cadence PCB板学习笔记

cadence PCB板学习笔记
cadence PCB板学习笔记

第16讲

页脚内容1

页脚内容2

页脚内容3

第17讲功能介绍

页脚内容4

第18讲

页脚内容5

切换界面

工具栏定制

页脚内容6

命令参数控制窗口的停靠位置设置

命令参数控制窗口动态显示当前命令的设置

页脚内容7

未激活命令时,命令参数控制窗口options控制图层显示关闭

页脚内容8

未激活命令时,visibility控制线路板按类显示。

激活move命令,命令控制窗口find控制可操作的对象

页脚内容9

第19讲class subclass 类子类,PCB板信息分类,(EAGLE以层分类,机械层,丝印层,线路层,元件坐标层,阻焊层,焊锡层。。。。。)

查看线路板的类元素。

第20讲零件封装

页脚内容10

IPC7351标准软件PCB Matrix IPC LP Viewer

焊盘制作工具

页脚内容11

焊盘尺寸设置

页脚内容12

焊盘建好后FILE-CHECK 两次后提示没问题后进行file save as 进行文件存档

焊盘建好后,下一步可以创建元件封装了:

在allegro PCB Design XL中file new

页脚内容13

创建一个封装文件封装符号

第一步,因为元件比较小,先把图纸尺寸改小。

要先把单位改正并且应用后才能改其它尺寸(尺寸改不动,尺寸改正不过来)

页脚内容14

栅格大小修改

Layout pins 放置引脚

通过命令参数窗口选取焊盘设置焊盘个数和距离

页脚内容15

命令方式定位x0 y0坐标

命令方式画线,iy ix,,i表示增量。

画元件几何尺寸标示线框。

页脚内容16

画元件外框丝印线标示框

放置禁止布局框防止其它元件重叠,

页脚内容17

放置元件索引别号

在assembly top也加上元件索引编号。用于出位号图

在丝印层上也加上元件索引编号,用于线路板显示元件编号。

页脚内容18

在丝印层上放置元件参数。

至此元件可以存盘了。

.psm为元件封装文件。.dra为图形编辑文件(画元件封装和花焊盘都是存为这个格式)。.ssm为自定义图形保存格式。.pad为paddesigner生成的焊盘元件。.fsm为花焊盘文件。

第21讲建立一个BGA封装。

第22讲建立特殊焊盘元件。

第一步:建立特殊焊盘建立非规则焊盘

页脚内容19

在allegro平台下建立shape symbol特殊形状的符号并存档,然后用pad designer利用这个符号建立焊盘

第二步:同上设定图纸和栅格尺寸

第三步top层上画多个图形。

图层层叠有DRC错误,选择融合命令merge shapes 把多个图形进行或运输,合成一个图形。多体合成

页脚内容20

工业设计史——知识点全解

何人可《工业设计史》笔记 1.中国部分 石器设计 人们经过长期探索,开始较普遍地采用石器的磨制技术,即把经过选择的石块打制成石斧、石刀、锛、石铲和石凿等各种工具的粗坯后,再用研磨的方法进一步加工,使器形更加规整,尖端与刃口更加锋利,表面更加光洁,更加符合使用的要求。在石材的选择上,已十分注意石材的硬度、形状和纹理的选择。石斧选用长形的石块,以便稍加打磨,石刀是呈片状的,所以多选用片页岩,以便于剥离。例如制作石斧、石锛的石材硬度很大,器形必须设计成扁平刃利;石镞的硬度较小,镞头必须犀利尖锐。经过不断地观察、揣摩和实践,人们的审美意识也得到了初步的启迪和发展,发现并掌握了诸如对称、节律、均匀、光滑等多种形式美的规律,并自觉地应用于设计活动中。原始社会的人们,在石器的设计上,是经过艺术思考的。他们具有朴素的审美观念和艺术手法。 原始半坡型彩陶 彩陶最早在河南渑池仰韶村发现,所以也称“仰韶文化”。半坡型彩陶的鱼形花纹,起先的写实的手法,逐渐演变为鱼体的分割和重新组合,例如,“人面鱼身”盆纹是人面与鱼形合体的花纹,在一个人头形的轮廓里面,画出一个鱼花纹,具有“寓人于鱼”的特殊意义,是最具有代表性的装饰纹样。仰韶文化半坡类型的尖底瓶汲水器,其基本形状为小口、尖底,腹部置有双耳。双耳除了系绳之用,还具有平衡重心的作用,使注满水后的容器能自动在水中直立,底尖便于下垂入水,也易于注满,造型设计可谓轻巧实

