y y x x =+-

-

.切线与两

坐标轴的交点分别为???? ?????? ??3/231

03/2310,0,0,a y a x ,所以???

? ??+=???? ??+???? ??3203203/42

3/23102

3/2310y x a a y a x

23/23/4a a a ==.

2. 求下列曲线在所示点处的切线与法平面方程:

(1) t c z t t b y t a x 2

2cos ,cos sin ,sin ===,在点4

π

=

t .

(2) 2

2

2

2

2

2

3,932y x z z y x +==++,在点()2,1,1-.

解 (1) c z y a x -=??

?

??'=??? ??'=???

??'4,04,4πππ,所以,切线方程为c

c

z b y a a x --=-=-

2022.即

华东师范大学2004数学分析试题

华东师范大学2004数学分析试题

华东师范大学2004数学分析 一、(30分)计算题。 1、求 2 1 20)2 (cos lim x x x x -→ 2、若)), sin(arctan 2ln x x e y x +=-求' y . 3、求 ?--dx x xe x 2)1(. 4、求幂级数∑∞ =1 n n nx 的和函数)(x f . 5、 L 为过 ) 0,0(O 和 )0,2 (π A 的曲线 ) 0(sin >=a x a y ,求 ?+++L dy y dx y x . )2()(3 xdx a x da dy x a y cos sin ,sin === 6、求曲面积分??++S zdxdy dydz z x )2(,其中) 10(,22 ≤≤+=z y x z , 取上侧. . 二、(30分)判断题(正确的证明,错误的举出反例) 1、若},,2,1,{ =n x n 是互不相等的非无穷大数列,则} {n x 至少存在一个聚点). ,(0 +∞-∞∈x 2、若)(x f 在),(b a 上连续有界,则)(x f 在),(b a 上一致连 续. 3、若 ) (x f , ) (x g 在] 1,0[上可积,则 ∑?=∞→=-n i n dx x g x f n i g n i f n 1 10)()()1()(1lim .

4、若∑∞=1n n a 收敛,则∑∞ =1 2n n a 收敛. 5、若在 2 R 上定义的函数 ) ,(y x f 存在偏导数 ),(y x f x ,) ,(y x f y 且),(y x f x , ) ,(y x f y 在(0,0)上连续,则),(y x f 在 (0,0)上可微. 6、),(y x f 在2 R 上连续,} ) ()(|),{(),(22 2 r y y x x y x y x D r ≤-+-= 若??=>??r D dxdy y x f r y x ,0),(,0),,(0 0 则.),(,0),(2 R y x y x f ∈= 三、(15分)函数)(x f 在).,(+∞-∞上连续,且,)(lim A x f x =∞ → 求证:)(x f 在).,(+∞-∞上有最大值或最小值。 四、(15分)求证不等式:]. 1,0[,122∈+≥x x x 五、设) (x f n , ,2,1=n 在],[b a 上连续,且) (x f n 在],[b a 上一致 收敛于 ) (x f .若 ] ,[b a x ∈?, )(>x f .求证: , 0,>?δN 使 ],[b a x ∈?, N n >,. )(δ>x f n 六、(15分)设}{n a 满足(1); ,2,1,1000 ++=≤≤k k n a a n k (2)级数∑∞ =1 n n a 收敛. 求证:0 lim =∞ →n n na . 七、(15分)若函数)(x f 在),1[+∞上一致连续,求证: x x f )(在),1[+∞上有界. 八、(15分)设),,(),,,(),,,(z y x R z y x Q z y x P 在3 R 有连续偏导数,而且对以任意点) ,(00, 0z y x 为中心,以任意正数r 为半径的上半球面, ,)()()(:02202020z z r z z y y x x S r ≥=-+-+-

