光学薄膜厚度监控技术—赵福庭

光学薄膜厚度监控技术—赵福庭
光学薄膜厚度监控技术—赵福庭

光学薄膜厚度监控技术

赵福庭

北京京仪博电光学技术有限责任公司

2008-5

1.与膜层厚度监控有关的基本考虑

?制备膜系的目标—膜系的光谱特性--透射特性、反射特性、相位特性、斜入射时的偏振特性等?膜系的光谱特性取决于其结构参数:F=F[nj(λ),kj(λ),dj]

?nj(λ),kj(λ)—在真空中(与淀积过程参数有关),在大气中及在工作环境中的变化规律

?只在真空室某一特定的部位进行实时监控—设置监控片

?假设监控片与被镀工件上的膜层厚度具有固定的比例关系的比例关系((工具因子工具因子))

?

工具因子受诸多因素的影响:几何关系、修正板因素、压强分布、剩余气体组分,热场分布、淀积速率的分布,等离子体状态、膜层材料本身的蒸发特性、蒸发源状态及工作参数、膜层折射率的色散等诸多因素—具有动态特性—在很大程度上影响监控结果

2.膜层厚度监控的主要方法

2.1时间—功率控制法功率控制法:d=vt –监控膜层的物理厚度—多应用于溅射系统

?其前提是膜层折射率的再现性足够好

?电源的功率足够稳定,使淀积速率v 接近为常数?靶材随着逐渐消耗,其表面形状会发生变化,影响淀积速率的一致性

?解决方法—积累数据,建立淀积速率v 相对于特定靶材溅射能量E(千瓦小时)的关系:

v=v(E)

?对于不需要考虑厚度误差相关性的情形,例如干涉截止膜系或其他类似膜系,时间—功率控制法已经取得成功

?在良好的工作状态下,监控精度可达0.2nm

2.2石英晶体监控法—监控膜层的物理厚度

?Δf=k1*Δm=k2*Δd—数学关系简单,便于实现自动控制

?要求工艺条件稳定,膜层折射率的再现性较好?对于不同的膜料,分别有确定的工具因子

?膜层厚度的分辨率很高,实际的监控精度约为1-5%

?影响因素:温度、蒸发源的状态,各种动态因素?实现与光学系统联用,进行数据交换

?用于控制淀积速率,取得良好效果

2.3光学监控法—监控膜层的光学厚度?光学监控法所监控的参量是膜系的光学特性—正是直接要求的参量,R/T—具有内在的优势

?在监控过程中有可能探测到当前层的Δn,并据此校正当前层的停蒸点,实现误差实时校正。同时还可反演出当前层的光学厚度(nd)。

?如果反演的膜系结构参数值足够准确,可以对所有未镀膜层进行再优化,必要时增加若干膜层,以得到满意的结果。

?用光学法进行监控时,厚度精度可以达到0.2nm(与膜层的折射率有关),在大多数情况下,能够得到满意的结果。

?监控参量的表达式:

2.4光学监控法的分类

2.4.1从光学系统分类

? 单色光系统:大多数系统使用卤钨灯等宽光谱光源,用单色仪分解出准单色光。可调谐激光器。

? 宽光谱系统:可同时接收多光谱信号,获得膜层的大量信息。但其光度精度还有待提高。

2.4.2从监控的参量分类

A反射法:监控片通常是静止的,不会给监控

信号带来附加噪声

监控片上膜层厚度的不均匀,会产生误差。

在同一个监控点只能监控数量较少的膜层

小光斑有助于减少厚度非均匀性的影响

?正反射监控:光束从真空入射于膜层表面,如果

能消除监控片背面的反射光束(背面磨毛,或采用

楔形监控片)监控信号将正比于膜层的反射率R。

?正反射系统一般光程较长,在监控片上的光斑不

容易做小。有时会受震动影响

?考虑监控片两个界面之间光束多次反射,

Rm=R +T2*Rs/(1-RsR),

当背面磨毛或涂黑或采用楔形监控片时,Rs=0, Rm=R,

? 背反射监控:光束从基底入射于膜层的背面?基底背表面的存在,需要考虑其反射的影响

?背反射光学系统光程较短,如果使用光纤系统,更有利于缩小光斑

?光束的数值孔径又不能太小,以免从监控片两个表面反射的光强失去比例

?考虑监控片两个界面之间光束多次反射,

Rm=Rs+T2s*R/(1

s*R/(1--RsR),

B透射法:监控膜系的透射率,进行精密监控时需要考虑基底背表面的影响。考虑光束多次反射,测量的透射率Tm与膜系的透射率T的关系为

Tm=Ts*T/(1-RsR)

2.4.3从监控片与被镀工件的关系分类

?相关监控:通常监控片位于中心--监控所有膜层--膜层的厚度误差具有相关性--有别于“直接监控”?间接监控:多个监控工位分别监控膜系中的部分膜层--厚度误差具有随机性

?半直接监控:预镀层--提高监控信号的调制幅度,处于有利的工作点--厚度误差具有相关性

?直接监控:直接监控被镀工件上的膜层

2.4.4从如何使用监控信号来分类

?极值法:监控信号达到预定的极值点时终止该层膜的淀积,用于监控规整膜系

?比例法:监控信号经过极值点后到达预定点时终止淀积。如果实际的极值点与设计值发生偏离,则按比例关系修正该层膜的终止点

?光度值法:监控较薄的膜层

? 2.4.5从监控信号变换的方式分类

?波长调制法:监控光束按正弦方式进行波长调制--输出信号为零时终止膜层的淀积—适用于监控规整膜系--膜层折射率色散对此方法有较大的影响--目前已很少使用

?双色法:同时使用2个波长的光束进行监控,测定其信号的差值,当差值为零时终止膜层的淀积。用于监控规整膜系。膜层折射率色散对此方法有较大的影响,目前已很少使用。

?微分法:微分电路将监控信号对时间微分--当微分信号为零时终止膜层的淀积---用于监控规整膜系--如果能有效地提高信噪比,此方法仍有潜力?以上3种技术都是基于极值法精度偏低而提出的改进技术--随着技术进步而使极值点的判读精度明显提高时,其中一些技术的逐步淡出将成为必然?目视监控反射色变化—眼镜片镀膜

3光学监控系统

3.1单色光监控系统

?波长范围

?光源—卤钨灯(小灯丝),可调谐激光器

?光学系统—玻璃或石英材料—较高的集光效率—较高的信噪比

?单色器—光谱分辨率—杂散光—光效

?探测器—PMT,Si器件,InGaAs, PbS

对信噪比有重要贡献

?光谱分辨率:主要取决于单色仪—近似

于三角形的光谱带(与调整状态有关),

对于监控窄带膜系十分重要.监控光束的

光谱带宽最好不超过膜系带宽的1/4

?第j层膜的透射监控光度信号

Sj=k∫T(n,d,λ)* I(λ)dλ

监控光束光谱带宽(1nm)对于带通膜系监控过程的影响

监控光束光谱带宽(5nm)对于带通膜

系监控过程的影响

?信噪比—评价硬件系统性能最重要的参数η=k (I /Δf)^0.5

?噪声—光噪声,电噪声,热噪声,机械噪声?通过软件处理,可以降低随机噪声

光度分辨率::取决于监控系统的随机噪声的水平

取决于监控系统的随机噪声的水平。。?光度分辨率

实际应用中光度分辨率应该优于0.1%

?信号线性:影响监控系统的系统误差,取决于探测器及电子学系统的工作特性以及工作点的选择(避免处于饱和段)

