初中几何模型二:几何最值问题

初中几何模型二:几何最值问题
初中几何模型二:几何最值问题

初中几何模型二:几何最值问题

一、 最短路程模型一(将军饮马类)

常见的轴对称类最短路程-------

解决方法:利用轴对称性质,转化为“两点之间,线段最短” 特点:①动点在直线上; ②起点、终点固定 二、 最短路程模型二(点到直线类)

条件:①OC 平分∠AOB ; ②点M 为OB

③点P 、Q 分别为OC 、OB 上一动点

结论:MP+PQ 最小时,点P 、Q 的位置?

方法:作点Q 关于OC 的对称点Q ’,转化PQ ’=PQ ,过点M 作MH ⊥OA ,

则MP+PA=MP+P Q ’≥MH (垂线段最短) 三、最长路程模型

条件:A ,B 为定点,l 为定直线,P 为直线l 上的一个动点 结论:|AP -BP|的值最大时,点P 的位置?

方法:作其中一个定点关于定直线l 的对称点.(三角形三边关系) 四、解答

例1、如图,在正方形ABCD 中,点E 为AB 上的一定点,且BE=10,CE=14,P 为BD 上一动点,求PE+PC 最小值。

D

A

L

l

PA+PB

AP+PQ+QB

PA+PQ+BQ

AP+PQ+QB l 2

l 1A'

Q

P

Q

B'

A'

Q P

B'

A'P

B'

A

B

A B

A

B

A

P

B

垂线段最短(

动点P) (动点P 、Q) (动点P 、Q) (动点P 、Q) l

P

B'

A

B

例2、如图,△ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N 使BM+MN 的值最小,求此时( )

的值.;

例3、如图,在矩形ABCD 中,AB=4,BC=6,G 为边AD 的中点,若E 、F 为边AB 上的两个动点,点E 在点F 左侧,且EF=1,当四边形CGEF 的周长最小时,请你在图中确定点E 、F 的位置.(三角板、刻度尺作图,保留作图痕迹,简写作图过程)

G A

B

C

D A

B

C

练习:

1、如图,点P是∠AOB内的一点,且OP=5,且∠AOB=30°,点M、N分别是射线OA、OB上的动点,求△PMN周长的最小值。

2、如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,求MP+PQ+QN的最小值的平方。

3、探究;

(1)如图1,P 、Q 为△ABC 的边AB 、AC 上的两定点,在BC 上求作一点M ,使△PQM 的周长最短.(不写作法)

(2)如图2,矩形ABCD 中,AB=6,AD=8,E 、F 分别为边AB 、AD 的中点,点M 、N 分别为BC 、CD 上的动点,求四边形EFNM 周长的最小值.

(3)如图3,正方形ABCD 的边长为2,点O 为AB 边中点,在边AD 、CD 、BC 上分别确定点M 、N 、P .使得四边形OMNP 周长最小,并求出最小值的平方.

图1 图2

图3

O A

E C B A D M M N O A

D M

N

初中数学几何最值问题典型例题精修订

初中数学几何最值问题 典型例题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例

二、典型题型

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若 ∠AOB=45°,OP=PMN的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解. 【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD. ∴△COD是等腰直角三角形. 则CD OC=6. 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键. 2.如图,当四边形PABN的周长最小时,a= .

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() 3 AE==3, . 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() 5050+50

LN=AS==40 MN==50 MN=MQ+QP+PN=BQ+QP+AP=50 =50 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()

4.(2014?无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为() C OE=AE=AB=× AD=BC= DE= ADE==, =

DF=, OA=AD= 5.(2015?鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是() C D ,连结,此时四 ,连结MN= =, =, ,

PC= PDC==. 6.(2015?江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为() C BG AD=BD=AB=3 CE=

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

初中数学几何经典模型

初中数学几何模型 中点模型 【模型1】倍长 1、倍长中线;2、倍长类中线;3、中点遇平行延长相交 E D A B C F D A B C E 【模型2】遇多个中点,构造中位线 1、直接连接中点;2、连对角线取中点再相连 【例1】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE. (1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长; (2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的关系,写出你的猜想;并给予证明; (3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗写出你的猜想,并给予证明. 图3 图2 图1 G F D C G F D C G F D C A B E E B A E B A 【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF 于H.求证:∠BGE=∠CHE. H G E F A B D C

E A B C O D E A B C O D B O A C 角平分线模型 【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形 【例4】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为. H G F E A D B C 手拉手模型 【条件】OA OB OC OD AOB COD ==∠=∠ ,, 【结论】OAC OBD ?;AEB OAB COD ∠=∠=∠(即都是旋转角);OE AED ∠ 平分; - 【例5】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为. 【例6】如图,ABC中,90 BAC? ∠=,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE,AG⊥BE 于F,交BC于点G,求DFG ∠ G F D C B A E

