细胞生物学课程论文
细胞生物学课程论文

无限增殖的小鼠胚胎成纤维细胞系胰高血糖素样免疫反应的建立及特性描述XXX湖北师范学院生命科学学院生物科学专业 1101班 201111XXXXXXX摘要1.背景:Hh信号是一种保守的形态形成通路,它在胚胎发育中扮演至关重要的角色,新兴的证据也支持这一角色在治疗和修复过程以及肿瘤发生中的作用。
胰高血糖素样免疫反应性家族的转录因子(Gli1,2和3)通过调节下游靶基因的表达来调解刺猬形态形成的信号。
我们以前用来自小鼠胰高血糖素样免疫反应性的一系列胚胎成纤维细胞来描述Gli蛋白在Hh目标基因调节中的个体与合作的角色。
2.结果:本文中,我们描述了缺乏单个和多个Gli基因自发地无限增值的老鼠胚胎成纤维(iMEF)细胞系的建立。
这些非无性繁殖系的细胞系概括了独特的配体介导的转录响应早期的MEFs。
然而许多Gli1对目标基因的诱导不起作用,已发现的Gli2空细胞会减弱目标基因的感应而Gli3空细胞表现出提高基底部并促进配体诱导的表达。
在Gli1 - / 2 - / - iMEFs中的目标基因反应严重地降低而Gli2 - / 3 / - iMEFs 不能引发转录反应。
然而,我们发现Gli1 / 2 - / -和Gli2 / 3 - / - iMEFs对Hh配体都表现出强劲的白三烯依赖性的综合迁移,这证明了这种反应不是依赖性的转录。
3.结论:本研究提供了一系列Gli-null iMEFs转录和非转录的Hh反应的基本特征。
向前推移,在Hh 反应程控中,这些细胞系被证明是一套有价值的工具,用来研究独特功能的调控。
背景对于多种多样的生物过程,包括发育模式和器官形成,Hh信号通路是一个至关重要的调控子。
这条路径从上游的Hh配体结合起始,到跨膜转运受体的碎片蛋白(Ptc1)。
这减轻了碎片蛋白介导对Smoothened(Smo)的抑制,引发了复杂的下游信号级联(综述[1]]。
Gli1和Ptc1是保守的Hh目标基因并且其表达水平被认为是路径活动的可靠指标。
细胞生物学论文

细胞生物学概述摘要:细胞生物学是以细胞为研究对象,从细胞的整体水平、亚显微水平、分子水平等三个层次,(斯。
诺。
美。
A11-走在生物医学的最前沿)以动态的观点,研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。
细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。
从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。
英文摘要:Cell biology is to cell as the research object, from the three levels of the overall level of the sub microscopic level, cells, molecular level (,. Connaught. Beauty. A11- in the forefront of biomedical) from the dynamic point of view, the structure and function of cells, cell and organelle of the life history and various life activities of the discipline. Cell biology is