?杂散光:单色器通常是杂散光的主要来源,具有

积分效应,在一个监控片上监控多层膜时影响明显,会造成监控系统的系统误差

系统误差,可设置适当的滤光

系统误差

片,构成双单色器,降至10E(-5) 以下

?光斑尺寸:对于固定的监控片,较小的光斑可降低膜层不均匀所造成的影响

?动态范围:较大的动态范围,可确保在截止带透射监控更多数目的膜层

?信号稳定性:典型值为0.1%/h,双光束系统会有很大提高

?时间延迟:监控信号的采集、滤波、运算、电子学系统的处理过程--采用固定的监控片时,时间常数可设定为0.1—0.3秒

?参数之间的制约关系:

时间延迟/信噪比:较长的时间滞后会提高信噪比,但会造成附加的系统误差。

光谱分辨率/信号分辨率:在较高光谱分辨率的情况下,光谱带宽较小,因而光能量较低,会降低信噪比,从而信号分辨率变差。

需要兼顾互相矛盾的参数关系

3.2宽光谱监控系统

?单色仪—CCD列阵器件--多色仪—软件

?评价函数

F=Σ(Tj-T0j)2,j为取样的波长数

?可反演已镀膜层的结构参数,并据此优化未镀膜层

?干扰光的影响不容易被排除--设置瞬时遮光板,遮光时探测到的信号值即为干扰光,通过运算可扣除其影响—或在适当的位置设置光栏

?宽光谱监控系统适于监控强度分光膜、宽带减反射膜等

4.监控方案的选择

?先用计算机进行误差模拟,估计折射率误差及厚度误差可能造成的影响。

?如果在随机误差集的情况下能够得到好的结果,则应分片监控

?如果在相关误差集的情况下能够得到好的结果,则应在同一块监控片上直接监控

干涉截止滤光片的监控

--厚度误差影响较大—适宜间接监控

折射率误差影响较小

间接监控))

比例法((间接监控

4.1比例法

比例法的思想

?应能监控非规整膜系

?在制备膜层的过程中,折射率可能发生偏差

?根据极值点可探测到折射率的偏差

?折射率发生偏差后,设法保证该层膜的光学厚度Nd接近设计值

比例法的算法

?对于计算值,两个极值点之间的信号幅度为A0,过正值的信号幅度为B0

?对于实际值,两个极值点之间的信号幅度为A1,过正值的信号幅度为B1

?当膜层折射率的设定值与实际值的差别不是很大时,以下比例关系成立:

B1/A1=B0/A0

此可计算出该膜层的终止点B1,此时膜层的光?据此可计算出该膜层的终止点

学厚度为设计值

比例法—监控过程(间接监控)

4.2相关监控法

?在同一块监控片上监控所有的膜层?厚度误差具有相关性—补偿作用?监控波长接近于敏感区时结果较好?监控波长远离敏感区时结果很差

监控波长接近敏感区

监控波长远离敏感区

监控过程—相关监控法

最新《薄膜光学与技术》2012期末考试试题A-答案

2012-2013学年第1学期《薄膜光学与技术》期末考试试题(A 卷) 参考答案及评分标准 一、填空题 (每空1分,共24分) 1、在折射率为3.5的基底表面镀单层减反射膜,对于4000nm 的光波,理论上能 达到最佳减反射效果的薄膜折射率为: 1.8708 ,需要镀制的薄膜光学厚度 为 1000 nm 。 2、若薄膜的折射率为n ,光线在薄膜内的折射角为θ,则s 、p 光的修正导纳分 别为 ncos θ 、 n/cos θ 。 3、对于波长为λ的光来说,单层膜的光学厚度每增加 λ/4 ,薄膜的反 射率就会出现一次极值变化。当薄膜的折射率小于基底折射率时,出现的第一个 反射率极值是 极小 (极大、极小)值。 4、虚设层的形成条件是: 薄膜的光学厚度等于半波长的整数倍 。 5、周期性对称膜系(pqp)s 的等效折射率和 基本周期/pqp 的等效折射率完 全相同,其等效位相厚度等于 基本周期的s 倍 。 6、折射率为n 1,光学厚度为λ0/4,基底的折射率为n s ,那么,该单层膜与基底 的组合导纳为: s n n Y 21 7、介质高反射膜的波数宽度仅与两种膜料的 折射率 有关,折射率 差值越大 , 高反射带越宽。 8、热偶真空规是通过测量温度达到间接测量 真空 的目的。 9、镀膜室内真空度高表明气体压强 小 ,真空度低则气体压强 大 。 10、薄膜几何厚度的监控通常用 石英晶振 膜厚仪来实现,光学厚度常常采 用 光电 膜厚仪来监控。 11、采用PVD 技术制造薄膜器件时,薄膜折射率的误差主要来自三个方面: 膜 层的聚集密度 、 膜层的微观组织物理结构 、 膜层的化学成分 。 12、改善膜层厚度均匀性的措施包括 旋转夹具 和 膜层厚度调节板 。 13、采用光电极值法监控膜厚,如果需要镀制光学厚度为900nm 的薄膜,在 500-700nm 范围内,可以选取的监控波长为 600 和 514.3 nm 。