” 用。 马家窑型彩陶 马家窑型彩陶的艺术特点,可归纳为以下特点:点和螺旋纹。点的运用, 成为这个时期装饰的特点。在点的外面装饰螺旋纹,有动的感觉。因此, 马家窑型彩陶的艺术风格可用旋动、流畅来形容。 青铜器设计 商周时期的设计艺术,最有代表性和具有突出艺术成就是青铜工艺,三 千多年前出现的中国青铜工艺,它的突出成就表明了中国奴隶社会手工业 发展的最高水平。 青铜是红铜和锡的合金,有时根据特殊需要也掺一点铅;加入锡铅以后, 熔点降低,硬度增高,容易掌握铸造过程;可以铸造需要坚硬的制品,如 武器或工具;另外熔铸时减少汽孔,使装饰花纹清晰;增加光泽度。青铜 器的名称,根据生活用途的不同,大体可分烹饰器、食器、酒器、水器、 杂器、兵器、乐器、工具等八类。 饕餮纹 饕餮纹是商周青铜器的主要纹样。饕餮纹,又称兽面纹,采用抽象和夸 张的手法,造成狰狞恐怖的视觉效果,有许多学者曾作过不同的解释。有 人认为饕餮是由双鸡相对组成一个羊头,鸡羊谐音,有“吉祥”之意;有人 认为是“通天地(亦即通生死);有人认为是“辟邪驱鬼”;有人认为是“戒之 在贪”;有人认为是“象征威猛、勇敢、公正”;还有人认为是“祭神”等等。 夔纹。这是一种近似龙纹的怪兽纹,常见于商代铜器纹饰中。 失蜡法

PCB原理图设计方法

原理图设计规范 本文档的目的在于说明使用PROTEL和ORCAD进行原理图设计时的一些注意事项,为设计人员提供设计规范,方便设计人员之间进行交流和相互检查。 第一部分:PROTEL设计规范 一、原理图元件封装使用标准库命名,按照《元件库引用说明》执行;电路设计 中有用到新的封装的请填写《新建封装申请》后建立新封装,并根据标准库的命名标准将其封装名填入相应的原理图元件封装里面。 二、PROTEL原理图的电气法则的测试ERC:要求没有错误能正确导出网表,1.执行菜单命令【Tool】/【ERC…】; 2.执行上面的命令后在出现以下的电气法则测试对话框,并设置: ⑴.在【ERC Options】下选取以下几项: ●【Multiple net name on net】检测同一网络命名多个网络名称; ●【Unconnectde net labes】检测未实际连接的网络标号 ●【Unconnected power objects】检测为实际连接的电源图件; ●【Duplicate sheet numbers】检测电路图编号的重号; ●【Duplicate component designator】检测元件的重号; ●【Bus label format errors】检测总先标号格式错误; ●【Bus label format errors】检测输入引脚的浮接; ⑵.在【Options】下选取以下几项: ●【Create report file】在测试后,会自动在将测试结果存在报告文件中(*.erc), 文件名和与原理图名一致; ●【Add error markers】在测试后,会自动在错误位置上放置错误符号; ⑶.【Sheet to Netlist】测试原理图的范围设置为【Active project】; ⑷.【Net Identifier Scope】选择网络识别器的范围设置为【Sheet Symbol/Port Connection】;

(完整版)HSPICE与CADENCE仿真规范与实例..

电路模拟实验专题 实验文档

一、简介 本实验专题基于SPICE(Simulation Program With Integrated Circuit)仿真模拟,讲授电路模拟的方法和spice仿真工具的使用。 SPICE仿真器有很多版本,比如商用的PSPICE、HSPICE、SPECTRE、ELDO,免费版本的WinSPICE,Spice OPUS等等,其中HSPICE和SPECTRE功能更为强大,在集成电路设计中使用得更为广泛。因此本实验专题以HSPICE和SPECTRE作为主要的仿真工具,进行电路模拟方法和技巧的训练。 参加本实验专题的人员应具备集成电路设计基础、器件模型等相关知识。 二、Spice基本知识(2) 无论哪种spice仿真器,使用的spice语法或语句是一致的或相似的,差别只是在于形式上的不同而已,基本的原理和框架是一致的。因此这里简单介绍一下spice的基本框架,详细的spice语法可参照相关的spice教材或相应仿真器的说明文档。 首先看一个简单的例子,采用spice模拟MOS管的输出特性,对一个NMOS管进行输入输出特性直流扫描。V GS从1V变化到3V,步长为0.5V;V DS从0V变化到5V,步长为0.2V;输出以V GS为参量、I D与V DS之间关系波形图。 *Output Characteristics for NMOS M1 2 1 0 0 MNMOS w=5u l=1.0u VGS 1 0 1.0 VDS 2 0 5 .op .dc vds 0 5 .2 Vgs 1 3 0.5 .plot dc -I(vds) .probe *model .MODEL MNMOS NMOS VTO=0.7 KP=110U +LAMBDA=0.04 GAMMA=0.4 PHI=0.7 .end 描述的仿真电路如下图,

