苏云金芽孢杆菌作业

苏云金芽孢杆菌作业
苏云金芽孢杆菌作业

发酵工艺学作业

题目苏云金芽孢杆菌生物农药发酵工艺研究进展

学院

班级学号

姓名

苏云金芽孢杆菌生物农药发酵工艺研究进展

摘要:苏云金芽孢杆菌(Bt)是一种开发和利用较为成功的微生物生物农药,但也存在着生产成本高、发酵条件难控制等缺点。本文主要综述了Bt生物农药的发酵工艺研究进展,主要包括BT发酵中的培养基、温度、PH值、通氧量以及发酵时间等方面。并对Bt生物农药的发展前景作出了展望。

关键词:苏云金芽孢杆菌;生物农药;发酵工艺;展望

Review on fermentation of Bacillus thuringiensis Abstract:Bacillus thuringiensis (Bt) is a microbial pesticides,Which has been successful developed and used.The fermentation technology of Bacillus thuringiensis (Bt) in recent years were summarized, including raw material, temperature, pH value, oxygen, fermentation time.In this aricle,the development prospct of Bt microbial pesticides is also put forward.

Key words: Bt;microbial pesticides; fermentation technology;forward

前言

生物农药又可称为绿色农药、生态农药,是20世纪70年代提出的,是指可以用来防治病、虫、草、鼠等有害生物及调节植物生长的生物体或源于生物体的各种生理活性物质。生物农药不仅具有常规农药的高活性,能大规模工业化生产,而且专一性强,一般不伤害虫的天敌和有益生物,对人畜无毒,不污染环境,可在田间大规模应用。

微生物生物农药是生物农药中的主要类型之一[1]。而在微生物生物农药方面又以苏云金芽孢杆菌(Bt)为目前产量最大,应用最为广泛的一类细菌杀虫剂[2,3],占到生物农药的90%左右[4]。Bt的发酵方式可分为液体发酵和固体发酵两种类

型。我国主要采用液体深层发酵生产苏云金芽孢杆菌制剂。但液体发酵存在培养基成本高、效率低等问题,使得产品生产成本较高[5]。我国一些地方的中小型农药厂生产苏云金芽孢杆菌多用简易的,小批量的固体发酵方法。固体发酵方法作为生产BT生物农药的一种新方式,与液体发酵方式相比,具有投资低、产量高、后处理方便等优点,从而逐渐体现其优越性,但其技术和设备研究并未完全成熟。

本文对Bt发酵生物农药的发酵工艺最新研究进展进行了综述,主要包括Bt 发酵中的培养基、温度、PH值、通氧量以及发酵时间等5个方面。并对BT生物农药的发展前景作出了展望。

1培养基

根据相关文献报道[6],Bt在含氮0.075%~0.225%,含糖0.1%~1.5%和碳氮比为0.4~20.0的范围内都能生长良好。因此,为了降低生产成本,节约资源,人们通常选择廉价、易得的农副产品作为Bt发酵的原料。

1.1碳源

碳源大多为淀粉和蔗糖等。一般发酵培养基中,总营养物含量在5%左右,C/N比为(4~5):1为宜,这样的配比使得最后发酵液中芽孢量为20亿个~50亿个/ml。碳源除可以用玉米粉、葡萄糖、蔗糖外,还可以用丙酮丁醇废醪。其中葡萄糖由于受Fe2+和PO43-等离子的影响,在灭菌时很容易焦糖化,对发酵产生很大的影响[7]。由于Bt在发酵过程中能分泌活跃的胞外淀粉酶,故最好选择淀粉作碳源[8]。陈在佴等[9]对BT99-11菌株进行培养条件的研究发现,玉米淀粉比葡萄糖和玉米粉对发酵的影响更显著。

1.2氮源

氮源为豆饼、棉籽饼等蛋白质物质,其中以豆饼粉、玉米浆、鱼粉、蚕蛹粉、棉籽饼等有机氮为好,pH要求中性。吴继星[10]等进行两个菌株的混合培养,研究得出,在以豆饼粉为主要氮源的培养基上发酵水平分别达到5650和5800U/ul,显然豆饼粉培养基较棉籽饼培养基优越;申烨华等[11]对Bt-HD-1菌株进行了发酵培养,研究得出棉籽饼粉对发酵的影响显著,而鱼粉和豆饼粉对其发酵的影响不显著。在工业上,发酵中使用玉米浆比酵母粉对芽孢和伴孢晶体的影响更显著。苏云金芽孢杆菌在利用糖时会大量产酸,如果糖浓度过高,发酵液的PH值可能会

降到5.5以下,这种pH会抑制或阻止苏云金杆菌的生长,同时苏云金杆菌在利用氮源时会产生一些碱性物质,会利用糖代谢时产生的酸性中间产物,因此糖浓度过少,对苏云金杆菌发酵也是不利的。综上所述,选择适合的氮碳比对BT发酵时十分重要的[11]。

1.3填料

在固体发酵中还要加入具有一定疏松通气作用的填料,这些填料可以为谷壳、砻糠、秸秆粉等农副产品,其中麸皮、米糠既可疏松透气又可作为氮源。因此麸皮、米糠是比较常用的有机载体,但是如果单独使用麸皮等载体,在培养基高温灭菌消毒后,存在着粘度加大、疏松度降低、后续接种困难等问题。张怡,杨天雪[12]等利用废次烟草部分替代固体发酵中的麸皮等有机载体,72h后棉铃虫的较正死亡率可达74%,从而降低了生产成本。