光学薄膜技术

光学薄膜概论 光学薄膜 光学薄膜泛指在光学器件或光电子元器件表面用物理化学等方法沉积的、利用光的干涉现象以改变其光学特性来产生增透、反射、分光、分色、带通或截止等光学现象的各类膜系。它可分为增透膜、高反膜、滤光膜、分光膜、偏振与消偏振膜等。光学薄膜的应用始于20世纪30年代。现代,光学薄膜已广泛用于光学和光电子技术领域,制造各种光学仪器。 光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。 光学薄膜的基本原理: 1.利用光线的干涉效应,当光线入射於不同折射系数物质所镀成的薄膜,产生某种特殊光学特性。 分类:光学薄膜就其所镀材料之不同,大体可分为金属膜和非金属膜。 a.金属膜:主要是作为反射镜和半反射镜用。在各种平面或曲面反射镜,或各式稜镜等,都可依所需镀上Al、Ag、Au、Cu等各种不同的材料。不同的材料在光谱上有不同的特性。AI的反射率在紫外光、可见光、近红外光有良好的反射率,是镀反射镜最常使用的材料之一。Ag膜在可见光和近红外光部份的反射率比AI膜更高,但因其易氧化而失去光泽,只能短暂的维持高反射率,所以只能用在内层反射用,或另加保护膜。 b.非金属膜:用途非常广泛,例如抗反射镜片.单一波长滤光片、长或短波长通过滤光片、热光镜、冷光镜、各种雷射镜片等,都是利用多种不同的非金属材料,蒸镀在研磨好之镜杯上,层数由单层到数十、百层不等,视需要的不同,而有不同的设计和方法。目前这些薄膜中被应用得最广泛,最商业化,也是一般人接触到最多的,就是抗反射膜。例如眼镜、照相机镜头、显微镜等等都是在镜片上镀抗反射膜。因为若是不加以抗反射无法得到清晰明亮的影像了,因此如何增加其透射光线就是一个非常重要的课题。 2.利用光波干涉原理,在镜片的表面镀上一层薄膜,厚度为1/4 波长的光学厚度,使光线不再只被玻璃—空气界面反射,而是空气—薄膜、薄膜—玻璃二个界面反射,因此产生干涉现象,可使反射光减少。若镀二层的抗反射膜,使反射率更低,但是镀一层或二层都有缺点:低反射率的波带不移宽,不能在可见光范围都达到低反射率。1961年Cox、Hass和 Thelen 三位首先发表以1/4一1/2一1/4波长光学厚度作三层抗反射膜可以得到宽波带低反射率的抗反射膜。多层抗反射膜除了宽波带的,也可做到窄波带的。也就是针对其一波长如氨氟雷射632.8nm波长,要求极高的透射,可使63Z.8nm这一波长透射率高达99.8%以上,用之於雷射仪器。但若需要对某一波长的光线有看极高的反射率需要用高低不同折射系数的材料反覆蒸镀数十层才可达到此效果。 光学薄膜的制造方式:热电阻式、电子枪式和溅射方式。最普通的方式为热电阻式,是将蒸镀材料在真空蒸镀机内置於电阻丝或片上,在高真空的情况下,加热使材料成为蒸气,直接镀於镜片上。由於有许多高熔点的材料,不易使用此种方式使之熔化、蒸镀。而以电子枪改进此缺点,其方法是以高压电子束直接打击材料,由於能量集中可以蒸镀高熔点的材料。另一方式为溅射方式,是以高压使惰性气体离子化,打击材料使之直接溅射至镜片,以此方式

光学薄膜技术第二章课件

典型膜系介绍 根据其作用可以将光学薄膜的类型简单的分为: 1、减反射膜或者叫增透膜 2、分束膜 3、反射膜 4、滤光片 5、其他特殊应用的薄膜 一. 减反射膜(增透膜) 在众多的光学系统中,一个相当重要的组成部分是镜片上能降低反射的镀膜。在很多应用领域中,增透膜是不可缺少的,否则,无法达到应用的要求。 就拿一个由18块透镜组成的35mm 的自动变焦的照相机来说,假定每个玻璃和空气的界面有4%的反射,没有增透的镜头光透过率为23%,镀有一层膜(剩余的反射为%)的镜头光透过率为%,镀多层膜(剩余的反射为%)的为%。 大功率激光系统要求某些元件有极低的表面反射,以避免敏感元件受到不需要的反射光的破坏。此外,宽带增透膜可以提高象质量、色平衡和作用距离,而使系统的全部性能增强。 当光线从折射率为n0的介质射入折射率为n1的另一介质时,在两介质的分界面上就会产生光的反射, 如果介质没有吸收,分界面是一光学表面,光线又是垂直入射,则反射率R 为: 例,折射率为的冕牌玻璃,每个表面的反射约为%,折射率较高的火石玻璃表面的反射更为显著。 这种表面反射造成了两个严重的后果: ①光能量损失,使像的亮度降低; ②表面反射光经过多次反射或漫射,有一部分成为杂散光,最后也达到像平面,使像的衬度降低,分辨率下降,从而影响光学系统的成像质量。 减反射膜,又称增透膜,它的主要功能是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量,减少或消除系统的杂散光。 最简单的增透膜是单层膜,它是镀在光学零件光学表面上的一层折射率较低 的介于空气折射率和光学元件折射率之间的薄膜。以使某些颜色的单色光在表面 R T n n n n R -=???? ??+-=12 1010透射率

光学薄膜技术第三章 薄膜制造技术

第三章薄膜制造技术 光学薄膜可以采用物理汽相沉积(PVD)和化学液相沉积(CLD)两种工艺来获得。CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,废水废气对环境造成污染,已很少使用。 PVD需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。 PVD分为热蒸发、溅射、离子镀、及离子辅助镀等。 制作薄膜所必需的有关真空设备的基础知识 用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几个原子、分子的集合体(从广义来说,就是使其蒸发),并使它们在其他位置重新结合或凝聚。 在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: ①蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ②空气分子进入薄膜而形成杂质; ③空气中的活性分子与薄膜形成化合物; ④蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。 因此,必须把空气分子从制作薄膜的设备中排除出去,这个 过程称为抽气。空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵,抽成真空的容器叫做真空 室,把包括真空泵和真空室在内的设备叫做真空设备。制作 薄膜最重要的装备是真空设备. 真空设备大致可分为两类:高真空设备和超高真空设备。二 者真空度不同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不同,而且用于真空室和抽气 系统的材料也不同,下图是典型的高真空设备的原理图,制 作薄膜所用的高真空设备大多都属于这一类。 下图是超高真空设备的原理图,在原理上,它与高真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。 3.1 高真空镀膜机 1.真空系统 现代的光学薄膜制备都是在真空下获得的。普通所说的 真空镀膜,基本都是在高真空中进行的。 先进行(1)然后进行(2)。因为所有的(超)高真空泵只有在真空室的压力降低到一定程度时才能进行工作,而且在高真空泵(如油扩散泵)中,要把空气之类的分子排出,就必须使排气口的气体压力降低到一定程度。 小型镀膜机的真空系统 低真空机械泵+高真空油扩散泵+低温冷阱

光学薄膜应用及实例

光学薄膜应用及实例 光学薄膜是利用薄膜对光的作用而工作的一种功能薄膜,光学薄膜在改变光强方面可以实现分光透射、分光反射、分光吸收以及光的减反、增反、分束、高通、低通、窄带滤波等功能。光学薄膜的种类有很多,这些薄膜赋予光学元件各种使用性能,在实现光学仪器的功能和影响光学仪器的质量方面起着重要的或者决定性的作用。 传统的光学薄膜是现代光学仪器和各种光学器件的重要组 成部分,通过在各种光学材料的表面镀制一层或多层薄膜,利用光的干涉效应来改变透射光或反射光的光强、偏振状态和相位变化。薄膜可以被镀制在光学玻璃、塑料、光纤、晶体等各种材料表面上。它的厚度可从几个nm 到几十、上百个μm。光学薄膜可以得到很好的牢固性、光学稳定性,成本又比较低,几乎不增加材料的体积和重量,因此是改变系统光学参数的首选方法,甚至可以说没有光学薄膜就没有现代的光学仪器和各种光学器件。在两百多年的发展过程中,光学薄膜形成了一套完整的光学理论—薄膜光学。光学薄膜已广泛应用于各种光学器件(如激光谐振腔、干涉滤波片、光学镜头等),不仅如此它在光电领域中的重要作用亦逐渐为人们所认识。光学薄膜是TFT-LCD面板制造的关键材料,它们为液晶显示提供一个均匀,明亮且饱满的面光源系统。(光