PCB板设计步骤

1.5 PCB 板的设计步骤 (1 )方案分析 决定电路原理图如何设计,同时也影响到 PCB 板如何规划。根据设计要求进行方案比较、选择,元 器件的选择等,开发项目中最重要的环节。 (2 )电路仿真 在设计电路原理图之前,有时会会对某一部分电路设计并不十分确定,因此需要通过电路方针来验 证。还可以用于确定电路中某些重要器件参数。 (3 )设计原理图元件 PROTEL DXP 提供了丰富的原理图元件库,但不可能包括所有元件,必要时需动手设计原理图元件,建立 自己的元件库。 (4)绘制原理图 找到所有需要的原理元件后,开始原理图绘制。根据电路复杂程度决定是否需要使用层次原理图。完成原 理图后,用ERC (电气法则检查)工具查错。找到岀错原因并修改原理图电路,重新查错到没有原则性错误为 止。 5 )设计元件圭寸装 和原理图元件一样, PROTEL DXF 也不可能提供所有元件的封装。需要时自行设计并建立新的元件封装库。 6)设计PCB 板 确认原理图没有错误之后,开始 PCB 板的绘制。首先绘岀 PCB 板的轮廓,确定工艺要求(如使用几层板 等)。然后将原理图传输到 PCB 板中,在网络表、设计规则和原理图的引导下布局和布线。利用设计规则查 错。是电路设计的另一个关键环节,它将决定该产品的实用性能,需要考虑的因素很多,不同的电路有不同 要求 (7 )文档整理 对原理图、PCB 图及器件清单等文件予以保存,以便以后维护和修改 DXP 的元器件库有原理图元件库、 PCB 元件库和集成元件库,扩展名分别为 DXP 仍然可以打开并使用 Protel 以往版本的元件库文件。 在创建一个新的原理图文件后 ,DXP 默认为该文件装载两个集成元器件库: Miscellaneous Connectors.IntLib 。因为这两个集成元器件库中包含有最常用的元器件。 注意: Protel DXP 中,默认的工作组的文件名后缀为 .PrjGrp ,默认的项目文件名后缀为 .PrjPCB 。如 果新建的是 FPGA 设计项目建立的项目文件称后缀为 .PrjFpg 。 也可以将某个文件夹下的所有元件库一次性都添加进来, 方法是:采用类似于 Windows 的操作,先选中该文 件夹下的第一个元件库文件后,按住 Shift 键再选中元件库里的最后一个文件,这样就能选中该文件夹下的所 有文件,最后点打开按钮,即可完成添加元件库操作。 3.1原理图的设计方法和步骤 下面就以下图 所示的简单 555定时器电路图为例,介绍电路原理图的设计方法和步骤。 3.1.1创建一个新项目 电路设计主要包括原理图设计和 PCB 设计。首先创建一个新项目,然后在项目中添加原理图文件和 PCB 文件,创建一个新项目方法: ?单击设计管理窗口底部的 File 按钮,弹岀一个面板。 ? New 子面板中单击 Blank Project ( PCB )选项,将弹岀 Projects 工作面板。 ?建立了一个新的项目后,执行菜单命令 File/Save Project As ,将新项目重命名为 "myProject1 . PrjPCB ”保存该项目到合适位置 3.1.2创建一张新的原理图图纸 ?执行菜单命令 New / Schematic 创建一张新的原理图文件。 ?可以看到 Sheetl.SchDoc 的原理图文件,同时原理图文件夹自动添加到项目中。 ?执行菜单命令 File/Save As ,将新原理 SchLib 、PcbLib 、IntLib 。但 Miscellaneous Devices 」ntLib 禾

Cadence仿真简介

时序计算和Cadence仿真结果的运用 中兴通讯康讯研究所EDA设计部余昌盛刘忠亮 摘要:本文通过对源同步时序公式的推导,结合对SPECCTRAQuest时序仿真方法的分析,推导出了使用SPECCTRAQuest进行时序仿真时的计算公式,并对公式的使用进行了说明。 关键词:时序仿真源同步时序电路时序公式 一.前言 通常我们在时序仿真中,首先通过时序计算公式得到数据信号与时钟信号的理论关系,在Cadence仿真中,我们也获得了一系列的仿真结果,怎样把仿真结果正确的运用到公式中,仿真结果的具体含义是什么,是我们正确使用Cadence仿真工具的关键。下面对时序计算公式和仿真结果进行详细分析。 二.时序关系的计算 电路设计中的时序计算,就是根据信号驱动器件的输出信号与时钟的关系(Tco——时钟到数据输出有效时间)和信号与时钟在PCB上的传输时间(Tflytime)同时考虑信号驱动的负载效应、时钟的抖动(Tjitter)、共同时钟的相位偏移(Tskew)等,从而在接收端满足接收器件的建立时间(Tsetup)和保持时间(Thold)要求。通过这些参数,我们可以推导出满足建立时间和保持时间的计算公式。 时序电路根据时钟的同步方式的不同,通常分为源同步时序电路(Source-synchronous timing)和共同时钟同步电路(common-clock timing)。这两者在时序分析方法上是类似的,下面以源同步电路来说明。 源同步时序电路也就是同步时钟由发送数据或接收数据的芯片提供。图1中,时钟信号是由CPU驱动到SDRAM方向的单向时钟,数据线Data是双向的。 图1