数学分析(华东师大)第四章函数的连续性

第四章函数的连续性 §1 连续性概念 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说, 连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一函数在一点的连续性 定义1 设函数f 在某U( x0 ) 内有定义.若 lim x → x f ( x ) = f ( x0 ) , ( 1) 则称f 在点x0 连续. 例如, 函数f ( x ) = 2 x + 1 在点x = 2 连续,因为 又如,函数li m x → 2 f ( x) = lim x →2 ( 2 x + 1 ) = 5 = f (2 ) . f ( x) = x sin 1 x , x ≠ 0, 0 , x = 0 在点x = 0 连续,因为 lim x →0f ( x) = lim x →0 x sin 1 x= 0 = f ( 0) . 为引入函数y = f ( x ) 在点x0 连续的另一种表述, 记Δx = x - x0 , 称为自变量x( 在点x0 ) 的增量或改变量.设y0 = f ( x0 ) , 相应的函数y ( 在点x0 ) 的增量记为 Δy = f ( x ) - f ( x0 ) = f ( x0 + Δx) - f ( x0 ) = y - y0 . 注自变量的增量Δx或函数的增量Δy 可以是正数,也可以是0 或负数. 引进了增量的概念之后,易见“函数y = f ( x ) 在点x0 连续”等价于 lim Δy = 0 . Δx→0

华东师大数学分析习题解答1

《数学分析选论》习题解答 第 一 章 实 数 理 论 1.把§1.3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ?=ξinf ,试证: (1)存在数列ξ=?∞ →n n n a S a lim ,}{使; (2)存在严格递减数列ξ=?∞ →n n n a S a lim ,}{使. 证明如下: (1) 据假设,ξ>∈?a S a 有,;且ε+ξ<'<ξ∈'?>ε?a S a 使得,,0.现依 次取,,2,1,1 Λ== εn n n 相应地S a n ∈?,使得 Λ,2,1,=ε+ξ<<ξn a n n . 因)(0∞→→εn n ,由迫敛性易知ξ=∞ →n n a lim . (2) 为使上面得到的}{n a 是严格递减的,只要从2=n 起,改取 Λ,3,2,,1min 1=? ?? ???+ξ=ε-n a n n n , 就能保证 Λ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □ 2.证明§1.3例6的(ⅱ). 证 设B A ,为非空有界数集,B A S ?=,试证: {}B A S inf ,inf m in inf =. 现证明如下. 由假设,B A S ?=显然也是非空有界数集,因而它的下确界存在.故对任何 B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有 {}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥?≥. 另一方面,对任何,A x ∈ 有S x ∈,于是有

S A S x inf inf inf ≥?≥; 同理又有S B inf inf ≥.由此推得 {}B A S inf ,inf m in inf ≤. 综上,证得结论 {}B A S inf ,inf m in inf =成立. □ 3.设B A ,为有界数集,且?≠?B A .证明: (1){}B A B A sup ,sup m in )sup(≤?; (2){}B A B A inf ,inf m ax )(inf ≥?. 并举出等号不成立的例子. 证 这里只证(2),类似地可证(1). 设B A inf ,inf =β=α.则应满足: β≥α≥∈∈?y x B y A x ,,,有. 于是,B A z ?∈?,必有 {}βα≥?? ?? β≥α≥,max z z z , 这说明{}βα,max 是B A ?的一个下界.由于B A ?亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥?成立. 上式中等号不成立的例子确实是存在的.例如:设 )4,3(,)5,3()1,0(,)4,2(=??==B A B A 则, 这时3)(inf ,0inf ,2inf =?==B A B A 而,故得 {}{}B A B A inf ,inf m ax inf >?. □ 4.设B A ,为非空有界数集.定义数集 {}B b A a b a c B A ∈∈+==+,, 证明: (1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.