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

最新初中几何中线段和与差最值问题

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: m m B m A B m n m n n m n n n m

( 4)、台球两次碰壁模型 变式一:已知点A、B位于直线m,n 的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短. 变式二:已知点A位于直线 m,n 的内侧, 在直线m、n分别上求点P、Q点PA+PQ+QA 周长最短. 二)、一个动点,一个定点: (一)动点在直线上运动: 点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B在⊙O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B) 1、点与圆在直线两侧: m n m n m n m m

2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。(原理用平移知识解) (1)点A 、B 在直线m 两侧: 作法:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。 (2)点A 、B 在直线m 同侧: 练习题 1.如图1,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值为 . 2、如图2,在锐角三角形ABC 中,AB=4 ,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值为 . 3、如图3,在锐角三角形ABC 中 , AB=BAC=45,BAC 的平分线交BC 于D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 。 m m Q Q

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

初中数学几何最值问题

关于线段最短问题在几何中的运用之课前预习指导探索 三界中学 杨良举 在初中平面几何的动态问题中,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题.近年来,成都中考题常通过几何最值问题考查学生的实践操作能力、空间想象能力、分析问题和解决问题的能力.本文针对不同类型的几何最值问题作一总结与分析.最值问题也学生在解决时比较困难,失分比较严重的题型,因此结合我们校实际,把《几何最值问题》作为我校的微课题研究,下面就最值问题的解决方法研究如下: 案例分析 一、应用几何性质 1.三角形的三边关系 例1 如图1,90MON ∠=?,矩形ABCD 的顶点A 、B 分别在边,OM ON 上.当分在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中2,1AB BC ==,运动过程中,点D 到点O 的最大距离为( ) (A) 1 (B) (c) 5 (D)52 分析 如图1,取AB 的中点E ,连结,,OE DE OD . OD OE DE ≤+Q , ∴当,,O D E 三点共线时,点D 到点O 的距离最大,此时,2,1AB BC ==, 1 12 OE AE AB ∴===.DE == OD ∴1. 故选A. 2.两点间线段最短 例2 如图2,圆柱底面半径为2cm,高为9πcm ,点,A B 分别是回柱两底面圆周

上的点,且,A B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线长度最短为 . 分析 如图3,将圆柱展开后可见,棉线最短是三条斜线的长度,第一条斜线与 底面圆周长、圆柱的三分之一高组成直角三角形. 由周长公式知底面圆一周长为4πcm ,圆柱的三分之一高为3πcm ,根据勾股定理,得一条斜线长为5πcm ,根据平行四边形的性质,棉线长度最短为15πcm. 3.垂线段最短 例3 如图4,点A 的坐标为(1,0)-,点B 在直线y x =运动,当线段AB 最短时,点B 的坐标为( ) (A)(0,0) (B)11(,)22-- (C) (D)( 分析 如图4,过点A 作'AB OB ⊥,垂足为点'B ,过'B 作'B C x ⊥轴,垂足为C .由垂线段最短可知,当'B 与点B 重合时,AB 最短. ∵点B 在直线y x =上运动, ∴'AOB V 是等腰直角三角形 ∴'B CO V 为等腰直角三角形 ∵点A 的坐标为(1,0)-,

初中数学最值问题专题分类讲解全书

初中数学最值问题专题分类讲解全书 ●平面几何中的最值问题 ●几何的定值与最值 ●最短路线问题 ●对称问题 ●巧作―对称点‖妙解最值题 ●数学最值题的常用解法 ●求最值问题 ●有理数的一题多解

●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’=AP,

在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好?

初中数学经典几何模型

初中数学几何模型 【模型1】倍长 1、 倍长中线; 2、倍长类中线; 3、中点遇平行延长相交 E D A B C F D A B C E ---------------------------------------------------------------------------------------------------------------------- 【模型2】遇多个中点,构造中位线 1、 直接连接中点; 2、连对角线取中点再相连 【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长; (2)如图2,当点F 在AB 的延长线上时,线段GC 、GE 有怎样的数量和位置关系,写出你的猜想;并给予证明; (3)如图3,当点F 在CB 的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明. 图3 图2图1G F D C G F D C G F D C A B E E B A E B A 中点模型

【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,BAF DAE∠ = ∠. (1)求证:CE=CF; (2)若? = ∠120 ABC,点G是线段AF的中点,连接DG,EG.求证:DG上GE. 【例3】如图,在四边形ABCD中,AB=CD,E、F分别为BC、AD中点,BA交EF延长线于G,CD交EF于H.求证:∠BGE=∠CHE. H G E F A B D C 【模型1】构造轴对称 【模型2】角平分线遇平行构造等腰三角形 ---------------------------------------------------------------------------------------------------------------------- 角平分线模型