图2是信号由CPU 向SDRAM 驱动时的时序图,也就是数据与时钟的传输方向相同时 的情况。 Tsetup ’ Thold ’ CPU CLK OUT SDRAM CLK IN CPU Signals OUT SDRAM Signals IN Tco_min Tco_max T ft_clk T ft_data T cycle SDRAM ’S inputs Setup time SDRAM ’S inputs Hold time 图2 图中参数解释如下: ■ Tft_clk :时钟信号在PCB 板上的传输时间; ■ Tft_data :数据信号在PCB 板上的传输时间; ■ Tcycle :时钟周期 ■ Tsetup’:数据到达接收缓冲器端口时实际的建立时间; ■ Thold’:数据到达接收缓冲器端口时实际的保持时间; ■ Tco_max/Tco_min :时钟到数据的输出有效时间。 由图2的时序图,我们可以推导出,为了满足接收芯片的Tsetup 和Thold 时序要求,即 Tsetup’>Tsetup 和Thold’>Thold ,所以Tft_clk 和Tft_data 应满足如下等式: Tft_data_min > Thold – Tco_min + Tft_clk (公式1) Tft_data_max < Tcycle - Tsetup – Tco_max + Tft_clk (公式2) 当信号与时钟传输方向相反时,也就是图1中数据由SDRAM 向CPU 芯片驱动时,可 以推导出类似的公式: Tft_data_min > Thold – Tco_min - Tft_clk (公式3) Tft_data_max < Tcycle - Tsetup – Tco_max - Tft_clk (公式4) 如果我们把时钟的传输延时Tft_clk 看成是一个带符号的数,当时钟的驱动方向与数据 驱动方向相同时,定义Tft_clk 为正数,当时钟驱动方向与数据驱动方向相反时,定义Tft_clk 为负数,则公式3和公式4可以统一到公式1和公式2中。 三.Cadence 的时序仿真 在上面推导出了时序的计算公式,在公式中用到了器件手册中的Tco 参数,器件手册中 Tco 参数的获得,实际上是在某一种测试条件下的测量值,而在实际使用上,驱动器的实际 负载并不是手册上给出的负载条件,因此,我们有必要使用一种工具仿真在实际负载条件下 的信号延时。Cadence 提供了这种工具,它通过仿真提供了实际负载条件下和测试负载条件 下的延时相对值。 我们先来回顾一下CADENCE 的仿真报告形式。仿真报告中涉及到三个参数:FTSmode 、

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

配电系统物理仿真平台--北京丹华昊博电力科技有限公司

配电系统物理仿真平台 一、概述 由于电力系统暂态及稳态的复杂性,在进行理论研究的同时也必须进行试验研究,二者缺一不可。电力系统的试验可以在原型上进行,也可以在模型上进行,电力系统的物理模拟试验是电力系统研究的重要方法。目前配网自动化全面建设,无论是理论还是实际运行,都存在许多问题,各种配网自动化设备都需要试验、检测,配电系统物理仿真平台就是解决这些问题的重要方法。 北京丹华昊博电力科技有限公司结合杨以涵教授30年小电流接地选线研究心得,率先与华北电力大学合作,建成国家重点试验室——“1:1 10kV高压物理模拟试验室”,又与中国电力科学研究院合作,建成配电系统物理仿真平台——动模测试系统(原型测试系统PRS)。目前两套系统在配电系统物理仿真平台建设和配电网接地故障模拟试验领域,均处于领先水平。 二、配电系统物理仿真平台 配电系统物理仿真平台能够真实再现电力系统的各种运行工况、能够真实模拟电力系统设备和线路的运行情况,为电力用户提供全方位的培训、仿真、研发平台,为配网自动化设备的检测提供了全新的解决方案。 配电系统物理仿真平台具备的功能主要包括:配电系统参数模拟、配电系统运行数据模拟、配电系统故障模拟、配网自动化设备测试、状态监视、数据采集、图形显示、事件告警、数据统计、录波分析等。 目前,仿真平台主要有3类,分别为380V配电系统物理仿真平台、10kV配电系统物理仿真平台和RTDS数字仿真平台,三种平台的对比如表 1所示。 表 1仿真平台对比表

三、380V配电系统物理仿真平台 1.系统规模 1)实验室要求:长10m,宽4m,面积40m2; 2)实验室分配:独立使用; 3)模拟35kV/10kV变电站1座、主变1台、10kV线路6条,系统如图 1所示; 4)户内柜体式,配置6面柜体,配置后台监控系统,按变电站规范设计,所有操作分远 方和就地,设备布置如图 2所示。 图 1380V配电系统物理仿真平台系统图 2.系统参数 1)系统供电电源:三相、380V、100A、50Hz; 2)系统电压:380V; 3)系统满负荷工作电流:10A; 4)线路短路电流(多匝线圈):800、1600A;

何人可工业设计史章节重点笔记精华8页

工业设计史绪论—1960 沙里宁,尼佐里 理性主义欧洲美国日本 1960 一、工业革命前的设计 —设计的萌芽阶段高技术风格欧洲,日本手工艺设计阶段1960—1980 二、工业设计可大致划分为三个发展时期 波普风格英国—、第一个时期(17501914年的工业 19601 —1970 世纪初期20,这设计)自18世纪下半叶至后现代主义是 工业设计的酝酿和探索阶段。欧美各国 1965— 19392、 第二个时期(1915—年的工业文丘里,索特萨斯 解构主义欧美各国设计)在一战和二战之间,这是现代工业 设 1980—盖里,屈米计形成与发展的时期。 绿色设计 3、第三个时期(1940年至当代的工业欧美各国 1970—,这一时期工业设计与工设计)在二战之后四、业生产和科学 技术紧密结合,因而取得了重1、产生:20世纪20年代才开始确立。大成就。 2、工业设计产生的条件:工业设计是以工业化大批量生产为条件发 现代化大工业的批量生产和激烈的市场竞争,其展起来的,与机械化生产密切相关。设计对象是以工业化方法批量生产的产品。三、工业设计发展中的流派和组织3、作用:折衷主义欧美各国1820工业设计是商品经济的产物,它具有刺激消费的作用。4、—1900 历史的传承:传统的设计风格被作为某种特定文化的符号, 1880 工艺美术运动英国