数学分析课本(华师大三版)-习题及答案04

第四章 函数的连续性 习题 §1 连续性概念 1. 按定义证明下列函数在其定义域内连续: (1)()x x f 1 = ; (2) ()x x f = 2. 指出下列函数的间断点并说明其类型: (1)()x x x f 1+ =; (2)()x x x f sin =; (3)()[] x x f cos =; (4)()x x f sgn =; (5)()()x x f cos sgn =; (6)()?? ?-=为无理数; 为有理数, x x x x x f ,, (7)()()?? ? ? ??? +∞<<--≤≤--<<-∞+=x x x x x x x x f 1,11sin 11 7,7,71 3. 延拓下列函数,使其在R 上连续: (1)()2 8 3--=x x x f ; (2)()2cos 1x x x f -=; (3)()x x x f 1cos =. 4. 证明:若f 在点0x 连续,则f 与2f 也在点0x 连续。又问:若f 与2f 在I 上连续, 那么f 在I 上是否必连续? 5. 设当0≠x 时()()x g x f ≡,而()()00g f ≠。证明:f 与g 两者中至多有一个在0 =x 连续 6. 设f 为区间I 上的单调函数。证明:若I x ∈0为f 的间断点,则0x 必是f 的第一类间 断点 7. 设f 只有可去间断点,定义()()y f x g x y →=lim ,证明:g 为连续函数 8. 设f 为R 上的单调函数,定义()()0+=x f x g ,证明:g 在R 上每一点都右连续 9. 举出定义在[]1,0上分别符合下述要求的函数: (1)只在 41,31,21三点不连续的函数; (2)只在4 1 ,31,21三点连续的函数;

华东师大数学分析答案

第四章 函数的连续性 第一 连续性概念 1.按定义证明下列函数在其定义域内连续: (1) x x f 1 )(= ; (2)x x f =)(。 证:(1)x x f 1 )(=的定义域为 ),0()0,(+∞-∞=D ,当D x x ∈0,时,有 001 1x x x x x x -=- 由三角不等式可得:00x x x x --≥ , 故当00x x x <-时,有 02 01 1x x x x x x x x ---≤- 对任意给的正数ε,取,010 2 0>+= x x εεδ则0x <δ,当 D x ∈ 且δ<-0x x 时, 有 ε<-= -0 011)()(x x x f x f 可见 )(x f 在0x 连续,由0x 的任意性知:)(x f 在其定义域内连续。 (2) x x f =)(的定义域为),,(+∞-∞对任何的),(0+∞-∞∈x ,由于 00x x x x -≤-,从而对任给正数ε,取εδ=,当δ<-0x x 时, 有 =-)()(0x f x f 00x x x x -≤-ε< 故 )(x f 在0x 连续,由0x 的任意性知,)(x f 在),(+∞-∞连续。 2.指出函数的间断点及类型: (1)=)(x f x x 1 + ; (2)=)(x f x x sin ; (3)=)(x f ]cos [x ; (4)=)(x f x sgn ; (5)=)(x f )sgn(cos x ; (6)=)(x f ???-为无理数为有理数x x x x ,,;(7)=)(x f ??? ? ???+∞ <<--≤≤--<<∞-+x x x x x x x 1,11 sin )1(17,7 ,71

数学分析华东师大反常积分

数学分析华东师大反常 积分 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第十一章反常积分 §1 反常积分概念 一问题提出 在讨论定积分时有两个最基本的限制: 积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制, 考虑无穷区间上的“积分”, 或是无界函数的“积分”, 这便是本章的主题. 例1 ( 第二宇宙速度问题) 在地球表面垂直发射火箭( 图 11 - 1 ) , 要使火箭克服地球引力无限远离地球, 试问初速度v0 至少要多大设地球半径为R, 火箭质量为m, 地面上的重力加速度为 g .按万有引力定律,在距地心x( ≥R) 处火箭所受的引力为 mg R2 F = . x2 于是火箭从地面上升到距离地心为r ( > R) 处需作的功为