2温度

温度直接影响到微生物体内各种酶的活性,一般而言,发酵温度升高,酶的活性增大,微生物生长代谢加快,生产期提前;但温度过高会使酶失活,表现在菌体容易衰老,发酵周期缩短,从而影响最终产物[13]。因此,在发酵过程中必须保证稳定和适宜的温度范围。不同的微生物之间基本生长温度有较大的差别,对一种微生物而言,其最适生长温度一般为30℃[14]。Bt的最适生长温度在29~31℃之间,温度越低,发酵时间越长,发酵水平越好。杨淑兰[15]等对生物杀虫剂苏云金芽孢杆菌的固体发酵进行了研究,结果发现,在室温23~25℃、29~31℃、35~36℃三组实验中,29~31℃的发酵效果最好,在35~36℃时菌体被抑制生长。该实验表明,控制温度至关重要,特别在对数生长期,菌体代谢旺盛,产生较大热量,此时更要控制温度,控制温度在最适范围以内,从而提高产量和毒效。

3 pH值

pH是微生物生长和产物合成非常重要的参数,是代谢活动的综合指标,对于发酵过程具有十分重要的意义。不同种类的微生物对pH的要求不同。pH的变化会影响微生物的生长和代谢产物的生成,因而控制发酵液中的pH尤为重要。苏云金芽孢杆菌对pH有较高的耐性,可以在较宽的pH范围内好好的生长[5]。在酸

性条件下生长性能较差,在弱酸和酸碱条件下生长较好[16]。当6.0<初始pH<10.0时,菌数相差不大。灭菌后pH<6.5后有利于芽孢的萌发和菌体的大量生长,但对后期晶体的形成不利,pH>7.5则会延长芽孢的萌发期,因此灭菌后pH应在6.8左右为宜[17]。方苹等[18]进行了Bt固体发酵的条件试验,结果发现发酵初始pH值为7.5时所产芽孢数达到最大值,基本稳定在2137×1010个/g。Ejiofor等[19]研究表明,当pH值为5左右时,Bt形成芽孢和半孢晶体的能力较pH为中性偏碱时弱。Abdel-Hameed等[20]通过实验研究表明,当培养基的pH 值低于6. 5时,对菌体芽孢的形成和δ-内毒素产生负面的影响。杨淑兰等[21]进行苏云金芽孢杆菌固体发酵杀虫粉百公斤级扩大实验时发现,pH值为8时菌数最多,但由于配制液体种子培养基时,使用的原料在灭菌时产生了乙酸,将一部分碱中和了,实际pH为7,从而Bt的最适生长pH为7。中科院生态中心[8]利用味精废水进行Bt的发酵也得到了同样的结论。丁学知等[22]对4.0718菌株发酵的最佳条件进行了研究,结果表明,发酵液的起始pH值为7.8-8.0.

4 通氧量

好氧性微生物的生长发育和产物的合成都需要消耗氧气,它们只有在有氧分子存在的情况下才能完成生物氧化作用,因此,供养对需氧微生物必不可少。Bt 属于革兰氏好氧菌,因此在发酵过程中必须提供充足的氧气,以维持菌体生长和代谢产物的形成。在发酵初期,菌体细胞数量少,需氧量不大,但当菌体达到指数生长期时,菌体繁殖很旺盛,以糖代谢为主,需氧量最多,因此必须增加氧气的供应量[5]。根据生长周期中各阶段对氧的需求量的不同,合理的调整氧气的加入量,在需氧量较大时加大氧气的通入量,其中提高搅拌速度[23]是提高发酵水平的一种有效措施,此外,适当使用某些可溶性营养成份和进行分批补料发酵有利于改善氧气的传递[24]。

5 发酵时间

在发酵过程中,应严格控制发酵的时间,发酵时间若不足,则孢子没有充分形成,伴孢晶体的产量不足;发酵时间若太长,则由于培养基中营养物质的消耗以及代谢产物的积累,菌体数量不再继续增加,菌体逐渐老化,伴孢晶体的产量也会因此而降低[25]。一般Bt的培养时间为44-48h,姚伟芳等[ 26 ]对Bt固态发酵条件的优化研究,结果表明,发酵时间为42 h左右效果最佳。王世梅等[ 27]利用城市

污泥生产Bt生物农药时发现,在培养30 h时,有75%的芽孢脱落,在培养36 h时,有90%的芽孢脱落,在培养48 h时,细胞总数和芽孢数均达到最高。李新社等[28]对Bt 不同时间的发酵培养所产生的芽孢进行计数统计,发现在培养2天时所产生的芽孢数目比前一天所产生的芽孢数要多,以后基本上不再增加甚至略有减少。周先治等[29]研究了Bt-LSZ9408菌体的生长曲线,结果表明,在8~20h范围内为对数生长期,菌体浓度逐渐增大,24h后菌体浓度达到最大值,在28~40h之间菌体数变化不大,称之为稳定生长期,40h后菌体浓度降低,进入衰亡期。通过涂片观察,发现8h时有少量菌丝体,20h时有孢子形成,28h时有半孢晶体形成,32h时有晶体出现,40h时晶体数达到80%以上。在对数生长期适当的增加生物所需的营养物质可提高Bt菌的产量[30]。

6 总结

我国Bt生物农药研究开发与应用技术已达到国际先进水平。世界上首家Bt 专门研究机构——中国湖北Bt研究开发中心于20世纪90年代中期在湖北省农科院成立。新型发酵设备的出现、发酵吨位的提高、工业发酵技术的成熟、发酵液处理技术的完善以及剂型的多样化都无疑为我国Bt生物农药产业发展创造了条件,但与国外在菌种和生产技术方面相比仍有较大差距。Bt的产业化生产已经取得了一定的成绩,在实际生产中,人们为了降低生产成本,大多采用农副产品作为Bt发酵的原料。在Bt发酵过程中,会受到多方面因素的影响,这就要求我们要从多角度、多方面综合考虑,从而开发出更经济合理的培养基和培养方法。