不断影响到工业设计—1910 。莫里斯,阿什比 五、人类设计活动的三个阶段:—新艺术运动欧洲各国18901910 吉 马德,①设计的萌芽阶段——戈地旧石器时代,原始人类制作石器 时已有了明确的目的性和一定1933 霍夫—维也纳分离派奥地利1897程度的标准化。曼 ②手工艺设计阶段——新石器时期,穆—德意志制造联盟德国19071934 陶器的发明标志着人类开始了通过化学变化改变特休斯, 贝伦斯 材料特性的创造性活动,里特维尔德—风格派荷兰19171931 也 标志着人类手工艺设计阶段塔1928 1917苏联构成派—马来维奇,的开端。 ③工业设计阶段——工业革命——工业设特林计阶段。格罗披—1919 包豪斯学校德国1933 六、工业设计在中国的发展乌斯美国著名设计师拉瑟尔·赖特于法 国艺术装饰风格1925 1935 1956—年应邀去我国台湾省讲学—美 国流线型风格1935,罗维,1945 盖在一定程度上推动了台湾地区 的工业设计运动。茨 20世纪701930 斯堪的纳维亚斯堪的纳维亚风格年代末以来, 工业设计在我国大陆开始受到重视。阿尔托1950 —1987年中国工 业设计协会成立,现代主义进一步促进了工业设计在我国的1920 欧美各国 发展。米斯,柯布西埃—1950

PCB原理图绘制步骤

原理图的绘制 A、新建工作空间和原理图 项目是每项电子产品设计的基础,在一个项目文件中包括设计中生成的一切文件,比如原理图文件、PCB图文件、以及原理库文件和PCB库文件。在项目文件中可以执行对文件的各种操作,如新建、打开、关闭、复制与删除等。但是需要注意的是,项目文件只是起到管理的作用,在保存文件时项目中的各个文件是以单个文件的形式存在的。所以每完成一个库就保存一次。 新建工作区间 1、在菜单栏中选择File-New-Project-PCB Project. 2、形成一个PCB-Project1.PriPCB面板然后重命名最后分别添加scematic sheet形成Sheet.SchDoc文件保存后面一次添加形成PCB.PcbDoc、Pcblib.Pcblib、schlib.schlib文件分别进行保存。 3、在schlib.schlib文件里面添加你需要的库文件进行保存这时候要区分引脚与网口标号,特别是引脚一定要放置正确按照所发的书上进行标号,创建一个库就保存一次直到你需要的几个模块的器件你都画好了。 4、然后找到库文件将你画好的东西放置到Sheet.SchDoc原理图上面这时候再来放置网口标号用线将该连接的地方连接起来画好了看看自己的和书上的区别检查是否有错误的地方,最后将文件进行保存。点击Libraries面板,点左上角Libraries按钮,

如果你想在所有工程里都用就在Imstalled里点Install添加,如果只想在当前工程里使用就在Projiect里面点Add Library。 5、画封装图。 根据我们焊电路板的板子来测量距离将需要的器件进行封装,封装的过程中那一页会出现一个十字号将焊盘放置在十字号上确保第一个焊盘的x、y值都为零然后按照自己测量的数据一次拍好焊盘在一个在Top Layer这一层上放置,防止完成后切换到Top Overlay上面进行划线封装。对于LED灯要表明它的正极同样的道理没画好一个库进行一次保存直到最终完成了。最终形成了一个PCB Project文件库。 6、所有元器件编号的方法 你可以双击元件来改变,Visual属性为True。还可以让所有元件自动编号。 7、形成PCB图 在原理图里面双击你要添加的那一个模块添加PCB封装图浏览一下然后查看引脚映射是否一一对应如果对应就是没有出现错误最后点设计然后点击形成PCB图就可以了这个过程中也有一个地方查错的只要对了就会有一个对勾。这也是我自己一个一个添加的原因防止哪里出现了错误难以发现、最终画好了是出现的虚实线连接。 8、布线绘制图 这里面可以选择自动布线也可以进行手动添加布线,布线的时候

cadence仿真流程

第一章在Allegro 中准备好进行SI 仿真的PCB 板图 1)在Cadence 中进行SI 分析可以通过几种方式得到结果: * Allegro 的PCB 画板界面,通过处理可以直接得到结果,或者直接以*.brd 存盘。 * 使用SpecctreQuest 打开*.brd,进行必要设置,通过处理直接得到结果。这实际与上述方式类似,只不过是两个独立的模块,真正的仿真软件是下面的SigXplore 程序。 * 直接打开SigXplore 建立拓扑进行仿真。 2)从PowerPCB 转换到Allegro 格式 在PowerPCb 中对已经完成的PCB 板,作如下操作: 在文件菜单,选择Export 操作,出现File Export 窗口,选择ASCII 格式*.asc 文件格式,并指定文件名称和路径(图1.1)。 图1.1 在PowerPCB 中输出通用ASC 格式文件