r mg R ∫ ∫ 2 ∫ d x = m g R 2 1 - 1 .R x 2 R r 当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”: 图 11 - 1 + ∞ mg R 2 d x = lim r mgR 2 R x 2 r → + ∞ R d x = m g R . x 2 最后 , 由机械能守恒定律可求得初速度 v 0 至少应使 1 2 2 mv 0 = mg R . 用 g = 9 .81 ( m 6s /2 ) , R = 6 .371× 106 ( m ) 代入 , 便得 v 0 = 2 g R ≈ 11 .2( k m 6s /) . 例 2 圆 柱形桶 的内壁高 为 h , 内半 径为 R , 桶底有 一半径为 r 的小孔 ( 图 11 - 2) .试问从盛满水开始打开小孔直至流完桶中的水 , 共需多少时间

数学分析课本(华师大三版)-习题及答案第二十二章

第二十二章 曲面积分 一、证明题 1.证明:由曲面S 所包围的立体V 的体积等于 V= ()??+β+αS ds r cos z cos y cos x 31其中αcos ,βcos , cpsr 为曲面S 的外法线方向余弦. 2.若S 为封闭曲面,L 为任何固定方向,则 ()??S ds L ,n cos =0 其中n 为曲面S 的外法线方向. 3. 证明 公式 ???V r dx dydz =()??S ds n ,r cos 21 其中S 是包围V 的曲面,n 为S 的外法线方向. r=222z y x ++,r=(x,y,z). 4.证明: 场A=()(z y x 2yz ++,()z y 2x zs ++, ())z 2y x x y ++是有势场并求其势函数. 二、计算题 1.计算下列第一型曲面积分: (1) ()??++S ds z y x ,其中S 为上半球面 222z y x ++=2a 0z ≥; (2) () ??+S 22ds y x ,其中S 为主体1z y x 22≤≤+的边界曲面; (3) ?? +S 22ds y x 1,其中S 为柱面222R y x =+被平面Z=0,Z=H 所截取的P 分; (4) ??S xyzds ,其中S 为平面在第一卦限中的部分.

2.计算??S 2ds z ,其中S 为圆锥表面的一部分. S:?? ???θ=θ?=θ?=cos r z sin sin r y sin cos r x D:???π≤?≤≤≤20a r 0 这里θ为常数(0<θ<2 π). 3.计算下列第二型曲面积分 (1) ()?? -S dydz z x y +dzdx x 2+()dx dy x z y 2+,其中S 为x=y=z=0,x=y=z=a 平成所围成的正方体并取处侧为正向; (2)()()()??+++++S dxdy x z dzdx z y dydz y x ,其中S 是以原点中心,边长为2的正方体 表面并取外侧正向; (3)??++S zxdxdy yzdzdx xydydz ,其中S 是由平面x=y=z=0和x+y+z=1所围的四面体 表面并取外侧为正向; (4) ??S yzdzdx ,其中S 是球面,222z y x ++=1的上半部分并取外侧为正向; (5)?? ++S 222dxdy z dzdx y dydz x ,其中S 是球面()2a x - +()2b y -+()2c x -=R 2并取外侧为正向. 4.设某流体的流速为V=(x,y,0),求单位时间内从球面x 2+y 2 +z 2=4的内部流过球面的流量 5.计算第二型曲面积分 I=()??S dydz x f +()dzdx y g +()dx dy z h 其中S 是平行分面体(a x 0≤≤,b y 0≤≤,c z 0≤≤)表面并取外侧,f(x),g(y),h(z)为S 上的连续函数, 6.设磁场强度为E(x,y,z),求从球内出发通过上半球面x 2+y 2 +z 2=a 2,z=0的磁通量, 7.应用高斯公式计算下列曲面积分: (1) ??++S sydxdy zxdzds yzdydz ,其中S 为单位球面x 2+y 2+z 2=1的外侧; (2) ??++S 222dxdy z dzds y dydz x ,其中S 是立方体≤0x,y,z a ≤的表面取外侧; (3) ??++S 222dxdy z dzds y dydz x ,其中S 为锥面x 2+y 2 =z 2与平面z=h 所围的空间区域(h z 0≤≤)的表面方向取外侧; (4) ??++S 332dxdy z dzds y dydz x ,其中S 是单位球面x 2+y 2+z 2=1的外侧; (5) ??++S dxdy 2ydzds xdydz ,其中S 为上半球面Z=222y x a --的外侧.