7 展望

Bt的发展前景是非常乐观的。随着各门学科的不断发展,人们正在不断地从生物化学、基因工程等上游技术研究思路出发,同时结合代谢动力学、发酵动力学、发酵后处理化工技术、生物化学反应工程技术等下游技术研究微生物的发酵过程,通过各门学科的交叉和渗透,一定能不断扩宽Bt的开发领域。与此同时,随着以基因工程为主导的现代生物技术的不断发展,新一代遗传工程杀虫剂具有良好的开发应用前景,研究性能良好的Bt基因工程菌成为今后的一大热点。

参考文献

[1]喻子牛. 微生物农药及其产业化[M]. 北京:科学出版社, 2000: 27 - 34.

[2] 阮丽芳,王玉洁,沈萍.产黑色素B.thuringiensis重组菌株的构建及其培

养条件的优化[J].武汉大学学报(理学版),2003(4),49(2):257—260.[3] 钟万芳,方继朝,郭慧芳,等.广谱高效Bt菌株的筛选及其杀虫蛋白基因的

克隆[J].华南农业大学学报,2005(10),26(4):40—42.

[4] 邓立新.生物农药苏云金芽孢杆菌杀虫剂及其增效剂[J].化学教学,2004,

3:31-33.

[5] 校逸,胡潇涵,陈建帮,等. Bt生物农药固态发酵研究进展[ J ]. 世界金属,

2009 (S1) : 99 - 102.

[6]Dulmage H T.Production of deha—endotoxin by eighteen isolates of

Bacillus thudngiensis serotype 3 in fermenration media[J].Invertebr.

Pathol.1971,18,353-358.

[7]令信.味精工业手册[M],北京:轻工业出版社,1995.

[8] 杨建州,温官,张洪勋.味精废水发酵培养苏云金芽孢杆菌的研究[J].环

境污染治理技术与设备,2000,1(6):35—40.

[9]陈在佴,吴继星,张志刚.素云金杆菌99—11菌株培养条件的研究[J].湖

北农业科学,2005,6:39-41.

[10]吴继星,陈在佴,张志刚,等.苏云金杆菌不同菌株混合发酵对发酵效价

和蛋白含量的影响[J].中国生物防治,2003(5),19(2):66—69.[11]申烨华.苏云金杆菌发酵培养基的研究[J].西北大学学报(自然科学版),

2000,30(1):32—35.

[12]张怡,杨天雪.废次烟草作为载体在固体发酵体系中的综合利用[J].烟草

科技/烟草工艺,2000,7:5-7.

[13] 储炬、李友荣.现代工业发酵控制学(第二版)[M].北京:化学工业出版社,

2006:250~251.

[14]PRESCOTT L M, HARKET J P. KLEIN D A. Microbiology [M ]. New York:

McGraw2Hill Higher Education Press, 2000.

[15] 杨淑兰,张怡,梁淑兰等.生物杀虫剂苏云金芽孢杆菌的固体发酵[J].化工冶

金,1993,14(2):161-166.

[16]翟兴礼. 苏云金芽孢杆菌四个亚种对温度和pH值的耐受性[ J ]. 商丘师范

学院学报, 2009, 25 (6) : 103 – 105.

[17] 杨建州,张松鹏.利用味精废水发酵生产苏云金芽孢杆菌的发酵条件研究.食

品与发酵工业[J],2002,28(4):28-31.

[18]方苹,韦萍,范伟平,等.苏云金杆菌发酵工艺研究[J].南京工业大学学

报,2002,24(6):84—87.

[19]EJ IOFOR A O,OKAFOR N. Production of mosquito larvicidal Bacillus

thuringiensis serotype H214 on rawmaterialmedia from Nigeria[ J ]. J Ap-pl Bacteriol, 1989, 67: 5 - 9.

[20]ABDEL-HAMEED A, CARLBERG G, EL-TATYEB O M. Studies on Ba-cillus

thuringiensis H-14 strains isolated in Egypt-IV characterization of fermentation conditions forδ-endotoxin production[ J ].World J Microbiol and Biotechnol, 1991, 7: 231 - 236.

[21]杨淑兰,张丽莉,熊肇祥,等.苏云金杆菌固体发酵杀虫粉剂百公斤级扩

大实验[J].化工冶金,1998,19.(1):83—86.

[22]丁学知,夏立秋,高必达.苏云金杆菌4.0718高毒力杀虫菌株发酵条件的

研究[J].食品与发酵工业,2002,29(2):26—29.

[23] Jean—Francois charles,ArmeHe Delecluse and Christina Nielsen—

LeRoux.Entomopathogenic Bacteris:From Laboratory to Field

Application[J].Kluwer Academic Publishers,2000.321—324.[24]李世杰,方尚玲,彭华松,等. 苏云金杆菌溶氧控制发酵[ J ]. 生物技术,

2000, 10 (3) 34 - 37.

[25] DURAND A. Bioreactor designs for solid state fermentation[ J ]. Bio-chem-ical

Engineering Journal, 2003, 13 (2 /3) : 113 - 125.

[26]姚伟芳,弓爱君,邱丽娜,等. 苏云金芽孢杆菌固态发酵条件的优化[ J ]. 化

学与生物工程, 2006 (11) : 42 - 44.

[27]王世梅,梁剑茹,周立祥. 利用城市污泥生产苏云金杆菌生物农药[ J ].中

国环境科学, 2006, 26 (1) : 77 - 81.

[28]李新社,陆布诗.苏云金杆菌对主要大曲害虫的毒杀效果研究[J].邵阳学

院学报(自然科学版),2005(9),2(3):90—91.