行天下配图) 减反射膜 假定光线垂直入射在表面上,这时表面的反射光强度与入射光的强度比值(反射率)只决定于相邻介质的折射率的比值: 折射率为1.52 的冕牌玻璃每个表面的反射约为4.2%左右.折射率较高的火石玻璃则表面反射更为显著。这种表面反射造成了两个严重的后果:光能量损失使象的亮度降低;表面反射光经过多次反射或漫射,有一部分成为杂散光,最后也到达象平面使象的衬度降低图象质量,特别是电视、电影摄影镜头等复杂系统都包含了很多个与空气相邻的表面,如不镀上增透膜其性能就会大大降低。应用于可见光谱区的光学仪器非常多,就其产量来说占据了减反射膜的绝大部分,几乎在所有的光学器件上都要进行减反处理。 单层减反膜是应用非常广泛的薄膜,也是最简单的膜系。考虑垂直入射的情况,即i = 0,并令 这时基片表面反射率完全被消除。在入射介质为空气的情况下,n0 =1,则在可见光区使用得最普遍的是折射率为1.52 左右的冕脾玻璃。理想的增透膜的折射率为1.23,但是至今能利用的薄膜的最低折射率是1.38( 氯化镁)。这虽然不很理想但也得到了相当的改进。当ns=1.52,nf=1.38,n0=1.0 时,由式(3)可得最低反射率为1.3%,即镀单层氟化镁后中心波 长的反射率从4.2%降至l.3%左右,整个可见光区平均反射

光学薄膜的研究进展和应用

光学薄膜的研究进展和应用 【摘要】本文介绍了光学薄膜的工作原理,并对光学薄膜的传统光学领域的应用做了简要的概述。又简要说明现代光学薄膜典型应用,对光学薄膜的制备加以介绍,最后介绍了光学薄膜的发展前景。 【关键词】光学薄膜;薄膜应用;薄膜制造; 1.光学薄膜原理简述 所谓光学薄膜是指其厚度能够光的波长相比拟,其次要能对透过其上的光产生作用。具体在于其上下表面对光的反射与透射的作用。光学薄膜的定义是:涉及光在传播路径过程中,附著在光学器件表面的厚度薄而均匀的介质膜层,通过分层介质膜层时的反射、透(折)射和偏振等特性,以达到我们想要的在某一或是多个波段范围内的光的全部透过或光的全部反射或是光的偏振分离等各特殊 形态的光。 光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的。实际应用的薄膜要比理想薄膜复杂得多。这是因为:制备时,薄膜的光学性质和物理性质偏离大块材料,其表面和界面是粗糙的,从而导致光束的漫散射;膜层之间的相互渗透形成扩散界面;由于膜层的生长、结构、应力等原因,形成了薄膜的各向异性;膜层具有复杂的时间效应。不同物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的。 2.光学薄膜的传统应用 光学薄膜按应用分为反射膜、增透膜、滤光膜、光学保护膜、偏振膜、分光膜和位相膜。减反射膜,是应用最广泛的光学薄膜,它可以减少光学表面的反射率而提高其透射率。对于单一波长,理论上的反射率可以降到零,透射率为100%;对于可见光谱段,反射率可以降低到0.5%,甚至更低,以保证一个由多个镜片组成的复杂系统有足够的透射率和极低的杂散光。现代光学装置没有一个是不经过减反射处理的。由于其具有极低的反射率和鲜艳的表面颜色,现代人们日常生活中的眼镜普遍都镀有减反射膜。 高反射膜,能将绝大多数入射光能量反射回去。当选用介质膜堆时,由于薄膜的损耗极低,随着膜层数的不断增加,其反射率可以不断地增加(趋近于100%)。这种高反射膜在激光器的制造和激光应用中都是必不可少的。 能量分光膜,可将入射光能量的一部分透射,另一部分反射分成两束光,最

《薄膜光学与技术》期末测验试题A答案

《薄膜光学与技术》期末测验试题A答案

————————————————————————————————作者:————————————————————————————————日期:

2012-2013学年第1学期《薄膜光学与技术》期末考试试题(A 卷) 参考答案及评分标准 一、填空题 (每空1分,共24分) 1、在折射率为3.5的基底表面镀单层减反射膜,对于4000nm 的光波,理论上能达到最佳减反射效果的薄膜折射率为: 1.8708 ,需要镀制的薄膜光学厚度为 1000 nm 。 2、若薄膜的折射率为n ,光线在薄膜内的折射角为θ,则s 、p 光的修正导纳分别为 ncos θ 、 n/cos θ 。 3、对于波长为λ的光来说,单层膜的光学厚度每增加 λ/4 ,薄膜的反射率就会出现一次极值变化。当薄膜的折射率小于基底折射率时,出现的第一个反射率极值是 极小 (极大、极小)值。 4、虚设层的形成条件是: 薄膜的光学厚度等于半波长的整数倍 。 5、周期性对称膜系(pqp)s 的等效折射率和 基本周期/pqp 的等效折射率完全相同,其等效位相厚度等于 基本周期的s 倍 。 6、折射率为n 1,光学厚度为λ0/4,基底的折射率为n s ,那么,该单层膜与基底的组合导纳为: s n n Y 21 7、介质高反射膜的波数宽度仅与两种膜料的 折射率 有关,折射率 差值越大 ,高反射带越宽。 8、热偶真空规是通过测量温度达到间接测量 真空 的目的。 9、镀膜室内真空度高表明气体压强 小 ,真空度低则气体压强 大 。 10、薄膜几何厚度的监控通常用 石英晶振 膜厚仪来实现,光学厚度常常采用 光电 膜厚仪来监控。 11、采用PVD 技术制造薄膜器件时,薄膜折射率的误差主要来自三个方面: 膜层的聚集密度 、 膜层的微观组织物理结构 、 膜层的化学成分 。 12、改善膜层厚度均匀性的措施包括 旋转夹具 和 膜层厚度调节板 。 13、采用光电极值法监控膜厚,如果需要镀制光学厚度为900nm 的薄膜,在