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

华东师大数学分析试题

华东师大2019年数学分析试题 一、(24分)计算题: (1) 求011lim()ln(1)x x x →-+; (2) 求32cos sin 1cos x x dx x +?g (3) 设(,)z z x y =是由方程222(,)0F xyz x y z ++=所确定的可微隐函数, 试求grad z 。 二、(14分)证明: (1)11(1)n n +??+???? 为递减数列: (2) 111ln(1),1,21n n n n <+<=+???? 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之 一。《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。三、(12分)设f(x)在[],a b 中任意两点之间都具有介质性,而且f 在(a ,b )内可导, '()f x K ≤ (K 为正常数) ,(,)x a b ∈ 证明:f 在点a 右连续,在点b 左连续。 四、(14分)设1 20(1)n n I x dx =-?,证明: 五、(12分)设S 为一旋转曲面,它由光滑曲线段

绕x 轴曲线旋转而成,试用二重积分计算曲面面积的方法,导出S 的面积公式为: 2(b a A f x π=? 六、(24分)级数问题: (1) 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧, “死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。设 sin ,01,0()x x x x f x ≠=?=??{}[]() x a,b ()()11()()n n n f x f x f x f x f x ∈? ?,求 ()(0),1,2,k f k =L (2) 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教 谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师

数学分析 上册 第三版 华东师范大学数学系 编

数学分析 上册 第三版 华东师范大学数学系 编 部分习题参考解答 P.4 习题 1.设a 为有理数,x 为无理数,证明: (1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。 证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。这与题设“x 为无理数”矛盾,故a + x 是无理数。 (2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故 ax 是无理数。 3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。 证明 由题设,对任何正数ε有0||+<-εb a ,再由教材P .3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。 另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。 5.证明:对任何R x ∈有 (1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x , 所以2|3||2||1|≥-+-+-x x x 6.设+ ∈R c b a ,,证明|||| 2 22 2c b c a b a -≤+-+ 证明 建立坐标系如图,在三角形OAC 中,OA 的长度是2 2 b a +,OC 的长度是2 2 c a +, AC 的长度为||c b -。因为三角形两边的差 大于第三边,所以有

数学分析课本(华师大三版)-习题及答案第六章

数学分析课本(华师大三版)-习题及答案第六章

第六章 微分中值定理及其应用 一、 填空题 1.若0,0>>b a 均为常数,则=??? ? ? ?+→x x x x b a 3 2 lim ________。 2.若2 1 sin cos 1lim 0 =-+→x x b x a x ,则=a ______,=b ______。 3.曲线x e y =在0=x 点处的曲率半径=R _________。 4.设2442 -+=x x y ,则曲线在拐点处的切线方程为 ___________。 5.= -+→x e x x x 10 )1(lim ___________。 6.设) 4)(1()(2 --=x x x x f ,则0)(='x f 有_________个根, 它们分别位于________ 区间; 7.函数x x x f ln )(=在[]2,1上满足拉格朗日定理条件的 __________=ξ; 8.函数3 )(x x f =与2 1)(x x g +=在区间[]2,0上满足柯西定 理条件的_____=ξ; 9.函数x y sin =在[]2,0上满足拉格朗日中值定理条件的____=ξ; 10.函数 2 )(x e x f x =的单调减区间是__________; 11.函数x x y 33 -=的极大值点是______,极大值是