[29]周先治,刘波,黄素芳,等. 苏云金芽孢杆菌LSZ9408菌株发酵特性的研究

[ J ]. 武夷科学, 2004 (12) : 51 - 54.

[30]刘森林、宗敏华、娄文勇.苏云金杆菌补料高密度培养的研究[J].工业微

生物,2000,30(4):41—44.

苏云金芽孢杆菌

本文对农业上研究最多、用量最大的两类微生物杀虫剂苏云金芽孢杆菌 (Bacillus thuringiensis, Bt)和昆虫杆状病毒(baculovirus)进行了综述,分别论述了它们的杀虫优势、杀虫的分子机理、目前的研究状况,并对它们的基因工程技术改良路线以及在农业上的应用,提出了一些建议。 由病虫害引起的农作物的减产减收已成为制约农业生产进一步发展的限制因素,全球每年农作物因虫害造成的损失约占总产量的13%,而目前对农作物害虫的防治主要依赖于化学农药。完全依赖化学杀虫剂存在许多弊端,其中最主要的问题是,一种化学物质的广泛使用会使害虫的后代产生选择性进化优势,从而对该化学物质产生抗性。例如,世界各地的家蝇品系对杀灭它们的每种杀虫剂都产生了抗性。第二个问题是,有的杀虫剂影响非靶目标品种,产生灾难性后果,某些益虫被无意中消灭,导致其次要害虫急剧增长。第三问题是在于环境的耐受性和许多杀虫剂的毒性,不仅造成了严重的环境污染,而且给人类的健康带来巨大的威胁。上述不利因素促使人们急欲寻求控制害虫的替代方案。 在对农业害虫进行的长期防治实践中,人们逐渐认识到必须采取综合治理的措施,才能有效的控制害虫的危害。基因工程技术的发展,为防治农林害虫提供了一种有效、减污的新技术手段,微生物农药也因此在世界范围内受到广泛重视。微生物农药是指非化学合成、具有杀虫防病作用的微生物制剂,如微生物杀虫剂、杀菌剂、农用抗生素,等等。这一类微生物包括杀虫防病的细菌、真菌和病毒。 杀虫微生物是指其代谢产物或微生物本身对宿主昆虫有致死效应或致病的微生物类群,通常也称为昆虫病原微生物。目前已知的杀虫防病微生物主要有芽孢杆菌科、假单胞菌科、肠杆菌科、链球菌科和杆状病毒科等类群。尽管不同杀虫微生物引起昆虫致病的症状不尽相同,但杀虫微生物对害虫的作用方式主要是通过产生特异性的杀虫毒素来破坏害虫的代谢平衡,或者是通过营养体在虫体内的繁殖复制而引起昆虫死亡和发生流行病。 除了这一独特的杀虫机制外,微生物杀虫剂还具有以下一些特点:对人畜安全无毒,不污染环境;杀虫作用具有一定特异性和选择性,不会使天敌和非目标昆虫致死;易于和其他生物学手段结合进行害虫综合治理,维持生态平衡;由于杀虫活性蛋白的多样性,昆虫产生抗性较缓慢或不易产生抗性;可以通过发酵法生产,具有较低的生产成本;可以通过基因工程技术途径筛选或构建优良性能的菌株来满足生产与应用所需等。所以微生物杀虫剂自问世以来发展很快,据报道,全世界已商品化的微生物农药约30种,微生物杀虫剂占其中的90%。 苏云金芽孢杆菌 杀虫微生物中研究最多,用量最大的是苏云金芽孢杆菌。苏云金芽孢杆菌从上世纪20年代起就用于害虫的防治,它的生物学特性决定了它的微生物杀虫剂功能。 苏云金芽孢杆菌菌株在生长代谢过程中会形成芽胞,在芽胞形成过程中产生一个芽胞及一个或多个较大的蛋白质性质的晶体内含体。这种蛋白质性质的晶体被敏感昆虫摄食后会导致昆虫死亡,蛋白质晶体含有不具活性的原毒素分子——δ-内毒素,当昆虫幼虫吞食了这种内毒素,晶体就会被幼虫的碱性肠液溶解,随后被肠道蛋白酶降解,形成有活性的蛋白质毒素,最终导致昆虫死亡。苏云金芽孢杆菌菌株在营养体生长旺盛期,某些菌株还会产生一些其它的外毒素,如α-外毒素、β-外毒素、γ-外毒素,等等。除上述毒素外,近年来从

苏云金芽孢杆菌的分离及鉴定

苏云金芽孢杆菌的分离及鉴定 09级园林工程系生物技术及应用班级 (制作人—王珏指导教师—韩磊) 内容提要 本论文描述了苏云金芽孢杆菌的选择性培养、分离以及鉴定的过程,从而熟悉了灭菌、接种等无菌操作技术,掌握了鉴定菌种的不同方法以及了解到了苏云金芽孢杆菌在生产上的应用和发展前景前景。 关键词 苏云金芽孢杆菌;选择性培养;生化鉴定;明胶酶;明胶的液化;精氨酸脱羧酶;尿素酶1材料与方法 1.1实验材料 1.1.1玻璃器皿 烧杯;三角瓶;量筒;玻璃棒;培养皿;试管;移液管;涂布棒;酒精灯;胶头滴管等 1.1.2实验仪器 超净工作台;光照培养箱;水浴锅;摇床;电子天平等 1.1.3其他用具 研钵;纱布;吸耳球;八层纱布;剪刀;棉塞;pH试纸;胶头滴管;牛皮纸;麻线;喷壶等 1.1.4实验材料 土壤表层土样;叶片;苏云金芽孢杆菌菌粉 1.2方法与步骤 1.2.1选择性培养及扩大培养 1.2.1.1灭菌前准备 1)PBA培养基的制备 PBA培养基配方(1L) 配置750mL的PBA搖瓶培养基后分装于三个大三角瓶内,随后用棉塞及牛皮纸封口包扎;以备灭菌(121℃,20min)。