光学薄膜技术及其应用

光学薄膜技术及其应用 张三1409074201 摘要:介绍了传统光学薄膜的原理,根据薄膜干涉的基本原理及其特点,介绍了光学薄膜的性能、制备技术,研究了光学薄膜在的应用和今后的发展趋势。 关键词:光学薄膜、薄膜干涉、应用、薄膜制备 引言: 光学薄膜是指在光学玻璃、光学塑料、光纤、晶体等各种材料的表面上镀制一层或多层薄膜,基于薄膜内光的干涉效应来改变透射光或反射光的强度、偏振状态和相位变化的光学元件,是现代光学仪器和光学器件的重要组成部分。 光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。 本文在简单叙述薄膜干涉的一些相关原理的基础上,介绍了光学薄膜常见的几种制备方法,研究了光学薄膜技术的相关应用,并且展望了光学薄膜研究的广阔前景。 正文: 1.光学薄膜的原理 光学薄膜的直接理论基础是薄膜光学, 它是建立在光的干涉效应基础上的、论述光在分层介质中传播行为。一列光波照射到透明薄膜上,从膜的前、后表面或上、下表面分别反射出两列光波,这两列相干光波相遇后叠加产生干涉。该理论可以比较准确地描述光在数十微米层、纳米层甚至原子层厚的薄膜中的传播行为,由此设计出不同波长、不同性能、适应不同要求的光学薄膜元件。 2.光学薄膜的性质及功能 光学薄膜最基本的功能是反射、减反射和光谱调控。依靠反射功能, 它可以把光束按不同的要求折转到空间各个方位;依靠减反射功能,它可以将光束在元件表面或界面的损耗减少到极致, 完美地实现现代光学仪器和光学系统的设计功能;依靠它的光谱调控功能, 实现光学系统中的色度变换, 获得五彩缤纷的颜色世界。 不仅如此, 光学薄膜又是光学系统中的偏振调控、相位调控以及光电、光热和光声等功能调控元件, 光学薄膜的这些功能, 在激光技术、光电子技术、光通信技术、光显示技术和光存储技术等现代光学技术中得到充分的应用, 促进了相关技术和学科的发展。 3.传统光学薄膜和新型光学薄膜 3.1传统光学薄膜 传统的光学薄膜是以光的干涉为基础。光波是一种电磁波,根据其波长的不同可分成红外线、可见光和紫外线等,当光波投射到物体上时,有一部分在它表面上被反射,其余部分经折射进入到该物体中,其中有一部分被吸收变为热能,剩的部分透射。不同的物质对光有不同的反射、吸收、透射性能,光学薄膜就是利用材料对光的这种性能,并根据实际需要制造的。 传统光学薄膜就是利用材料的这种特性,对光线产生特异性行为。传统光学薄膜有反射膜、增透膜、滤光膜、纳米光学薄膜、偏振膜、分光膜、和位相膜等。 3.2新型光学薄膜 现代科学技术特别是激光技术和信息光学的发展,光学薄膜不仅用于纯光学器件,在光电器件、光通信器件上也得到广泛的应用。近代信息光学、光电子技术及光子技术的发展,对光学薄膜产品的长寿命、高可靠性及高强度的要求越来越高,从而发展了一系列新型光学薄膜及其制备技术,并为解决光学薄膜产业化面临的问题提供了全面的解决方案,包括高强度激光器、金刚石及类金刚石膜、软X射线多层膜、太阳能选择性吸收膜和光通信用光学膜等。

光学薄膜技术复习提纲讲解

光学薄膜技术复习提纲 、典型膜系 减反射膜(增透膜) 1、减反射膜的主要功能是什么? 是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量, 减少或消除系统的杂散光。 ★ 2、单层减反射膜的最低反射率公式并计算 厂 宀 >2 llo —111 /11;#-1 R= ------------ <山+爲沁+/ ★ 3、掌握常见的多层膜系表达,例如 G| H L | A 代表什么? G| 2 H L | A ? ★ 4、什么是规整膜系?非规整膜系? 把全部由入0/4整数倍厚度组成的膜系称为规整膜系,反之为非规整膜系。 ★ 5、单层减反射膜只能对某个波长和它附近的较窄波段内的光波起增透作用。 为了在较宽的 光谱范围达到更有效的增透效果,常采用双层、三层甚至更多层数的减反射膜。 ★ 6 V 形膜、W 形膜的膜系结构以及它们的特征曲线。P16-17 ㈡高反射膜 ★ 1、镀制金属反射膜常用的材料有铝(AI )、银(Ag )、金(Au )、铬等。 ★ 2、金属反射膜四点特性。P29 ① 高反射波段非常宽阔,可以覆盖几乎全部光谱范围,当然,就每一种具体的金属而言,它 都有自己最佳的反射波段。 V --G I HL| A / M |=! !膜 / fix 一上 —\ >< WG | 2HL | A 0 400 450 500 550 600 650 700 VUavelsnqth (rm ) 43 2 yuf5o2lpu 家

②各种金属膜层与基底的附着能力有较大差距。如Al、Cr、Ni (镍)与玻璃附着牢固;而Au、 Ag与玻璃附着能力很差。 ③金属膜层的化学稳定性较差,易被环境气体腐蚀。 ④膜层软,易划伤。 ㈢分光膜 1什么是分光膜? 中性分束镜能够在一定波段内把一束光按比例分成光谱成分相同的两束光,也即它在一定的 波长区域内,如可见区内,对各波长具有相同的透射率和反射率之比值一一透反比。因而反射光和透射光不带有颜色,呈色中性。 ★2、归纳金属、介质分束镜的优缺点: 金属分束镜p32 优点:中性好,光谱范围宽,偏振效应小,制作简单 缺点:吸收大,分光效率低。 使用注意事项:光的入射方向 介质分束镜p30 优点:吸收小,几乎可以忽略,分光效率高。 缺点:光谱范围窄,偏振分离明显,色散明显。 5、偏振中性分束棱镜是利用斜入射时光的偏振,实现50/50中性分光。 ㈣、截止滤光片 ★1、什么是截止滤光片?什么是长波通、短波通滤光片?p33 截止滤光片是指要求某一波长范围的光束高效透射,而偏离这一波长的光束骤然变化为高反 射的干涉截止滤光片。 抑制短波区、透射长波区的截止滤光片称为长波通滤光片。 抑制长波区、透射短波区的截止滤光片称为短波通滤光片。 2、截止光滤片的应用:彩色分光膜。P51 ①图2.4.13分光原理;②解决棱镜式分光元件偏振效应的方法是合理设计分光棱镜的形式,尽可能减小光束在膜面上的入射角。 ㈤、带通滤光片 ★1、什么是带通滤光片?P58

光学薄膜的应用与实例

光学薄膜的应用与实例 【摘要】光学薄膜是利用薄膜对光的作用而工作的一种功能薄膜,光学薄膜在改变光强方面可以实现分光透射、分光反射、分光吸收以及光的减反、增反、分束、高通、低通、窄带滤波等功能。光学薄膜的种类有很多,这些薄膜赋予光学元件各种使用性能,在实现光学仪器的功能和影响光学仪器的质量方面起着重要的或者决定性的作用。 【关键词】光学薄膜;应用 传统的光学薄膜是现代光学仪器和各种光学器件的重要组成部分,通过在各种光学材料的表面镀制一层或多层薄膜,利用光的干涉效应来改变透射光或反射光的光强、偏振状态和相位变化[1]。薄膜可以被镀制在光学玻璃、塑料、光纤、晶体等各种材料表面上。它的厚度可从几个nm到几十、上百个μm。光学薄膜可以得到很好的牢固性、光学稳定性,成本又比较低,几乎不增加材料的体积和重量,因此是改变系统光学参数的首选方法,甚至可以说没有光学薄膜就没有现代的光学仪器和各种光学器件。在两百多年的发展过程中,光学薄膜形成了一套完整的光学理论—薄膜光学。光学薄膜已广泛应用于各种光学器件(如激光谐振腔、干涉滤波片、光学镜头等),不仅如此它在光电领域中的重要作用亦逐渐为人们所认识。 1. 减反射膜 假定光线垂直入射在表面上,这时表面的反射光强度与入射光的强度比值(反射率)只决定于相邻介质的折射率的比值[1]: (1-1) 折射率为1.52的冕牌玻璃每个表面的反射约为4.2%左右.折射率较高的火石玻璃则表面反射更为显著。这种表面反射造成了两个严重的后果:光能量损失使象的亮度降低;表面反射光经过多次反射或漫射,有一部分成为杂散光,最后也到达象平面使象的衬度降低图象质量,特别是电视、电影摄影镜头等复杂系统都包含了很多个与空气相邻的表面,如不镀上增透膜其性能就会大大降低。 应用于可见光谱区的光学仪器非常多,就其产量来说占据了减反射膜的绝大部分,几乎在所有的光学器件上都要进行减反处理。 单层减反膜是应用非常广泛的薄膜,也是最简单的膜系。考虑垂直入射的情况,即,并令 (1-2) 则(若则不计半波损失),即相位差是180°。