_______。 12.设x xe x f =)(,则函数) () (x f n 在=x _______处取得 极小值_________。 13.已知bx ax x x f ++=23 )(,在1=x 处取得极小值2-, 则=a _______,=b _____。 14.曲线2 2)3(-=x k y 在拐点处的法线通过原点,则 =k ________。 15.设)2,1()1()(Λ=-?=n x n x f n ,n M 是)(x f 在[]1,0上的最 大值,则=∞ →n n M lim ___________。 16.设)(x f 在0 x 可导,则0)(0 ='x f 是)(x f 在点0 x 处取得 极值的______条件; 17.函数x bx x a x f ++=2 ln )(在1=x 及2=x 取得极值,则 ___ ___,==b a ; 18. 函数 3 2 2 3 )(x x x f -=的极小值是_________; 19.函数x x x f ln )(=的单调增区间为__________; 20. 函数x x x f cos 2)(+=在?? ??? ?2,0π上的最大值为______, 最小值为_____; 21. 设点 ) 2,1(是曲线 b a x y +-=3)(的拐点,则 ______ _____,==b a ; 22. 曲线x e y =的下凹区间为_______,曲线的拐点为

数学分析教案(华东师大版)上册全集1-10章

第一章实数集与函数 导言数学分析课程简介( 2 学时 ) 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 sin、实数定义等问题引入. 32 2.极限 ( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期. 3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期: 三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是

可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听 为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法: 1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材: [1]华东师范大学数学系编,数学分析,高等教育出版社,2001; [2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992; [3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003; [4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999; [5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003. 2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。带星号的内容略讲或删去,相应的内容作为选修课将在数学分析选讲课开设. 3.内容多,课时紧: 大学课堂教学与中学不同的是, 这里每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导, 特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重.

数学分析-上册--第三版-华东师范大学数学系-编

数学分析-上册--第三版-华东师范大学数学系-编

数学分析 上册 第三版 华东师范大学数学系 编 部分习题参考解答 P.4 习题 1.设a 为有理数,x 为无理数,证明: (1)a + x 是无理数; (2)当0≠a 时,ax 是无理数。 证明 (1)(反证)假设a + x 是有理数,则由有理数对减法的封闭性,知 x = a +x – a 是有理数。这与题设“x 为无理数”矛盾,故a + x 是无理数。 (2)假设ax 是有理数,于是a ax x =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数。 3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则 a = b 。 证明 由题设,对任何正数ε有0||+<-εb a ,

1 再由教材P.3 例2,可得0||≤-b a ,于是0||=-b a ,从而 a = b 。 另证 (反证)假设0||>-b a ,由实数的稠密性,存在 r 使得0||>>-r b a 。这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而 a = b 。 5.证明:对任何R x ∈有 (1)1|2||1|≥-+-x x ; (2)2|3||2||1|≥-+-+-x x x 证明 (1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x , 所以2|3||2||1|≥-+-+-x x x 6.设+ ∈R c b a ,,证明| ||| 2222c b c a b a -≤+-+ 证明 建立坐标系如图,在三角形OAC 中,OA 的长度是 2 2b a +,OC 的长度是2 2c a +, a c b ) ,(b a A ) ,(c a C x y O

数学分析课本(华师大三版)-习题及答案第二十一章

第十一章 重积分 §1 二重积分的概念 1.把重积分 ??D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0?,并用直线网x=n i ,y=n j (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点. 2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界. 3.证明定理:若f 在矩形区域D 上连续,则f 在D 上可积. 4.设D 为矩形区域,试证明二重积分性质2、4和7. 性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且 ()?+D g f =??+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ??≤D D g f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得 ()D ,f f D ?ηξ=?. 5.设D 0、D 1和D 2均为矩形区域,且 210D D D Y =,?=11D int D int I , 试证二重积分性质3. 性质3(区域可加性) 若210D D D Y =且11D int D int I ?=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且 ?0D f =??+2 1D D f f , 6.设f 在可求面积的区域D 上连续,证明: (1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D >?; (2)若在D 内任一子区域D D ?'上都有 ?' =D 0f ,则在D 上()0y ,x f ≡。 .