图1.2 PowerPCB 导出格式设置窗口 点击图1.1 的保存按钮后出现图1.2 ASCII 输出定制窗口,在该窗口中,点击“Select All”项、在Expand Attributes 中选中Parts 和Nets 两项,尤其注意在Format 窗口只能选择PowerPCB V3.0 以下版本格式,否则Allegro 不能正确导入。 3)在Allegro 中导入*.ascPCB 板图 在文件菜单,选择Import 操作,出现一个下拉菜单,在下拉菜单中选择PADS 项,出现PADS IN 设置窗口(图1.3),在该窗口中需要设置3 个必要参数: 图1.3 转换阿三次文件参数设置窗口 i. 在的一栏那填入源asc 文件的目录

多物理场仿真软件技术参数

多物理场仿真软件技术参数 一、技术规格要求(*必须满足) 1. 软件的功能需求 1.1 使用有限元算法。 1.2 具有多物理场(三个及以上)一次性同时求解的直接耦合功能。 1.3 图形化用户界面,预置前处理、求解器,以及后处理功能。 1.4 具有App 开发器。 1.5 具有热传递仿真功能。 1.6 具有结构力学仿真功能。 1.7 具有CFD 仿真功能。 1.8 具有与Excel 的双向调用功能。 1.9 具有几何建模功能。 1.10 具有半导体仿真功能。 1.11 具有波动光学仿真功能。 1.12 具有材料库功能。 1.13 具有案例模型。 2. 基本功能 2.1 所有数值计算均基于有限元方法。 2.2 任意指定多物理场耦合,并且可以一次性同时求解的直接耦合功能。 2.3 提供前处理器、求解器和后处理器。 2.4 提供图形化自定义偏微分方程接口(系数型、广义型、弱解型),不需要用户编写程序就可以求解自己的方程,并可以与预置的物理场接口耦合。 2.5 可以导入/导出数组文件、表格、文件等。 2.6 自带网格剖分功能,可以智能或者手动剖分网格,创建结构化和非结构化网 格。 3. 半导体仿真功能 3.1 可以仿真分析双极晶体管、金属半导体场效应晶体管 (MESFET)、金属氧化物半导 体场效应晶体管 (MOSFET)、绝缘栅双极晶体管 (IGBT)、肖特基二极管和 P-N 结等。 3.2 可以分析包含光跃迁来模拟诸如太阳能电池、发光二极管(LED) 以及光电二 极管等一系列器件。 3.3 可以求解电子和空穴的浓度以及伏安特性曲线。 4. 波动光学仿真功能 4.1 提供专用的工具来模拟线性和非线性光学介质中的电磁波传播,实现精确的元件仿 真和光学设计优化。 4.2 可以在光学结构中进行频域或时域的高频电磁波仿真。 4.3 可以进行特征频率模式分析、频域和时域电磁仿真。例如计算传输和反射系数。 5. 材料库功能 5.1 材料库中包含 2500 种材料的数据,包括化学元素、矿物、金属合金、热绝缘材料、半导体和压电材料等。 5.2 不仅可以绘制和检查这些函数的定义,而且还可以进行添加或更改。也可以在其他 依赖材料属性函数的物理场耦合中调用这些函数。 6. 几何建模功能 * * * * * * * * * * * * * * * * * * * * *

何人可(工业设计史)章节重点笔记(精华8页)