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

2018中考---几何最值问题规律总结

你会“几何中的最值问题”吗? 一、几何中最值问题包括: ①“面积最值” ②“线段(和、差)最值”. (1)求面积的最值 方法:需要将面积表达成函数,借助函数性质结合取值范围求解; (2)求线段及线段和、差的最值 方法:需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关 定理转化处理. 一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系 二、精讲精练 1. PA +PB 最小, 需转化,使点在线异侧 B l

2. 如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动, 3. 如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E , 若点P ,Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值为 . 4. 如图,在菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为 线段BC 、CD 、BD 上的任意一点,则PK +QK 的最小值为 . 5. 如图,当四边形P ABN 的周长最小时,a = . 6. 在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的 正半轴上,OA =3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为 . 7. 如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5, CD =4,P 在直线MN 上运动,则PA PB 的最大值等于 . 第5题图 第6题图 第7题图 8. 如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为_________. N O Q P E D C B A Q P K C B A A B C D P M N A B C E F M

初中数学九大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2 O A B C D E O A B C D E 图 1 图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- O B C O A C D E O B C D E O A C D A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

初中的几何最值问题解题策略-初中平面几何最值问题

初中的几何最值问题解题策略 几何中的最值问题,一直是个比较复杂的问题,多数同学在处理时思路不清晰的,下面我们从多年的解题经验中跟大家分享下我们的解题思路,碰到这种类型的问题应该如何解决。 总结各种最值问题,无外乎考查的知识点不过是三个,不管是初二,初三,还是总复习都是如此。我们主要从接下来的三个知识点入手,那么这种几何最值问题都会有一定思路,解题起来相对简单许多。 一、两点之间线段最短 二、三边关系求最值(最大或最小) 三、垂线段最短求最值 接下来,我们逐个去介绍,并进行相关的练习,在练习中体会解决问题的思路,有时三个知识点也是共同使用的,不是单个解决的,这里需要我们总结思路,举一反三,触类旁通。(后面的题型丰富,题目较新,适合练习,大家务必认真练练,必有所获的) 一、两点之间线段最短 这个知识点的运用中,通常的解题步骤是:1、先作对称2、用知识点3、算结果。在作对称的过程中,一般都是作定点关于对称轴的对称点,然后带入知识点,两点之间线段最短直接找到最小值时的点的位置。这样思路就打开了。 【例1】 2),C(2,0),如图,Rt△OAB的直角顶点A在x轴的正半轴上,∠AOB=30°,B(6,3 P为OB上一动点. (1)若点A关于直线OB的对称点为E,求E的坐标; (2)求出△PAC周长的最小值. 【变式1-1】

(2014?如皋市校级模拟)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(1,0),点P为斜边OB上的一动点,求△PAC周长的最小值为_________________. 【变式1-2】 如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,其中点B的坐标为(4,3),点C和点P分别为直角边OA、斜边OB上的动点,求PA+PC的最小值. 【例2】 如图,已知∠AOB=30°,点P在∠AOB的内部,OP=6,若OA上有一动点M,OB上有一动点N,则△PMN的周长的最小值是. 【变式2-1】 (2015秋?江津区校级期中)如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8cm,点M 和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值是.

初中数学几何动点问题分类专题汇总全书

初中数学几何动点问题分类专题汇总全书近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。

初中数学最值问题集锦+几何的定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD,则CD长度的最小值为.思路点拨如图,作CC′⊥AB于C,DD′⊥AB于D′, 1AB一常数,当CQ越小,CD越小, DQ⊥CC′,CD2=DQ2+CQ2,DQ= 2 本例也可设AP=x,则PB=x 10,从代数角度探求CD的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】如图,圆的半径等于正三角形ABC的高,此圆在沿底边AB滚动, ⌒ 切点为T,圆交AC、BC于M、N,则对于所有可能的圆的位置而言, MTN为的度数()

A .从30°到60°变动 B .从60°到90°变动 C .保持30°不变 D .保持60°不变 思路点拨 先考虑当圆心在正三角形的顶点C 时, 其弧的度数,再证明一般情形,从而作出判断. 注:几何定值与最值问题,一般都是置于动态背景下, 动与静是相对的,我们可以研究问题中的变量,考虑当变 化的元素运动到特定的位置,使图形变化为特殊图形时, 研究的量取得定值与最值. 【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上 的一动点,直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值. 思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运 用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值. 【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘 积与M 点的选择无关. 思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为 △ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2, 从而我们的证明目标更加明确. 注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证 明问题. 【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的 三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可 能值. 思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时, 取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB) 上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大 ⌒

相关文档
最新文档