注(制备的培养基中有500mL中不含有醋酸钠) 2)灭菌器材的准备 将需要灭菌的三角瓶、纱布、搁置架分别包扎后同培养基利用手提式高压灭菌器进行灭菌(121℃,20min)。 1.2.1.2灭菌 1、注水:往灭菌锅内注入适量的蒸馏水; 2、预热:放入需灭菌的器材和培养基之前先预热十分钟; 3、加热升温过程:将需要灭菌器的材放入灭菌锅内→盖 好灭菌锅的顶盖→打开放气阀→接通电源进行升温、升压→ 待到有大量热气从放气阀冒出时关掉放气阀;此后是升压的 过程; 4、升压、降压过程:开始升温后压强随之升高,待到压 强为0.05mpa时关掉电源;此后为降压过程,当压强降到 0mpa时打开放气阀放气。放完气后关掉放气阀接通电源,再 次升温、降温后打开放气阀放气,放完气之后关掉放气阀接 通电源;此后为升压保压的过程; 5、升压保压过程:当压强从0mpa升到1.1mpa时开始计时;当压强升到1.13mpa时关掉电源,待压强降到约1.1mpa时再接通电源;再次升压至1.13mpa时关掉电源开始降压,当降到1.1mpa时再接通电源然后开始升压。重复上一步操作,使此过程保持20分钟。此后为降压出锅过程; 6、降压出锅过程:保压20分钟后关掉电源等待降压至0mpa时打开放气阀放气;用抹布打开灭菌锅的锅盖,然后将灭完菌的器具和培养基取出; 1.2.1.3样品的预处理 三个小组分别取土壤表层土样和植物叶片共5份→土壤研磨、叶片剪碎→每份样品称取5g→溶于适量的自来水中→摇匀→置于75℃的水浴锅中保温10min→静置 1.2.1.4超净工作台的准备 接通电源后打开紫外灯,30分钟后关掉紫外灯打开风机约20分钟;然后用肥皂洗手后进行无菌操作。 1.2.1.5无菌操作 1)培养基的完善及分装(对照试验)

苏云金芽孢杆菌生物农药的制备伴胞晶体的分离纯化及杀虫活性

苏云金芽孢杆菌生物农药的制备伴胞晶体的分离纯化及杀虫活性 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

JIUJIANG UNIVERSITY 实验论文 题目苏云金芽孢杆菌生物农药(Bt制剂)的制备、伴 孢晶体的分离纯化及杀虫活性 院系生命科学学院 专业生物技术 姓名樊晓乐、严学芬、王伟、 周明宣、邹红虹 班级 B0933 指导教师张炳火 二零一一年十一月

摘要:苏云金芽孢杆菌是目前世界上研究最多、产量最大、应用范围最广的微生物杀虫剂,具有专一性强、对人畜无害、防治效果好、易生物降解及无残毒等优点。本试验采用固体培养,对一株苏云金芽孢杆菌进行了发酵,制备了Bt制剂,对伴孢晶体进行了分离纯化,采用菜地试验,检测了Bt制剂和伴孢晶体对白菜虫害的防治效果。 关键词:苏云金芽孢杆菌(Bt);伴孢晶体;杀虫活性 前言 苏云金芽孢杆菌(Bacillus thuringiensis,简称Bt)是一种革兰氏阳性细菌,其菌体为短杆状,生鞭毛,单生或形成短链。它在芽孢形成过程中产生称为δ-内毒素的杀虫伴胞晶体蛋白(控制合成这种蛋白质的基因在质粒上),这些蛋白具有很高的杀虫活性。Bt由于具有专一性强、对人畜无害、防治效果好、生物降解无残毒、所用原料简单等优点,在虫害防治中发挥着越来越重要的作用,随着对Bt研究的深入,Bt 的基因改造、毒理学研究、杀虫机理、对人类的安全性等方面的研究都对高纯度的Bt伴胞晶体提出了极大的需求。 因此,Bt伴胞晶体的分离纯化方法逐步得到了发展,如等密度梯度离心法、液体双相分离法、等电点沉淀法、离子交换分离法、碱裂解法、高速离心法和生物物理法等。 本实验采用2种液体培养基、2种培养条件对苏云金芽孢杆菌进行培养。镜检观察当90%以上的芽孢脱落时处理菌体,经碱液裂解后比较等电点沉淀和液体双相分层法提取Bt蛋白的收率和纯度。 1 材料与方法