one of the frontier branch of modern life science, mainly is the basic rule to study cell from different hierarchy of life activities of cells. From the life structure and arrangement, and developmental biology is located between cell biology molecular biology, their mutual connection, mutual penetration.关键字:细胞学说显微技术遗传物质前言:细胞是生命的基本单位,细胞的特殊性决定了个体的特殊性,因此,对细胞的深入研究是揭开生命奥秘、改造生命和征服疾病的关键。
细胞生物学课程论文

细胞凋亡的机理与应用摘要:细胞凋亡是一种由基因调控的细胞主动死亡过程,是机体生长发育、细胞分化、生理及病理性死亡的重要机制。
线粒体、肿瘤坏死因子、受体基因DNA降解、凋亡因子、内质网以及缺氧条件都会导致细胞凋亡。
细胞选择不同的死亡途径,往往由导致细胞死亡的起始原因所决定。
细胞凋亡有害也有利,如会引起肿瘤、自身免疫疾病等等。
细胞凋亡在机体组织改建过程中起着不可替代的作用。
细胞凋亡是机体的一种基本生理机制,贯穿机体整个生命活动过程,为机体正常细胞的更新和异常细胞的清除提供了手段,对维持个体正常生理过程和功能表达具重大生物学意义。
细胞凋亡近年来已成为细胞生物学与分子生物学的研究热点,对细胞凋亡机理的深入探讨可对一些疾病包括癌症提供新的治疗方法和途径,目前药物开发多是从病理过程中的分子机制、正常生理过程起作用的因子来寻找新药。
关键词:细胞凋亡;基因调控;线粒体;肿瘤坏死因子;DNA降解细胞凋亡(apoptosis,APO)是一种由基因调控的细胞主动死亡过程,是机体生长发育、细胞分化、生理及病理性死亡的重要机制[1]。
20 世纪90 年代以来,细胞凋亡机制逐渐成为生物学及生物医学的研究热点,以下就近几年来细胞凋亡机制的研究综述如下。
从形态学观察, 细胞凋亡的变化是多阶段的, 细胞凋亡往往涉及单个细胞, 即便是一小部分细胞也是非同步发生的。
首先出现的是细胞体积缩小, 胞间连接消失, 与周围的细胞脱离, 核质浓缩, 核膜核仁破碎; 胞膜有小泡状形成,胞膜结构仍然完整, 最终可将凋亡细胞分割为几个凋亡小体。
1、细胞凋亡机制长期以来,人们一直将细胞线粒体视作为提供能量的细胞器,而忽略其在细胞凋亡中的作用。
随着细胞凋亡研究的深入,发现某些与凋亡相关的基因产物(蛋白质或酶)均可定位于细胞线粒体,从而使线粒体与细胞凋亡之间相关性的研究成为当今生命科学研究的前沿课题。
[3]线粒体被选择性的从细胞中清除在细胞凋亡中,这种凋亡甚至没有caspase 的活化[4]。
细胞生物学论文

细胞生物学论文细胞生物学是现代生命科学领域的重要分支之一,研究细胞的结构、功能和生理过程,以及细胞与细胞之间的相互作用。
本论文将探讨细胞生物学的一些重要概念和研究进展,包括细胞结构、细胞器功能、细胞分裂、细胞信号传导等方面。
一、细胞结构细胞是生命的基本单位,由细胞膜、细胞质和细胞核组成。
细胞膜是细胞的外层包裹,承担了细胞与外界环境之间的交流和物质交换。
细胞质是细胞膜内的胞浆,包含了各种细胞器,如内质网、高尔基体、线粒体、溶酶体等。
细胞核是细胞内的重要组成部分,含有遗传物质DNA,控制着细胞的生长和分裂。