光学薄膜完整版

光学薄膜技术复习提纲 闭卷考试 120分钟 考试时间:17周周三下午3:00---5:00(12月30号)题型:选择题(10*2)填空题(10题24分)判断题(10题)简答题(4题24分)综合题(2题22分,计算1题,论述1题)考试内容包含课本与课件,简答和综合题包含作业和例题 1、判断题 1. 光束斜入射到膜堆时,S-偏振光的反射率总是比p-偏振光的反射率高(正确) 2. 对称膜系可以完全等效单层膜(错误,仅在通带中有类似特性) 3. 对于吸收介质,只要引入复折射率,进行复数运算,那么就可以完全使用无吸收 时的公式(正确) 4. 膜层的特征矩阵有两种表达方式:导纳矩阵和菲涅尔系数矩阵(错误) 5. 简单周期性多层膜,在其透射带内R<<1(错误) 6. 在斜入射情况下,带通滤光片S-偏振光的带宽比p-偏振光的带宽为大(正确) 7. 在包含吸收介质时,光在正反两个入射方向上的透过率是一样的(正确) 8. 发生全反射时,光的能量将不进入第二介质(错误) 9. 斜入射时,银反射膜的偏振效应比铝反射膜大(Al:0.64-i5.50,Ag:0.050- i2.87)(错误,因为银的折射率远小于铝) 10. 高反射介质膜的截止深度是指在截止波长处的反射率(错误,是指截止带中心处 的反射率) 第1章薄膜光学特性计算基础 1、干涉原理:同频率光波的复振幅矢量叠加。 2、产生干涉的条件:频率相同、振动方向一致、位相相同或位相 差恒定。 3、薄膜干涉原理:层状物质的平行界面对光的多次反射和折 射,导致同频率光波的多光束干涉叠加。 4、光学薄膜:薄到可以产生干涉现象的膜层、膜堆或膜系。 5、麦克斯韦方程组: 6、物质方程: 7、光学导纳: 8、菲涅尔系数:菲涅尔系数就是界面上的振幅反射系数和振幅 透射系数。 9、特征矩阵:表征薄膜特性的矩阵,仅包含薄膜的特征参数 10、虚设层:当膜层厚度对于中心波长来说是或其整数倍时,该 层存在对于中心波长处的透过率/反射率无影响,因此称为虚 设层。但该层其他波长处的透过率/反射率还是有影响的。

光学薄膜技术第三章薄膜制造技术

第三早薄膜制造技术 光学薄膜可以采用物理汽相沉积( PVD )和化学液相沉积(CLD )两种工艺来获得。CLD 工艺简单,制造成 本低,但膜层厚度不能精确控制, 膜层强度差,较难获得多层膜,废水废气对环境造成污染, 已很少使用。 PVD 需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。 PVD 分为热蒸发、溅射、离子镀、及离子辅助镀等。 制作薄膜所必需的有关真空设备的基础知识 用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几 个原子、分子的集合体(从广义来说,就是使其蒸发) ,并使它们在其他位置重新结合或凝聚。 在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: 先进行(1)然后进行(2)。因为所有的(超)高真空泵只有在真空室的压力降低到一定程度时才能进行工作, 而且在高真空泵(如油扩散泵)中,要把空气之类的分子排出,就必须使排气口的气体压力降低到一定程 度。 小型镀膜机的真空系统 低真空机械泵+高真空油扩散泵+低温冷阱 ① 蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ② 空气分子进入薄膜而形成杂质; ③ 空气中的活性分子与薄膜形成化合物; ④ 蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。 因此,必须把空气分子从制作薄膜的设备中排除出去, 过程称为抽气。空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵, 抽成真空的容器叫做真空 室,把包括真空泵和真空室在内的设备叫做真空设备。 薄膜最重要的装备是真空设备. 真空设备大致可分为两类:高真空设备和超高真空设备。 者真空度不 同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不 同, 而且用于真空室和抽气 系统的材料也不同, 下图是典型的高真空设备的原理图, 作薄膜所用的高真 空设备大多都属于这一类。 下图是超高真空设备的原理图,在原理上,它与高 真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。 3.1高真空镀膜机 1.真空系统 现代的光学薄膜制备都是在真空下获得的。普通所说的 真空镀膜,基本都是在高真空中进行的。 I T*?!=E1=* I ■■ 这个 制作 I ! SW2 蝉# t 初真空 低真空 高真空 超高 真空 极高 其空 真空度 Pa 5 2 10 ?10 io 2—10-1 10 L —io'5 10-5—10-12 <10-12 低宾空莱 低真 泵 ?加痕 炉 ■电硯)——

《薄膜光学与技术》2012期末考试试题A-答案

2012-2013学年第1学期《薄膜光学与技术》期末考试试题(A 卷) 参考答案及评分标准 一、 填空题 (每空1分,共24分) 1、在折射率为3.5的基底表面镀单层减反射膜,对于4000nm 的光波,理论上能达到最佳减反射效果的薄膜折射率为: 1.8708 ,需要镀制的薄膜光学厚度为 1000 nm 。 2、若薄膜的折射率为n ,光线在薄膜内的折射角为θ,则s 、p 光的修正导纳分别为 ncos θ 、 n/cos θ 。 3、对于波长为λ的光来说,单层膜的光学厚度每增加 λ/4 ,薄膜的反射率就会出现一次极值变化。当薄膜的折射率小于基底折射率时,出现的第一个反射率极值是 极小 (极大、极小)值。 4、虚设层的形成条件是: 薄膜的光学厚度等于半波长的整数倍 。 5、周期性对称膜系(pqp)s 的等效折射率和 基本周期/pqp 的等效折射率完全相同,其等效位相厚度等于 基本周期的s 倍 。 6、折射率为n 1,光学厚度为λ0/4,基底的折射率为n s ,那么,该单层膜与基底的组合导纳为: s n Y 21 7、介质高反射膜的波数宽度仅与两种膜料的 折射率 有关,折射率 差值越大 ,高反射带越宽。 8、热偶真空规是通过测量温度达到间接测量 真空 的目的。 9、镀膜室内真空度高表明气体压强 小 ,真空度低则气体压强 大 。 10、薄膜几何厚度的监控通常用 石英晶振 膜厚仪来实现,光学厚度常常采用 光电 膜厚仪来监控。 11、采用PVD 技术制造薄膜器件时,薄膜折射率的误差主要来自三个方面: 膜层的聚集密度 、 膜层的微观组织物理结构 、 膜层的化学成分 。 12、改善膜层厚度均匀性的措施包括 旋转夹具 和 膜层厚度调节板 。