工业设计史绪论 一、工业革命前的设计 设计的萌芽阶段 手工艺设计阶段 二、工业设计可大致划分为三个发展时期 1 、第一个时期(1750—1914年的工业设计)自18世纪下半叶至20世纪初期,这是工业设计的酝酿和探索阶段。 2、第二个时期(1915—1939年的工业设计)在一战和二战之间,这是现代工业设计形成与发展的时期。 3、第三个时期(1940年至当代的工业设计)在二战之后,这一时期工业设计与工业生产和科学技术紧密结合,因而取得了重大成就。 工业设计是以工业化大批量生产为条件发展起来的,与机械化生产密切相关。 三、工业设计发展中的流派和组织 折衷主义欧美各国1820—1900 工艺美术运动英国1880—1910 莫里斯,阿什比 新艺术运动欧洲各国1890—1910 吉马德,戈地 维也纳分离派奥地利1897—1933 霍夫曼 德意志制造联盟德国1907—1934 穆特休斯,贝伦斯 风格派荷兰1917—1931 里特维尔德 构成派苏联1917—1928 马来维奇,塔特林 包豪斯学校德国1919—1933 格罗披乌斯 艺术装饰风格法国1925—1935 流线型风格美国1935—1945 罗维,盖茨 斯堪的纳维亚风格斯堪的纳维亚1930—1950 阿尔托 现代主义欧美各国1920—1950 米斯,柯布西埃 商业性设计美国1945—1960 厄尔 有机现代主义美国意大利斯堪1945—1960 沙里宁,尼佐里 理性主义欧洲美国日本1960— 高技术风格欧洲,日本1960—1980 波普风格英国1960—1970 后现代主义欧美各国1965—文丘里,索特萨斯 解构主义欧美各国1980—盖里,屈米 绿色设计欧美各国1970— 四、 1、产生:20世纪20年代才开始确立。 2、工业设计产生的条件:现代化大工业的批量生产和激烈的市场竞争,其设计对象是以工业化方法批量生产的产品。 3、作用:工业设计是商品经济的产物,它具有刺激消费的作用。 4、历史的传承:传统的设计风格被作为某种特定文化的符号,不断影响到工业设计。 五、人类设计活动的三个阶段: ①设计的萌芽阶段——旧石器时代,原始人类制作石器时已有了明确的目的性和一定程度的标准化。 ②手工艺设计阶段——新石器时期,陶器的发明标志着人类开始了通过化学变化改变材料特性的创造性活动,也标志着人类手工艺设计阶段的开端。 ③工业设计阶段——工业革命——工业设计阶段。 六、工业设计在中国的发展 美国著名设计师拉瑟尔·赖特于1956年应邀去我国台湾省讲学,在一定程度上推动了台湾地区的工业设计运动。 20世纪70年代末以来,工业设计在我国大陆开始受到重视。1987年中国工业设计协会成立,进一步促进了工业设计在我国的发展。 第一篇:工业革命前的设计 第一章设计的萌芽阶段 设计的萌芽阶段从旧石器时代一直延续到新石器时代。 特征是用石、木、骨等自然材料来加工制作成各种工具。在设计概念的产生过程中,劳动起着决定性的作用。 人类最初的工具——天然的石块或棍棒;以后渐渐学会了拣选石块、打制石器,作为敲、砸、刮、割的工具。 一、旧石器时代 人类早期使用的石器一般是打制成形的,较为粗糙,通常称打制石器时代为“旧石器时代”。 二、新石器时代 随着历史的发展,人类在劳动中进一步改进了石器的制作,把经过选择的石头打制成石斧、石刀、石锛、石铲、石凿等各种工具,并加以磨光,使其工整锋利,还要钻孔用以装柄或穿绳,以提高实用价值。这种磨制石器的时代,称之为“新石器时代”。 原始社会的人们在制作石器时,在石材选料上十分注意硬度、形状、纹理的选择,以符合不同的使用和加工要求。将实用与美观结合起来,赋予物品物质和精神功能的双重作用,是人类设计活动的一个基本特点。 磨制石器:石料选定后,先打制成石器的雏形,然后把刃部或整个表面放在砺石上加水和沙子磨光。这就成了磨制石器。三、生存设计 1、需求增加:一旦最基本的需求得到了满足,其他的需求也就会不断出现。 2、需求发生变化:原有的需求也会以一种比先前的方式更先进的形式来得到满足。 3、舒适生活欲望的产生:随着温饱的解决和危险的消失,更为舒适的生活欲望就会油然而生,这是一种情感上的需求。这样,人类设计的功能发生变化:由保障生存发展到了使生活更有意义。随着社会生产力的发展,人类便由设计的萌芽阶段走向了手工艺设计阶段。 第二章手工艺设计阶段 一、手工艺设计阶段的特点: 1、由于生活方式和生产力水平的局限,设计的产品大都是功能较简单的生活用品,如陶瓷制品、家具以及各种工具,生产方式主要是手工劳动。 2、由于设计、生产、销售一体化,设计者与消费者彼此非常了解,所以设计者和使用者彼此非常信任,设计者对产品和使用者负责,努力满足不同消费者的不同需要,因而产生了众多优秀的设计作品。 第一节中国手工艺设计 中国的建筑、园林、陶瓷、家具、染织等设计,不仅对日本、东南亚各国,而且对西方近代设计也产生了重大影响。 一、陶器——新石器时代 制陶,是通过火的应用,使泥土改变其内在性质。 制陶——一般要选取细腻的黄土,淘去杂质,掺入沙子进行高温火烧,以防燥裂。制作陶器最早是用手捏制,对于较大的器物,则搓成泥条,再盘筑成形,后来又逐渐发展成转轮成形。在仰韶文化时期——陶轮出现,其结构简单,转动很慢,一般称为慢轮。当时陶器的成形、修坯甚至某些纹饰的制作,就是慢轮成形。 早期的陶器模仿其他材料做成的器物,如篮子、葫芦和皮袋的形状,在装饰上也留有模仿的痕迹,如席纹、绳纹。 陶器表面加工有多种方法: (1)压模,即用平滑的石头在陶坯上压模使之光滑; (2)施加陶衣,进而加以彩绘; (3)压印,用特制工具在陶坯上压出绳纹或条纹,既使陶壁坚实,也使压纹成为一种装饰,增加美观。此外还有堆贴和刻划等多种加工方式。 所谓“彩陶”是指一种绘有黑、红色装饰花纹的红褐色或棕黄色陶器。 “黑陶文化”:在新石器晚期,我国的彩陶工艺逐渐没落,在黄河下游兴起了另一种文化,它以出现较多的黑色陶器为特征,称“黑陶文化”,因它最早出现于山东历城龙山镇,也称“龙山文化”。因黑色含铁,使陶器硬度提高,更坚实耐用。 有的陶器器体很薄,只有0.1或0.2cm,内外皆黑,有“蛋壳陶”之称,是黑陶工艺中的精品。 黑陶工艺的特点:1、黑:乌黑如漆的色彩;2、薄:器壁很薄;3、光:具有平滑的光泽;4、纽:指造型上具有鼻、耳、盖纽及足、把手等适于使用的各种饰件和功能等。 二、青铜器 青铜:是指在红铜中加锡、铅等冶炼成的一种合金。天然铜色红,称为红铜;加入锡铅后,颜色灰青,称为青铜。 铜是人类最早冶炼和使用的金属,起先人们炼出的是纯铜,后来用铜和锡制成合金青铜。金属工具和用品的出现,使设计进入新的历史阶段。青铜在我国商代得以广泛应用。早期青铜器大都是直接仿自陶器,体壁较薄,多为平底,足做成锥柱状,以后又逐渐演变。 1、熔铸法。熔铸法制作青铜器首先要制范,有了范,人们便可以铸造出形式和尺寸完全一样的规范化产品,如兵器、铸币等。 早期的制范法为陶范法,根据泥模制成内范,浇注后得到与泥模一样的制品。 2、到了战国时期,失蜡法。 三、漆器(汉代) 汉代漆器,在战国时期生产的基础上达到了一个鼎盛时期。 汉代的髹漆器物,包括鼎、壶、钫、樽、盂、卮、杯、盘等饮食器皿,奁、盒等化妆用具,几、案、屏风等家具,种类和品目甚多,但主要是以饮食器皿为主的容器。另外漆器还增加了大件的物品,如漆鼎、漆壶、漆钫等,并出现了漆礼器,以代替铜器。汉墓出土还有漆棺、漆碗、漆奁、漆盘、漆案、漆耳杯等,均为木胎,大部为红里黑外,并在黑漆上绘红色或赭色花纹。汉代漆器的造型比战国更丰富,从实用出发,如漆奁、漆盘、漆案考虑使用的方便,放置的容积以及图案纹样的多样统一,装饰花纹形象抽象化,使人见到的是线的动感。汉代漆器是实用和美观结合的工艺品典范。 四、瓷器“宋瓷” 五大名窑:定窑、汝窑、官窑、哥窑、钧窑 五、明代家具 明代家具大致有以下几大类:一为椅凳类,有官帽椅、灯挂椅、圈椅、方凳等;二为几案类;三为床榻类;四为台架类;五为屏座类。 明代家具的特色: 1、注意材料质地,多用硬质树种,所以又称硬木家具;