二、细胞器功能细胞器是细胞内的各种功能区域,各有自己独特的功能。
内质网是蛋白质合成的主要场所,通过它可以将蛋白质合成、折叠和修饰后运送到其他细胞器或细胞膜上。
高尔基体则负责蛋白质的分泌和细胞外物质的转运。
线粒体是细胞内主要的能量合成器官,通过氧化磷酸化产生大量的ATP分子。
溶酶体则参与细胞内废物的降解和清除。
三、细胞分裂细胞分裂是细胞生物学中的重要过程,负责细胞的繁殖和复制。
细胞分裂包括有丝分裂和减数分裂两种形式。
有丝分裂是指细胞按照一定的步骤和顺序完成DNA复制、纺锤体形成、染色体分离和细胞质分裂等过程。
减数分裂则是在有丝分裂的基础上,再进行一次染色体分离和细胞质分裂,最终得到生殖细胞。
四、细胞信号传导细胞信号传导是细胞之间相互沟通和协调的重要方式。
细胞通过细胞膜上的受体感知外界信号,并将其转化为细胞内的化学信号。
这些信号通过信号转导通路传递到细胞核或其他细胞器,调节细胞的生理活动。
信号通路可以分为多种类型,如激活型的酶级联反应、细胞表面受体介导的信号转导和细胞间的细胞因子介导的信号传递。
总结:细胞生物学是一门重要的学科,研究细胞的结构、功能和生理过程,以及细胞与细胞之间的相互作用。
本论文对细胞生物学的几个重要方面进行了讨论,包括细胞结构、细胞器功能、细胞分裂和细胞信号传导。
这些内容对于深入理解细胞生物学的基本原理和研究进展具有重要的意义,也为进一步探索细胞的奥秘和应用于医学研究提供了基础。
细胞生物学论文

细胞生物学论文摘要:细胞生物学在19 世纪以前,许多学者的工作,都着眼于细胞的显微结构方面,主要从事于形态上的描述,而对各种有机体中出现细胞的意义,均未作出理论上的阐述和概括。
1838-1839 年,德国植物学家施莱登和动物学家施旺根据自己研究和总结前人的工作,首次提出了细胞学,现在,细胞生物学已经成为科学的研究领域,有很大的发展前景。
关键词:细胞生物学、发展史、研究内容和现状、研究趋势、重要领域、学习方法及态度细胞生物学的发展史1604 [荷]Jansen 创造了世上第一台显微镜1838 [德]M.Schleiden 细胞是一切植物结构的基本单位,标志着细胞学说形成1858 [德]R.Virchow 细胞只能来自细胞,否定生命的自然发生学说1859 达尔文进化论1861 Max Schultze 提出原生质理论1880 [德]A.Weissmann 所有现在的细胞都可以追溯到远古时代的一个共同祖先,细胞是延续和历史的,是进化而来的1880 Hantein 提出“原生质体”概念1883 Van Benedem 及1886 Steasburer分别在动物、植物细胞中发现减数分裂1905 Wilson 发现性别与染色体的关系Weiss man 推测遗传单位有序地排列在线粒体上—[德]Borveri 及[美]Sutton 提出遗传的染色体学说1909 Harrison 及Carrel 创立组织培养技术1910 Morgan 连锁互换定律,证明基因是决定遗传性状的基本单位,建立基因学说1925 E.Gorter及F.Grendel 提出“蛋白质-脂质-蛋白质”的三明治式结构模型1936、1940 Casperson 用紫外光显微分光光度法测定DNA含量,认为蛋白的合成可能与DNA有关1950 Chargaff 碱基互补配对原则1953 [美]Janes Watson 及[英]Francis Grick DNA的双螺旋结构1958 D.E.Koshland.Jr 提出酶-底物的”诱导-契合模型”1972 