苏云金芽孢杆菌基因组研究概况

基因组学与应用生物学,2009年,第28卷,第1期,第202-208页Genomics and Applied Biology,2009,Vol.28,No.1,202-208 专题介绍Review 苏云金芽孢杆菌基因组研究概况 谭寿湖1,3张文飞1,3叶大维2* 1广西大学生命科学与技术学院,南宁,530005;2南开大学生命科学院,天津,300071;3海南海德热带农业资源研究所,三亚,572025*通讯作者,yehtawei@https://www.360docs.net/doc/9615863051.html, 摘 要 迄今为止,全球已有2个Bt 株菌株完成了全基因组测序,1个Bt 菌株正在拼接中,15个Bt 菌株正在 进行测序中。已有22个Bt 质粒完成了全序列测定。Bt 是作为生物农药使用最广泛的微生物菌株,也是最为成功地将其杀虫晶体蛋白基因应用于植物转基因的微生物。在基因组进化、新基因发现、基因表达调控等方面一 直是科学家研究的热点,并取得了相当多的成果。本文概述了苏云金芽孢杆菌基因组测序现状、基因组特征及比较基因学等方面的研究进展。 关键词苏云金芽孢杆菌,Bt 基因组,质粒基因组,比较基因组 Summary of Research Progress in the Genomics of Bacillus thuringiensis Tan Shouhu 1,3 Zhang Wenfei 1,3Ye Dawei 2* 1College of Life and Technology Science,Guangxi University,Nanning,530005;2College of Life Sciences,Nankai University,Tianjin,300071;3Haide Institute of Tropical Agricultural Resources,Sanya,572025*Corresponding author,yehtawei@https://www.360docs.net/doc/9615863051.html, Abstract Presently,there are two Bt strains that have completed whole genomic sequencing,while one Bt strain is being assembled,and 15Bt strains are in progress.Furthermore,22Bt plasmids have completed sequencing.Bt is the most widely used microbial strains as a biological pesticide and also have the most successful application in genetically modified plant with the use of its insecticidal protein gene.Scientists have been looking at the genomic evolution,new gene discovery,gene expression and regulation with considerable achievements.This article pro-vides an overview on the latest research development of Bt genome sequencing,genome characteristics and com-parative genomics studies.Keywords Bacillus thuringiensis ,Bt Genome,Plasmid genome,Comparative genome 基金项目:本研究由国家863项目(2006AA022189)资助 随着基因组测序技术的快速发展,测序成本的降低,对任何生物的基因组进行测序变得现实和可能(Marguerat et al.,2008)。自1995年首次完成流感嗜血杆菌(Haemophilus influenzae )的全基因组序列以来,已有大量的微生物菌株基因组全序列测定完成。截止到2009年2月3日,全球已经完成基因组测序的微生物菌株有834株,有643株微生物菌株的基因组正处在拼接阶段,此外,有797株微生物菌株的基因组由于各种原因只完成了基因组草图。在已经完成测序的微生物中,有779株为真细菌,55株为古生菌(https://www.360docs.net/doc/9615863051.html,/genomes/lproks.cgi)。 苏云金芽孢杆菌(Bacillus thuringiensis ,简称Bt )在《伯杰氏系统细菌学手册》(第九版)中被列为第2类 第18群中的芽孢杆菌属。与蜡状芽孢杆菌(B.cereus ),炭疽芽孢杆菌(B.anthracis )同属于蜡状芽孢杆菌群细菌(Rasko et al.,2005)。 Bt 广泛存在于土壤、 虫尸、污水、淤泥、尘埃以及叶面等介质中,是一种广泛存在于自然界的革兰氏阳性细菌。苏云金芽孢杆菌也是一种典型的昆虫病 原菌,对鳞翅目(Lepidoptera )、 双翅目(Diptera )、鞘翅目(Coleoplera )、膜翅目(Hymenoptera )、同翅目(Ho - moptera )、 直翅目(Orthoplera )、食毛目(Mallophaga )等多种昆虫,以及线虫、 螨类和原生动物等具有特异的毒性活性,由此成为目前世界上研究最深入,应用最广泛的农业害虫生物防治细菌(Crickmore et al.,1998;喻子牛等,1996)。

苏云金芽孢杆菌作业

发酵工艺学作业 题目苏云金芽孢杆菌生物农药发酵工艺研究进展 学院 班级学号 姓名

苏云金芽孢杆菌生物农药发酵工艺研究进展 摘要:苏云金芽孢杆菌(Bt)是一种开发和利用较为成功的微生物生物农药,但也存在着生产成本高、发酵条件难控制等缺点。本文主要综述了Bt生物农药的发酵工艺研究进展,主要包括BT发酵中的培养基、温度、PH值、通氧量以及发酵时间等方面。并对Bt生物农药的发展前景作出了展望。 关键词:苏云金芽孢杆菌;生物农药;发酵工艺;展望 Review on fermentation of Bacillus thuringiensis Abstract:Bacillus thuringiensis (Bt) is a microbial pesticides,Which has been successful developed and used.The fermentation technology of Bacillus thuringiensis (Bt) in recent years were summarized, including raw material, temperature, pH value, oxygen, fermentation time.In this aricle,the development prospct of Bt microbial pesticides is also put forward. Key words: Bt;microbial pesticides; fermentation technology;forward 前言 生物农药又可称为绿色农药、生态农药,是20世纪70年代提出的,是指可以用来防治病、虫、草、鼠等有害生物及调节植物生长的生物体或源于生物体的各种生理活性物质。生物农药不仅具有常规农药的高活性,能大规模工业化生产,而且专一性强,一般不伤害虫的天敌和有益生物,对人畜无毒,不污染环境,可在田间大规模应用。 微生物生物农药是生物农药中的主要类型之一[1]。而在微生物生物农药方面又以苏云金芽孢杆菌(Bt)为目前产量最大,应用最为广泛的一类细菌杀虫剂[2,3],占到生物农药的90%左右[4]。Bt的发酵方式可分为液体发酵和固体发酵两种类