光学薄膜技术第二章课件

光学薄膜技术第二章课件-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

典型膜系介绍 根据其作用可以将光学薄膜的类型简单的分为: 1、减反射膜或者叫增透膜 2、分束膜 3、反射膜 4、滤光片 5、其他特殊应用的薄膜 一. 减反射膜(增透膜) 在众多的光学系统中,一个相当重要的组成部分是镜片上能降低反射的镀膜。在很多应用领域中,增透膜是不可缺少的,否则,无法达到应用的要求。 就拿一个由18块透镜组成的35mm 的自动变焦的照相机来说,假定每个玻璃和空气的界面有4%的反射,没有增透的镜头光透过率为23%,镀有一层膜(剩余的反射为1.3%)的镜头光透过率为62.4%,镀多层膜(剩余的反射为0.5%)的为83.5%。 大功率激光系统要求某些元件有极低的表面反射,以避免敏感元件受到不需要的反射光的破坏。此外,宽带增透膜可以提高象质量、色平衡和作用距离,而使系统的全部性能增强。 当光线从折射率为n0的介质射入折射率为n1的另一介质时,在两介质的分界面上就会产生光的反射, 如果介质没有吸收,分界面是一光学表面,光线又是垂直入射,则反射率R 为: 例,折射率为1.52的冕牌玻璃,每个表面的反射约为4.2%,折射率较高的火石玻璃表面的反射更为显著。 这种表面反射造成了两个严重的后果: ①光能量损失,使像的亮度降低; ②表面反射光经过多次反射或漫射,有一部分成为杂散光,最后也达到像平面,使像的衬度降低,分辨率下降,从而影响光学系统的成像质量。 减反射膜,又称增透膜,它的主要功能是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量,减少或消除系统的杂散光。 最简单的增透膜是单层膜,它是镀在光学零件光学表面上的一层折射率较低的介于空气折射率和光学元件折射率之间的薄膜。以使某些颜色的单色光在表面上的反射干涉相消,增加透射。使用最普遍的介质膜材料为氟化镁,它的折射率为1.38。 R T n n n n R -=???? ??+-=121010透射率

《薄膜光学与技术》期末考试试题B-标准答案

《薄膜光学与技术》期末考试试题B-答案

————————————————————————————————作者:————————————————————————————————日期:

2014-2015学年第1学期《薄膜光学与技术》期末考试试题(B卷) 参考答案及评分标准 一、填空题(每空1分,共25分) 1、薄膜是指附着于基底,且与基底不同质的非自持性涂层。 2、镀制单层介质薄膜时,第二次看到相同的反射色时的膜层光学厚度是第一次看到相同的反射色时膜层光学厚度的 3 倍。 3、K9玻璃上的单层MgF2膜层与单层ZrO2膜层具有相同的反射色调时,MgF2膜层的光学厚度等于(大于、小于、等于)ZrO2膜层的光学厚度。 4、在折射率为3.5的材料表面镀单层减反射膜,材料最佳的折射率为:1.8708 。 5、周期性对称膜系(pqp)s的等效折射率和基本周期/pqp 的等效折射率完全相同,其等效位相厚度等于基本周期的s倍。 6、按照材料状态不同,一般将薄膜分为固体薄膜、气体薄膜和 液体薄膜三类。 7、Torr和Pa是两个常用来表示真空度的单位,它们较为准确的换算关系为:1Torr=133.3Pa 。 8、镀膜室内真空度高表明气体压强小,真空度低则气体压强大。 9、由于极值点的判读精度不高,因此常常采用过正控制、高级次监控、预镀监控片等措施来提高极值法监控精度。 10、电子枪的e型枪是指电子束出射后至坩埚表面的运动方向改变了270度。 11、请写出常用的三种金属镀膜材料:Au 、Ag 、Al 。 12、一般镀膜系统测量真空需要两个真空计:热电偶真空计和电离真空计。 13、采用光电极值法监控膜厚,监控片为K9玻璃(折射率为1.52),如果要镀制单层ZnS薄膜(折射率为2.35),监控的第一个透射率极值点应该是极大值还是极小值:极小值。 14、能够直接用来抽大气的真空泵是机械泵。 15、热蒸发技术常用的蒸发源有电阻蒸发源和电子枪。 二、判断题:先回答以下说法是否正确?然后说明理由或修改正确。(每题4分,共20分)

《薄膜光学与技术》2014期末考试试题B-答案

2014-2015学年第1学期《薄膜光学与技术》期末考试试题(B卷) 参考答案及评分标准 一、填空题(每空1分,共25分) 1、薄膜是指附着于基底,且与基底不同质的非自持性涂层。 2、镀制单层介质薄膜时,第二次看到相同的反射色时的膜层光学厚度是第一次看到相同的反射色时膜层光学厚度的 3 倍。 3、K9玻璃上的单层MgF2膜层与单层ZrO2膜层具有相同的反射色调时,MgF2膜层的光学厚度等于(大于、小于、等于)ZrO2膜层的光学厚度。 4、在折射率为3.5的材料表面镀单层减反射膜,材料最佳的折射率为:1.8708 。 5、周期性对称膜系(pqp)s的等效折射率和基本周期/pqp 的等效折射率完全相同,其等效位相厚度等于基本周期的s倍。 6、按照材料状态不同,一般将薄膜分为固体薄膜、气体薄膜和 液体薄膜三类。 7、Torr和Pa是两个常用来表示真空度的单位,它们较为准确的换算关系为:1Torr=133.3Pa 。 8、镀膜室内真空度高表明气体压强小,真空度低则气体压强大。 9、由于极值点的判读精度不高,因此常常采用过正控制、高级次监控、预镀监控片等措施来提高极值法监控精度。 10、电子枪的e型枪是指电子束出射后至坩埚表面的运动方向改变了270度。 11、请写出常用的三种金属镀膜材料:Au 、Ag 、Al 。 12、一般镀膜系统测量真空需要两个真空计:热电偶真空计和电离真空计。 13、采用光电极值法监控膜厚,监控片为K9玻璃(折射率为1.52),如果要镀制单层ZnS薄膜(折射率为2.35),监控的第一个透射率极值点应该是极大值还是极小值:极小值。 14、能够直接用来抽大气的真空泵是机械泵。 15、热蒸发技术常用的蒸发源有电阻蒸发源和电子枪。 二、判断题:先回答以下说法是否正确?然后说明理由或修改正确。(每题4分,共20分)