S.J.Singer 及G.Nicolson 提出了生物膜的流动镶嵌模型细胞生物学研究的趋势和重要领域细胞生物学是现代生命科学的重要基础学科、细胞生物学的主要研究内容、当前细胞生物学研究的总趋势与重点领域、细胞重大生命活动的相互关系、细胞生物学的发展和研究领域研究领域:染色体DNA与蛋白质相互作用关系—主要是非组蛋白对基因组的作用细胞增殖、分化、凋亡的相互关系及其调控细胞信号转导的研究细胞结构体系的组装细胞生物学的内容和发展1.20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。
浅析细胞生物学的现状及未来展望生物学论文(一)

浅析细胞生物学的现状及未来展望生物学论文(一)细胞生物学是研究细胞的结构、功能、生长和分裂等方面的生物学门。
作为生物学中的一个重要科目,其知识对我们了解生物的生命过程和治疗疾病有着至关重要的作用。
然而,随着时代的变迁和新技术的大力推广,细胞生物学研究目前面临着一系列化学、物理以及生物工程方面的挑战。
由于细胞包含着多达百万种的生物化学反应和各种复杂的生命过程,因此细胞生物学基础科研也已经进入了一个全新的时代。
新的技术和设备的不断更新,让科学家们得以更加深入地研究细胞结构和生物学过程。
其中比较重要的技术之一是生物成像技术。
通过生物成像技术,科学家们可以观察和研究细胞在生长、运动和发展等方面的行为,可以更加靠近生物系统的活动,促进对细胞和组织生长分化的理解。
芯片技术的发展也为细胞生物学的研究提供了新的机会和优势。
利用微流控技术,可以监测细胞的生长情况,了解细胞的变化和运动方向,并对图像进行三维成像和量化分析。
可以对细胞的大小、形状、分裂速度、运动轨迹和调节机制等方面进行考察,帮助人们更准确地理解机体内各类细胞的本性、定位以及所起到的作用。
同时,芯片技术也可以促进细胞和组织的培养、分离等方面的研究工作,避免传统细胞培养中大量的物质浪费和培养时间的延长。
未来的细胞生物学既有前景,也存在挑战和问题。
在细胞研究领域,治疗癌症和其他细胞性疾病的发作已经成为了热点。
基因编辑技术的发展,让我们可以针对性地调控癌细胞的相关特性及其作用,为疾病的治疗开辟了全新的希望。
同时,随着日益增长的人群对医疗的需求,细胞基因的遗传技术有待于发展与拓展。
二代基因测序技术及其应用可以促进遗传性疾病的检测、预防和治疗,更加贴近一线临床工作,为保障公众健康和安全提供了不可或缺的帮助。
在未来,细胞生物学与其他学术领域的融合或共享也将成为研究方向之一。
从物理及化学方面,多尺度模拟和建模方法、人工智能技术等将被广泛应用于细胞研究中,以实现对复杂过程的描述和可视化表征。
细胞生物学论文完结版 Word 文档

DAG及IP3的生物学作用田丽丽(黑龙江八一农垦大学应用技术学院08级动物医学大庆 163319)摘要:第二信使在细胞信号转导中起重要作用,认的第二信使有cAMP、cGMP、三磷酸肌醇(IP3)和二酰基甘油(DAG),第二信使的作用是对胞外信号起转换和放大的作用。
二酰基甘油(DAG)是一些磷脂水解产生的一种有重要功能的第二信使,肌醇磷酸脂代谢的中间产物1,4,5-三磷酸肌醇在细胞内外的信号转换系统中起着重要的媒介作用,IP3增加并不能直接刺激IP3开放,而是起到一种分子开关的作用。
肌醇三磷酸(IP3)和二酰甘油(DAG)作为新德第二信使,是20世纪80年代中期细胞信使研究的有一飞跃。