苏云金芽孢杆菌的研究——综述

苏云金芽孢杆菌的研究 摘要苏云金芽孢杆菌是目前应用最广泛、研究最深入、生产量最大的微生物杀虫剂。目前已发现多种Bt亚种或血清型对害虫具有杀虫活性,同时也发现了一些新的杀虫晶体蛋白,通过纯化得到高效的杀虫晶体蛋白也是目前研究热点之一。本文简要介绍了Bt的发展历史、晶体蛋白的纯化及在杀虫方面的一些应用。 关键词苏云金芽孢杆菌、历史、伴孢晶体、杀虫 苏云金杆菌(Bacillu .thuringiensis,简称Bt)是一种革兰氏阳性芽孢杆菌,为昆虫病原细菌,其菌体为短杆状、有鞭毛,一般单生或形成短链。在芽孢形成期可产生具有杀虫活性的伴孢晶体,且伴孢晶体(原毒素)对鳞翅目或双翅目等多种昆虫具有毒杀活性[15]。苏云金杆菌是一种应用广泛的绿色环保型微生物杀虫剂,全世界年产值已突破1亿美元[1]。自20世纪60年代实现工业化生产以来,已成为世界上用途最广、商业开发最成功、产量最大的微生物杀虫剂,每年以20%的速度增长[2,3]。苏云金杆菌杀虫剂的稳定性较差、残效期短、杀虫速度慢等问题都待解决,关于苏云金芽孢杆菌的研究都将继续进行。 1Bt的发展历史 1901年,日本学者石渡繁胤(Ishiwata)从虫尸体液中分离出苏云金杆菌猝倒变种(Bacillus.thuringiensis var.sott) 成为苏云金杆菌研究的起点[4]。1911年,Berliner 发现一杆菌,并详细描述了该菌的形态和培养特征,定名为苏云金杆菌(Bacil-lus.thuringiensis),指明苏云金杆菌含伴孢晶体(Paraspora crystl) 。 1938年,苏云金杆菌商品化,用于防治地中海粉螟。20世纪50年代许多国家进行了商业性生产。从发现该菌至今已有整整105年历史,世界上有超过万篇的研究报道,涉及生物学、分类命名、有效成分、杀虫机理、分子生物学、遗传学、产品化和安全性,包括近年来的转基因植物等诸多方面[5]。 1953年,Hannay第一次发现苏云金杆菌的杀虫活性与伴孢晶体有关,并和Fitz-James于1955年证实,伴孢晶体是一种蛋白质。1981年,Schnept和Whiteley 首次将HD21菌株伴孢晶体的基因克隆到大肠杆菌中,并得到表达。用血清学技术进行Bt的鉴定和分类始于20世纪60年代。 我国对苏云金芽孢杆菌的研究和应用起步较晚,但发展迅速,据统计,在在70年代,我国苏云金杆菌制剂年产量大1000吨以上,并且部分产品用于出口。 1992年联合国“世界环境和发展大会”在巴西的召开促进了全球生物防治的发展,推进了苏云金杆菌制剂产业化进程。世界上许多科学家致力于Bt的研究,并作出卓越贡献,时至今日,Bt在农药上所占的比例仍处于劣势,许多问题依然有待解决。 2 苏云金芽胞杆菌的伴孢晶体的纯化方法 2.1等密度梯度离心法 等密度梯度离心法是利用密度的差异将伴孢晶体与杂质分离,获得纯品的方

苏云金芽孢杆菌杀虫方面的研究及运用进展

苏云金芽胞杆菌杀虫方面的研究 及运用进展 摘要:人类对苏云金芽胞杆菌(Bt)的研究至今已有100多年的历史,因其具有特殊的生理特性,在微生物防治害虫方面具有重要的作用。利用微生物能直接杀死害虫却又不伤害控制害虫的天敌,最重要的是它不污染环境,害虫也更难以产生抗药性,还能通过遗传操纵改造某些性状,以便对其更好的利用。同时,随着转基因技术的兴起和发展,Bt成为转基因过程中的重要材料,在应用实践中起着巨大的作用,如今成功的转Bt产物已有:转Bt抗虫棉花、转Bt玉米以及备受争议的转基因水稻等等。本文主要叙述Bt的某些重要特征和当前的研究进展,旨在达到一种科普宣传让人们更加了解有关转Bt产物方面的知识。 关键词:苏云金芽孢杆菌、微生物防治、转基因、农业生产应用 苏云金芽胞杆菌( Bacillus thuringiensis,简称Bt )是一种杆状、革兰氏染色阳性反应、能形成内生芽胞的细菌,广泛存在于各种生态环境中。其营养体具有周生鞭毛或无鞭毛。在其芽胞期能形成对特定昆虫具有毒性的由杀虫晶体蛋白(Insecticidal Crystal Proteins, ICPs)组成的伴胞晶体,此特点成为苏云金芽胞杆菌区别于分泌肠毒素的蜡状芽胞杆菌(Bacillus cereus)和引起炭疽病的炭疽芽胞杆菌(Bacillus anthracis)的主要特征(喻子牛等,1990)。由于其独特的杀虫特性,自从1901年日本学者Ishiwata首次分离到苏云金芽胞杆菌以来,苏云金芽胞杆菌得到了广泛的关注和研究,在世界范围内已分离得到超过