物理论文-光学薄膜及其应用方面的研究

光学薄膜及其应用方面的研究 1.引言 光学薄膜是指在光学玻璃、光学塑料、光纤、晶体等各种材料的表面上镀制一层或多层薄膜,基于薄膜内光的干涉效应来改变透射光或反射光的强度、偏振状态和相位变化的光学元件,是现代光学仪器和光学器件的重要组成部分。从20世纪30年代开始,光学薄膜逐渐被应用于日常生活、工业、天文学、军事、宇航、光通信等领域,在国民经济和国防建设中起到了重要作用,因而得到了科学技术工作者的日益重视。而今新兴技术的发展对薄膜技术不断提出新的要求,又进一步促使了光学薄膜技术的蓬勃发展,所以近年来,对光学薄膜的研究及其应用一直是非常活跃的课题。本文在简单叙述薄膜干涉的一些相关原理的基础上,介绍了光学薄膜最常见的几种制备方法,研究了光学薄膜技术的相关应用,并且展望了光学薄膜研究的广阔前景。 2.光学薄膜干涉的原理 一列光波辐射到透明薄膜上,从膜的前、后表面或上下表面或上下表面反射出两列光波,这两列相干光波相遇后叠加产生干涉,设薄膜下方空间的折射率为n3,薄膜的折射率为n2,薄膜上方空间的折射率为n,膜的厚度为d,如图1所示,则上下两表面处获得的反射光束的光程差为δ=2d(n2^2-n1^2sin^i)^-2λ*/2,式中i是入射角,λ/2是由半波损失而引起的附加光程,当δ=kλ,相位差Δφ=±2k∏(k=1、2、3…),干涉加强,形成明纹;当δ=(2k+1)*λ/2,Δφ=±(2k+1)∏(k=0、1、2、3…),干涉减弱,形成暗纹。 图1 薄膜干涉的基本原理 假如取薄膜的光学厚度为n2*d=λ/4,当n1n2;n3>n2时,薄膜上下表面的光学性质不相同,都有λ/2附加光程差,两反射光的光程差δ=λ,两反射光干涉相长,增加了反射光的能量,这种薄膜称为增反膜;当n1n2>n3时,因薄膜上下表面的光学性质相同,上下表面的反射光没有附加光程差,两反射光的光程差δ=λ/2,两反射光干涉相消,增加了透射光的能量,这种薄膜称为增透膜。总之,当(n2-n1)(n2-n3)>0时有增透的作用。

光学薄膜技术课程简介.

《光学薄膜技术》课程简介 《光学薄膜技术》作为光学专业的技术专业课,系统地介绍薄膜光学的基本理论和器件设计的基本方法,介绍光学薄膜的新设计方法、新器件设计、新工艺技术、制造工艺,介绍光学薄膜的相关材料及其性质,介绍光学薄膜的特性测试方法等。 本《光学薄膜技术》课程将讲授六章,第一章是薄膜光学特性计算基础,第二章介绍介质膜系及其应用,第三章介绍薄膜制造技术,第四章介绍光学薄膜制造工艺,第五章介绍薄膜材料及其性质,第六章介绍光学薄膜特性测试与分析。 课程目录 第一章薄膜光学特性计算基础 1.1 单一界面的反射率和透射率 1.2 单层介质膜的反射率 1.3 多层介质膜的反射率和透射率 1.4 金属薄膜的光学特性 1.5 光学零件的反射率和透射率 第二章介质膜系及其应用 2.1 减反射膜 2.2 高反射膜 2.3 中性分束膜 2.4 截止滤光片

2.5 带通滤光片 2.6 偏振分束膜 2.7 消偏振膜系 第三章薄膜制造技术 3.1 光学真空镀膜机 3.2 真空与物理汽相沉积 3.3 真空获得与检测 3.4 热蒸发 3.5 溅射 3.6 离子镀 3.7 离子辅助镀 第四章光学薄膜制造工艺4.1 光学薄膜器件的质量要素4.2 影响膜层质量的工艺要素4.3 获得精确厚度的方法 4.4 获得均匀膜层的方法 第五章薄膜材料及其性质5.1 薄膜的微观结构与性质5.2 常用光学薄膜材料

第六章光学薄膜特性测试与分析 6.1 光学薄膜特性的检测标准 6.2 薄膜透射率、反射率的测量 6.3 薄膜光学常数和厚度的测量 6.4 薄膜吸收和散射的测量 6.5薄膜激光损伤阈值的测量 6.6 薄膜非光学特性的检测 参考书 1. 卢进军,刘卫国。《光学薄膜技术》,西北工业大学出版社,2005.10; 2. 卢进军。《光学薄膜技术》,电子工业出版社,2011.7; 3. 唐晋发,顾培夫,刘旭,李海峰。《现代光学薄膜技术》,浙江大学出版社,2007.3。

《薄膜光学与技术》期末考试试题A-标准答案

《薄膜光学与技术》期末考试试题A-答案

————————————————————————————————作者:————————————————————————————————日期:

2012-2013学年第1学期《薄膜光学与技术》期末考试试题(A 卷) 参考答案及评分标准 一、填空题 (每空1分,共24分) 1、在折射率为3.5的基底表面镀单层减反射膜,对于4000nm 的光波,理论上能达到最佳减反射效果的薄膜折射率为: 1.8708 ,需要镀制的薄膜光学厚度为 1000 nm 。 2、若薄膜的折射率为n ,光线在薄膜内的折射角为θ,则s 、p 光的修正导纳分别为 ncos θ 、 n/cos θ 。 3、对于波长为λ的光来说,单层膜的光学厚度每增加 λ/4 ,薄膜的反射率就会出现一次极值变化。当薄膜的折射率小于基底折射率时,出现的第一个反射率极值是 极小 (极大、极小)值。 4、虚设层的形成条件是: 薄膜的光学厚度等于半波长的整数倍 。 5、周期性对称膜系(pqp)s 的等效折射率和 基本周期/pqp 的等效折射率完全相同,其等效位相厚度等于 基本周期的s 倍 。 6、折射率为n 1,光学厚度为λ0/4,基底的折射率为n s ,那么,该单层膜与基底的组合导纳为: s n n Y 21 7、介质高反射膜的波数宽度仅与两种膜料的 折射率 有关,折射率 差值越大 ,高反射带越宽。 8、热偶真空规是通过测量温度达到间接测量 真空 的目的。 9、镀膜室内真空度高表明气体压强 小 ,真空度低则气体压强 大 。 10、薄膜几何厚度的监控通常用 石英晶振 膜厚仪来实现,光学厚度常常采用 光电 膜厚仪来监控。 11、采用PVD 技术制造薄膜器件时,薄膜折射率的误差主要来自三个方面: 膜层的聚集密度 、 膜层的微观组织物理结构 、 膜层的化学成分 。 12、改善膜层厚度均匀性的措施包括 旋转夹具 和 膜层厚度调节板 。 13、采用光电极值法监控膜厚,如果需要镀制光学厚度为900nm 的薄膜,在500-700nm 范围内,可以选取的监控波长为 600 和 514.3 nm 。

相关文档
最新文档