关键词:关键词1:第二信使关键词4:作用关键词2:磷脂酰肌醇关键词3:信号一第二信使(一)第二信使的组成细胞可通过两个途径将细胞外的激素类信号转换成细胞内信号,然后通过级联放大作用,引起细胞的应答。
这种由细胞表面受体转换而来的细胞内信号通常称为第二信使。
而将细胞外的信号称为第一信使。
第二信使至少有两个基本特性:①是第一信使同其膜受体结合后最早在细胞膜内侧或胞浆中出现的仅在细胞内部起作用的信号分子;②能启动或调节细胞内稍晚出现的信号应答。
第二信使都是小的分子或离子。
细胞内有五种重要的第二信使:cAMP、cGMP、二酰甘油(DAG)、肌醇三磷酸(IP3)、Ca2+等。
肌醇三磷酸(IP3)和二酰甘油(DAG)作为新德第二信使,是20世纪80年代中期细胞信使研究的有一飞跃。
它们由细胞膜上的肌醇磷脂水解而来,IP3作用于内质网膜上的IP3受体,引起Ca2+通道开放,Ca2+释放,DAG在质膜上短暂形成,并激活蛋白激酶C,进一步靶分子中的丝氨酸和苏氨酸磷酸化,因而肌醇磷脂信号通路又称为双信使途径系统,即IP3信使途径和DAG信使途径。
(二)第二信使的作用第二信使在细胞信号转导中起重要作用,它们能够激活级联系统中酶活性以及非酶蛋白的活性。
2023年生物学导论期末结课论文

2023年生物学导论期末结课论文在人类对于生命的探索中,生物学作为科学的基石扮演着重要的角色。
它研究生命的起源、进化、结构、功能以及与环境的相互作用,为我们解开生命奥秘提供了关键线索。
本论文将重点探讨2023年生物学导论课程所涉及的主要内容,包括细胞生物学、遗传学、分子生物学和生态学等方面的内容。
1. 细胞生物学细胞是生命的基本组成单位,也是生物学研究的核心。
细胞生物学研究细胞的结构、功能和生命活动。
本学期中我们学习了细胞的组成、细胞膜的结构和功能、细胞器的特征及其功能等内容。
我们深入了解了细胞的结构与功能之间的密切关联,以及细胞在不同环境下的适应机制。
2. 遗传学遗传学研究基因的传递和表达规律,探索物种遗传变异和进化的机制。
在本学期中,我们学习了基因的组成、遗传信息的传递、基因突变和基因表达调控等内容。
我们了解了遗传学在医学、农业和生物工程等领域的重要应用,如基因工程、特殊家族病的诊断和治疗等。
3. 分子生物学分子生物学研究生物分子的结构、功能和相互作用。
在本学期中,我们深入学习了DNA的结构和复制、RNA的功能和转录、蛋白质的合成和折叠等内容。
我们了解了基因组学和蛋白质组学的发展,以及这些技术在疾病诊断、新药研发和精准医学中的应用。
4. 生态学生态学研究生物与环境的相互作用关系,探讨生物多样性的形成和维持机制。
在本学期中,我们学习了生态系统的结构和功能、群落生态学和生态系统的稳定性等内容。
我们了解了生态学在环境保护、自然资源管理和生态恢复等方面的重要性,以及人类活动对生态系统的影响和可持续发展的思路。
综上所述,生物学导论课程为我们提供了深入了解生命的机会,让我们对生物世界的多样性和复杂性有了更清晰的认识。
通过学习细胞生物学、遗传学、分子生物学和生态学等课程内容,我们可以更好地理解生命的起源和进化,探索生物体内各种生物分子的功能与相互作用,以及了解生物与环境之间的互动关系。
生物学导论课程为培养我们的科学素养和解决生物学问题的能力提供了基础,为我们今后的学习和研究奠定了坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞凋亡的机理与应用摘要:细胞凋亡是一种由基因调控的细胞主动死亡过程,是机体生长发育、细胞分化、生理及病理性死亡的重要机制。