7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得 ()()??D dxdy y ,x g y ,x f =()ηξ,f ()??D dxdy y ,x g . 8.应用中值定理估计积分 ?? ≤-++10y x 22y cos x cos 100dxdy 的值 §2 二重积分的计算 1.计算下列二重积分: (1)()??-D dxdy x 2y ,其中D=[][]2,15,3?; (2) ??D 2dxdy xy ,其中(ⅰ)D=[][]3,02,0?,(ⅱ)D=[]3,0 []2,0?; (3)()??+D dxdy y x cos ,其中D=[]π???????π,02,0; (4) ??+D dx dy x y 1x ,其中D=[][]1,01,0?. 2. 设f(x,y)=()()y f x f 21?为定义在D=[]?11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且 ?D f =???1122 b a b a 21f f .

数学分析课本(华师大三版)-习题及答案10

习 题 十 1. 求下列曲线所围图形的面积. (1) y x x x y = ===1 14,,,0=; (2) 轴; y x y y ==3 8,, (3) ; y e y e x x x ==?,,1 (4) y x y x x ===lg .,,,001=10; (5) x y y x ==2 380,,=1; (6) y x y y x y =+===14,,,;3 (7) ; y x x y 2 24=?=, (8) . x y y x =?=2 10(), 2. 求抛物线以及在点y x x =?+?2 4(,)03?和处的切线所围图形的面积. (,)30 3. 设曲线与直线y x x =?2y ax =,求参数,使该曲线与直线围图形面积为 a 92 . 4. 曲线与相交于原点和点f x x ()=2 g x cx c ()=>3 0()(,)11 2 c c ,求的值,使位于区间c [,01 c 上,两曲线所围图形的面积等于 23. 5. 求星形线所围图形的面积(a ). x a t y a t t ==?????≤≤cos sin 3 3 02 ()π>0 6. 求下列极坐标方程所表曲线所围成的图形的面积. (1) 三叶玫瑰线r =83sin θ; (2) 心形线r =?31(sin )θ; (3) r =+1sin θ与r =1; (4) r =2与r =4cos θ. 7. 证明:球的半径为R 、高为的球冠的体积公式为: h V h R = ?13 32 π()h

8. 计算圆柱面与所围立体(部分)的体积. x y a 22+=2 2 x z z ==,0z ≥0 9. 计算两个柱面与所围立体的体积. x y a 2 2 +=222a z x =+ 10. 计算四棱台的体积.四棱台的上底面是边长为与b 的矩形,下底面是边长为与a A B 的矩形,高为. h 11. 求下列曲线围成的图形绕x 轴旋转所得旋转体的体积. (1) ; y x x =≤sin () 0π≤;(2) y x x y ===2 20,,(3) y x y x == 2,; (4) ; y x x e =≤ln () 1≤3 (5) . y x y x ==2 2 , 12. 求y x =,x 轴和x =4所围图形分别绕x 、y 轴旋转所得旋转体的体 积. 13. 求曲线与曲线所围图形的面积.并将此图形绕y x x =?3 2y x =2 y 轴旋转,求所得旋转体的体积. 14. 求下列曲线的弧长. (1) ; y x x 2301=≤,()≤ (2) y x x =≤≤ln (),38; (3) x y y y = ?≤≤141 2 12ln (),e ; (4) r a a =>≤≤θθ ,()003; (5) r a =≤sin ()3 3 03≤θ θπ,; (6) . x a t t t y a t t t t =+=?≤≤(cos sin )(sin cos )(),,02π 15. 计算曲线:的质量中心(线密度x y a y 2 2 20+=≥ ()ρ为常数). 16. 计算星形线:在第一象限的质量中心(线密 度x a y a ==cos sin 3 θ,3 θρ为常数) . 17. 计算下列曲线所围图形的质量中心. (1) ax ; y ay x a ==>2 2 0, () (2) x a y b x a y b 222 2100+=≤≤≤≤,,(); (3) 轴,()y a x x =sin ,01≤≤x ; 18. 若1公斤的力能使弹簧伸长1厘米,问把弹簧伸长10厘米要作多少功? 19. 物体按规律x ct =3 (c )做直线运动,设介质阻力与速度的平方成正比,求物体从.>0x =0到x a =时,阻力所作的功. 20. 一圆台形的水池,深15厘米,上下口半径分别为20厘米和10厘米,