40000个菌株,对其生物活性谱的了解得到了极大的扩展,由最初对鳞翅目的毒性,逐渐发现对双翅目、鞘翅目、膜翅目、同翅目等昆虫纲10个目500多种昆虫以及原生动物、线形动物门、扁形动物门中某些有害种类也有特异的生物活性(Schnepf等,1998)。 1.苏云金芽孢杆菌的毒素 毒素是苏云金杆菌杀虫的核心,主要有三种:伴孢晶体(杀虫晶体蛋白,Insecticidal Crystal Proteins,ICPs)即σ-内毒素,苏云金素即β-外毒素,芽孢。 1.1杀虫晶体蛋白(ICPs) 杀虫晶体蛋白(Insecticidal Crystal Proteins,简称ICPs)是由Cry基因和Cyt基因编码的,自从1981年克隆了第一个ICPs基因,并于1985年发表了他的核苷酸序列起,大量的ICPs基因相继被发现和克隆。他们的分类系统也从最初的基于杀虫活性和基因的同源性的分类系统变为基因的核苷酸序列及其演化关系的分类系统,并且其基因编号也该用阿拉伯数字取代了原来的罗马数字。Cry基因广泛用于转基因作物中,目前对Cry基因及其蛋白的主要分析方法有:PCR-RFLP、核酸分子杂交鉴定等。 1.1.1 ICPs基因的命名 传统命名法,Hofte和Whiteley(1989)提出根据杀虫谱进行分类的分类系统,根据基因编码的杀虫晶体蛋白的同源性及杀虫活性,已克隆的42个基因被划分为五类。其中,cryI、cryII、cryIII、cryIV编码的杀虫晶体蛋白分别特异地对鳞翅目、鳞翅目和双翅目、鞘翅目、双翅目有毒力作用,而对双翅目有生物活性且具溶细胞的作用的杀虫晶体蛋白基因则被划入cytA类。

苏云金芽孢杆菌伴孢晶体蛋白提取和纯化

苏云金芽孢杆菌伴孢晶体蛋白提取和纯化 摘要:苏云金芽孢杆菌是目前世界上研究最多、产量最大、应用范围最广的微生物杀虫剂,具有专一性强、对人畜无害、防治效果好、易生物降解及无残毒等优点。通过对苏云金芽孢杆菌伴孢晶体蛋白提取和纯化得到伴孢晶体。经过稀释分成不同的浓度分别去检测杀虫活性。 关键词:伴孢晶体,苏云金芽孢杆菌,纯化 1 材料与方法 1.1 材料 1.1.1 仪器设备和试剂 超净工作台,高压灭菌锅,离心机,冷冻干燥机,-80℃低温冰箱,透析袋,移液管,玻璃棒,电子秤,养虫缸。超纯水,0.5M/L的Nacl,生理盐水,5%的丙酮溶液。 1.1.2 研究菌株 本实验室分离自病蚕体内的苏云金芽孢杆菌。 1.1.3 供试昆虫 菜青虫。 1.1.3 培养基 种子培养基[1]:酵母浸膏0.5%,蛋白胨1.0%,NaC1 1.0%,pH值7.0。121℃灭菌30 min。蒸馏水1000 ml,pH值7.0(用NaOH调pH值)。 发酵培养基[2]:牛肉膏0.5%,蛋白胨1.0%,葡萄糖0.3%,NaC1 0.2%,MgS04·7H2O 0.03%,K2HPO4 0.03%,MnSO40.005%,蒸馏水1000 ml。调pH 7.5,121℃灭菌30 min,灭菌后pH 7.3。 1.2 方法 1.2.1 种子液的培养 在无菌的条件下,从保藏管中分别挑一环接种有种子夜培养基,30℃培养14 h。 1.2.2 菌株发酵 按照3%的接种量转接500ml的发酵培养基,30℃,120 r/min培养60 h,镜检观测80%以上的菌体裂解时停止培养,离心收集提取晶体蛋白。 1.2.3 伴孢晶体的分离纯化[4] 氨基酸可以3种形式存在,即带正电荷、带负电荷和两性离子,如在酸性溶

1000吨年苏云金芽孢杆菌厂生产工艺初步设计

年产1000吨苏云金芽孢杆菌的发酵车间工艺设计 包文雨 (辽宁石油化工大学,石油化工学院,生物工程1102,辽宁营口,1132050215) 摘要 苏云金芽孢杆菌(Bacillus thuringiensis)于1901年在日本被发现,1911 年由柏林纳从地中海粉螟的患病幼虫中分离出来,并依其发现地点德国苏云金省而命名. 苏云金芽孢杆菌简称苏云金杆菌,是内生芽孢的革兰氏阳性土壤细菌,在芽孢形成初期会形成杀虫晶体蛋白对敏感昆虫有特异性的防治作用。 本设计首先初步介绍了苏云金芽孢杆菌的发展过程,然后就其产品化进行了讨论,苏云金芽孢杆菌的发酵共有两种工艺路线,即液体深层发酵和固态发酵。它们都有其优缺点,但是经过对比论证,最终选择了液体深层发酵。随后根据相关资料确定了苏云金芽孢杆菌的生产周期及期产量,依照期产量对其进行了物料衡算和热量衡算,最后对设备进行了合理的选型。 关键词:苏云金芽孢杆菌;产品化;工艺路线;设备选型

1000 tons of Bacillus thuringiensis fermentation process design workshop Bao Wenyu (Class 1102, Department of Biological Engineering, School of Environmental and Biological Engineering, Liaoning Shihua University, Liaoning Yingkou, 1132050215, China) Abstract Bacillus thuringiensis (Bacillus thuringiensis) in 1901, was discovered in Japan in 1911 by the Berliner from the Mediterranean flour moth larvae in the prevalence of isolated and found locations in Germany according to their province and named Bacillus thuringiensis. thuringiensis Called Bacillus thuringiensis, is endogenous Gram-positive Bacillus soil bacteria, initially formed in the spore formation of insecticidal crystal protein (insecticidal crystal protein), insects have specific sensitive rats. The preliminary design of the first Bacillus thuringiensis introduced the development process, and then conducted a discussion of its products, the fermentation of Bacillus thuringiensis There are two process routes, that is, submerged fermentation and solid-state fermentation. They all have their advantages and disadvantages, but after comparison argument, I finally chose the submerged fermentation. Then determined according to the relevant information of Bacillus thuringiensis and production cycle of production, production was carried out in accordance of the material balance and heat balance, the last of the equipment for a reasonable selection Key words:Bacillus thuringiensis; product of; process routes; equipment selection

相关文档
最新文档