线粒体、肿瘤坏死因子、受体基因DNA降解、凋亡因子、内质网以及缺氧条件都会导致细胞凋亡。
细胞选择不同的死亡途径,往往由导致细胞死亡的起始原因所决定。
细胞凋亡有害也有利,如会引起肿瘤、自身免疫疾病等等。
细胞凋亡在机体组织改建过程中起着不可替代的作用。
细胞凋亡是机体的一种基本生理机制,贯穿机体整个生命活动过程,为机体正常细胞的更新和异常细胞的清除提供了手段,对维持个体正常生理过程和功能表达具重大生物学意义。
细胞凋亡近年来已成为细胞生物学与分子生物学的研究热点,对细胞凋亡机理的深入探讨可对一些疾病包括癌症提供新的治疗方法和途径,目前药物开发多是从病理过程中的分子机制、正常生理过程起作用的因子来寻找新药。
关键词:细胞凋亡;基因调控;线粒体;肿瘤坏死因子;DNA降解细胞凋亡(apoptosis,APO)是一种由基因调控的细胞主动死亡过程,是机体生长发育、细胞分化、生理及病理性死亡的重要机制[1]。
20 世纪90 年代以来,细胞凋亡机制逐渐成为生物学及生物医学的研究热点,以下就近几年来细胞凋亡机制的研究综述如下。
从形态学观察, 细胞凋亡的变化是多阶段的, 细胞凋亡往往涉及单个细胞, 即便是一小部分细胞也是非同步发生的。
首先出现的是细胞体积缩小, 胞间连接消失, 与周围的细胞脱离, 核质浓缩, 核膜核仁破碎; 胞膜有小泡状形成,胞膜结构仍然完整, 最终可将凋亡细胞分割为几个凋亡小体。
1、细胞凋亡机制长期以来,人们一直将细胞线粒体视作为提供能量的细胞器,而忽略其在细胞凋亡中的作用。
随着细胞凋亡研究的深入,发现某些与凋亡相关的基因产物(蛋白质或酶)均可定位于细胞线粒体,从而使线粒体与细胞凋亡之间相关性的研究成为当今生命科学研究的前沿课题。
[3]线粒体被选择性的从细胞中清除在细胞凋亡中,这种凋亡甚至没有caspase 的活化[4]。
这种选择性的线粒体的清除(也被称为线粒体的凋亡或者线粒体自噬)在Drp1 介导的分裂过程中被增加,相反的这种过程在Drp1 介导的分裂过程被抑制的时候被抑制,提示线粒体的片段化对于线粒体的凋亡是一个必需的步骤。
[5]但是,实际上线粒体在细胞凋亡中的作用远大于此,常起着决定性的作用,其作用主要包括:①丧失电子转移功能并减少能量的产生;②释放Caspases激活因子如Cyto-c;③线粒体跨膜电位的消失以及与BCL-2 蛋白家族促凋亡和抑制凋亡功能相关等方面。
实验证明:Ceramide (介于促凋亡信号和凋亡过程之间的凋亡信号转导中的重要分子)、γ辐射、Fas 与配体结合等均可导致线粒体在电子转移方面发生功能紊乱,从而影响呼吸链,使ATP 产量下降。
在细胞凋亡的晚期常会发生这种能量代谢上的障碍。
除了细胞凋亡的线粒体途径外,细胞内还存在另一种可引起细胞凋亡的死亡受体途径。
死亡受体属于肿瘤坏死因子受体基因超家族成员,可传导由特定的死亡配体引起的凋亡信号,目前发现至少有5 种死亡受体在细胞凋亡信号传导中发挥作用。
其中最典型的死亡受体有CD95(称Fas 或Apo1)和TNFR1(称p55 或CD120a)。
一旦细胞受到某些凋亡信号的刺激,Fas(CD95)通过与其特异性配体FasL(CD95L)结合而在细胞膜表面发生聚合,形成的复合物通过FADD 与Caspase28 特异的结构域结合并使Caspase28 形成二聚体而自身激活,进而引起细胞的Caspases 酶系级联反应以导致细胞凋亡。
细胞凋亡的一个显著特点是细胞染色体的DNA降解,这是一个较普遍的现象。