数学分析教案华东师大第三版

§6 重积分的应用 (一) 教学目的:学会用重积分计算曲面的面积,物体的重心,转动惯量与引力. (二) 教学内容: 曲面面积的计算公式;物体重心的计算公式;转动惯量的计算公式;引力的计算公式. 基本要求:掌握曲面面积的计算公式,了解物体重心的计算公式,转动惯量的计算公式 和引力的计算公式. (三) 教学建议: 要求学生必须掌握曲面面积的计算公式,物体重心的计算公式,转动惯量的计算公式和引力的计算公式,并且布置这方面的的习题. ________________________________________ 一 曲面的大面积 设D 为可求面积的平面有界区域函数在D 上具有连续一阶偏导数,讨论由方程 D y x y x f z ∈=),(,),( 所确定的曲面S 的面积i σ? ==i i i i 1 1当 0||||→T 时,可用和式∑=?n i i A 1的极限作为S 的面积 首先计算i A ?的面积,由于切平面的法线向量就是曲面S 在),,(i i i i M ζηξ处的法线向量,记它与z 轴的夹角为i γ,则

),(),(11 cos 22 i i y i i x i f f ηξηξγ++= i i i y i i x i i i f f A σηξηξγσ?++=?= ?),(),(1cos 22 ∑∑==?++=?n i i i i y i i x n i i f f A 1 221),(),(1σηξηξ 是连续函数),(),(122i i y i i x f f ηξηξ++在有界闭域上的积分和,所以当0||||→T 时,就得 到 ∑=→?++=?n i i i i y i i x T f f S 1220||||),(),(1lim σηξηξ dxdy y x f y x f D i i y i i x ??++=),(),(122 或 ∑??=→=?=?n i D i i T z n dxdy S 10|||||),cos(||)cos |lim γσ 例 1 求圆锥 22y x z += 在圆柱体 x y x ≤+22内那一部分的面积 解 dxdy y x z y x z S D i i y i i x ??++= ?),(),(122 x y x D ≤+22: 所求曲面方程为 ?+= 22y x z 2222,y x y z y x x z y x +=+=

数学分析课本(华师大三版)-习题及答案第十四章

第十四章 幂级数 一、证明题 1. 证明:设f(x)=∑∞=0n n n x a 在x=R 是否收敛).应用这个结果证明: ∑?∞=--==+1 n 1n n 11)(ln2dx x 1101. 2. 证明 (1) y=∑∞ =0n 4n (4n)!x 满足方程y (4)=y (2) y=∑∞ =0n 2n )(n!x 满足方程x y ''+y '-y=0. 3. 证明:设f(x)为幂级数∑∞=0n n n x a 在(-R,R)上的和函数,若f(x)为奇函数,则该级数仅出现奇次 幂的项,若f(x)为偶函数,则该级数仅出现偶次幂的项. 4. 设函数f(x)在区间(a,b)内的各阶导数一致有界,即存在正数M,对一切x ∈(a,b),有|f (n)(x)|≤M(n=1,2,3,…),证明:对(a,b)内任一点x 与x 0有 f(x)=∑∞ =0n n 00(n))x -(x n!)(x f 二、计算题 1.求下列幂级数的收敛半径与收敛区域. (1) ∑n nx ; (2) ∑n n 2x 2n 1; (3) ∑n 2 x (2n)!)(n!; (4) ∑n n x r 2 ,(0

相关文档
最新文档