这种降解非常特异并有规律, 所产生的不同长度的DNA片段约为180~200 bp的整倍数,而这正好是缠绕组蛋白寡聚体的长度, 提示染色体DNA恰好是在核小体与核小体的连接部位被切断,产生不同长度的寡聚核小体片段。
实验证明,这种DNA的有控降解是一种内源性核酸内切酶作用的结果, 该酶在核小体连接部位切断染色体DNA,这种降解表现在琼脂糖凝胶电泳中就呈现特异的梯状Ladder图谱, 而坏死细胞呈弥漫的连续图谱。
最近研究发现某些凋亡因子也可通过破坏的线粒体外膜直接进入细胞浆,目前对于这一过程发生的机理尚不清楚,但当细胞凋亡时VDAC 的关闭能使线粒体ATP 和ADP交换发生障碍[9]。
当线粒体内膜高极化时质子大量转运至线粒体膜间隙导致膜间隙渗透压增高,使胞浆中大量水份渗入致使膜间隙压力增大,水分冲破表面积较小的外膜而导致膜间隙中的大量凋亡诱导因子重新分布于细胞质以造成细胞凋亡内质网应激介导的细胞凋亡是不同于死亡受体与线粒体介导的凋亡途径。
内质网在细胞内分布广泛,是细胞内重要的细胞器,根据内质网膜上是否附着核糖体,将内质网分为粗面内质网和滑面内质网两种。
内质网内膜面积占细胞所有膜结构的50%,体积占细胞总体积的10%,具有非常重要的生理功能,不仅是合成的蛋白质折叠和运输以及细胞内Ca2+储存的主要场所,同时也是胆固醇、类固醇以及许多脂质合成的场所。
内质网巨大的膜结构在细胞内提供了一个宽广的分子组装、反应平台,因而在多信号调控中起到关键作用。
内质网凭借着其庞大的膜结构基础,在完成基本生理功能的同时,作为信号传导的枢纽平台,可以通过特有的Caspase-12、CHOP(C/EBP homologous protein,C/EBP 同源蛋白)、JNK (c-Junamino-terminal kinase)等通路引起细胞凋亡。
[11]在缺氧条件下,机体存在着一定程度的氧自由基代谢紊乱, 缺氧时线粒体合成ATP减少,即呼吸链电子传递及氧化磷酸化发生障碍,不能正常地与代谢物脱下的氢原子结合成水,进而导致自由基产生增多。
氧自由基化学性质活泼,破坏机体正常的氧化/还原动态平衡,造成大分子的氧化损伤,干扰正常的生命活动,形成严重的氧化应激状态,机体氧化损伤的后果之一就是诱导细胞凋亡,其可能通过以下机制: ①直接损伤DNA、RNA诱导细胞凋亡。
②攻击蛋白质,尤其是具有酶活性的蛋白质,导致其功能丧失,引起细胞凋亡。
③激活内源性核酸内切酶、酪氨酸激酶,诱导细胞发生凋亡。
④自由基造成mtDNA突变,mtDNA突变时导致了线粒体功能异常,引起氧化磷酸化及ATP生成障碍,进而引起凋亡诱导因子释放,最终使细胞凋亡。
⑤通过上调p53表达、Bax蛋白表达及下调bcl22表达诱导细胞凋亡。
直接活化Fas/FasL 系统细胞凋亡程序诱导凋亡。
⑦氧自由基直接激活凋亡蛋白酶半胱天冬氨酸蛋白酶导致凋亡。
细胞选择不同的死亡途径,往往由导致细胞死亡的起始原因所决定。
但是,同一种起因也可能导致不同的细胞死亡方式。
机体内的细胞随着生命过程的进行会不断地衰老、磨损、畸变、过剩,这些无用、衰老的细胞不仅是机体的负担,还可能变为有害细胞,对机体造成威胁。
此时,机体往往就通过细胞凋亡的方式清除这些衰老的细胞。
[12]2、影响与作用细胞凋亡会对人体产生有害的影响。
例如:2.1、肿瘤肿瘤开始发生于正常细胞, 这些细胞在正常情况下处于基因调控网络的严密控制下, 细胞生长与凋亡保持平衡, 生长缓慢。
生长基因激活及抑制基因失活最终使细胞生长失控, 使癌细胞长生。
细胞凋亡的机制非常复杂, 凋亡的紊乱与肿瘤的发生和发展关系十分密切。
在肿瘤治疗过程中, 许多抗肿瘤药物及放疗均是通过启动细胞凋亡机制完成的, 而凋亡过程的抑制常常导致肿瘤细胞耐药, 这是多药耐药的一个新机制。
因此, 探索在疾病状态下异常的细胞凋亡机制, 选择针对细胞凋亡不同环节的抗肿瘤药物, 避免多药耐药以增加肿瘤细胞对化疗的敏感性, 克服肿瘤细胞的耐药性, 提高化疗的缓解率, 将成为肿瘤治疗的一个新思路。
因此, 对细胞凋亡的深入研究将为肿瘤的治疗提供新的思路和靶点。
[13]2.2、自身免疫病自身免疫性疾病都具有细胞产生和破坏不平衡的特征, 这些细胞包括淋巴细胞(如系统性红斑狼疮SLE )、滑膜细胞(类风湿性关节炎RA )和成纤维细胞(硬皮病) 等。
SLE 患者的可溶性Fas的水平增高, 导致了抑制淋巴细胞正常的细胞凋亡, 在自身免疫疾病的动物模型中, 与细胞凋亡有关基因突变已经查明, 包括Fas、Fas配体和造血细胞磷酸酶基因,[14]可以调节细胞凋亡的癌基因也表达异常。
细胞凋亡极有可能在自身免疫性疾病中发挥中心作用, 对其进一步的研究将为阐明这些疾病发病机理揭开新的一页。
细胞凋亡是机体的一种基本生理机制,贯穿机体整个生命活动过程,为机体正常细胞的更新和异常细胞的清除提供了手段,对维持个体正常生理过程和功能表达具重大生物学意义。
细胞凋亡近年来已成为细胞生物学与分子生物学的研究热点,对细胞凋亡机理的深入探讨可对一些疾病包括癌症提供新的治疗方法和途径,目前药物开发多是从病理过程中的分子机制、正常生理过程起作用的因子来寻找新药。
肿瘤、心脑血管病、慢性炎症、免疫系统疾病等都是以细胞损伤和失控为关键环节,所以细胞保护、调节药物比杀伤药物的前景要广阔得多。
如果把细胞凋亡的基础性研究与药物开发的应用性研究结合在一起,会缩短基础与临床应用的差距。
利用细胞凋亡的相关基因研究,开展基因治疗是一种富有成果的途径。
在以细胞凋亡研究为主体的基因治疗研究中,应突破专一基因的研究,而应把相关基因结合起来研究,可能会更加有效。
从抑制、调节异常基因表达过程设计新药可进一步提高药物的选择和有效性。
另外,也多利用细胞因子或细胞保护因子开发新药,如肿瘤死亡因子、集落刺激因子等。
还可以对参与细胞凋亡的受体进行研究,开发受体激动性或拮抗性药物,在受体水平或受体传递环节上切断或干扰细胞凋亡过程,从而阻断疾病的发生、发展的某一环节,达到治疗或预防疾病的目的。
[15]细胞凋亡在机体组织改建过程中起着不可替代的作用,而口腔牙周组织又是人体内改建最活跃的组织之一,内容涉及到牙周、修复、正畸、颌外等各个学科,因此,细胞凋亡在牙周领域中也有着重要的生物学意义,目前国内外很多研究也是关于这方面的,并且取得了一定的成果。
参考文献[1]王银霞,杜子龙. 低氧训练队细胞凋亡影响的研究进展.廊坊师范学院学报,2010,10(3):102-103[2]张玉龙,马佳,李志军. 细胞凋亡作用机制的研究进展. 亚太传统医药,2010,6(3):123-125[3]韩杨. 细胞凋亡与线粒体的片段化.科教前沿,2010,3(23):558-559[4]李春丰,江清林,庄树文. 细胞凋亡的研究进展. 亚太传统医药,2010,6(8):162-163 [5]张玮莹,彭建新. 凋亡体与细胞凋亡. 生物学杂志,2010,27(3):75-78[6]屈二军,胡建业,陈兰英. 细胞凋亡的机理与调节研究进展. 现代医药卫生,2008,24(13):199-203[7]夏元平,王立花,樊燕蓉. 细胞凋亡与内质网应激机制. 药学与临床研究,2010,18(3):125-129。