何人可《工业设计史》笔记

何人可《工业设计史》笔记 1(中国部分 原始半坡型彩陶 彩陶最早在河南渑池仰韶村发现,所以也称“仰韶文化”。半坡型彩陶的鱼形花纹,起先的写实的手法,逐渐演变为鱼体的分割和重新组合,例如,“人面鱼身”盆纹是人面与鱼形合体的花纹,在一个人头形的轮廓里面,画出一个鱼花纹,具有“寓人于鱼”的特殊意义,是最具有代表性的装饰纹样。仰韶文化半坡类型的尖底瓶汲水器,其基本形状为小口、尖底,腹部置有双耳。双耳除了系绳之用,还具有平衡重心的作用,使注满水后的容器能自动在水中直立,底尖便于下垂入水,也易于注满,造型设计可谓轻巧实用。青铜器设计 商周时期的设计艺术,最有代表性和具有突出艺术成就是青铜工艺,三千多年前出现的中国青铜工艺,它的突出成就表明了中国奴隶社会手工业发展的最高水平。青铜是红铜和锡的合金,有时根据特殊需要也掺一点铅;加入锡铅以后,熔点降低,硬度增高,容易掌握铸造过程;可以铸造需要坚硬的制品,如武器或工具;另外熔铸时减少汽孔,使装饰花纹清晰;增加光泽度。青铜器的名称,根据生活用途的不同,大体可分烹饰器、食器、酒器、水器、杂器、兵器、乐器、工具等八类。 明式家具 明式家具是科学性和艺术性的高度统一。明式家具讲究选料,选材是设计意匠的重要部分之一。多用紫檀、花梨、红木等,也采用楠木、樟木、胡桃木及其它硬杂木,所以又通称硬木家具。明式家具的造型安定,简练质朴,讲究运线,线条雄劲而流利。明代家具的最大特点,它擅长将选材、制作、使用和审美巧妙的结合起来。造型显得线型简练、挺拔和轻巧。例如椅子的靠背和扶手的曲度都基本适合于人体的曲线,触感良好。

明代家具采用木构架的结构。结构科学合理。明代椅子由于造型所产生的比例尺度,以及素雅朴质的美,使家具工艺达到了很高的水平。家具整体的长、宽和高,整体与局部的权衡比例都非常适宜。有的椅子座面和扶手都比较高宽,这是和封建统治阶级要求“正襟危坐”,以表示他们的威严分不开的。 《营造法式》 宋代《营造法式》这是我国古代最完整的建筑技术书籍,著书人是监丞李诫。《营造法式》书中确定了材份制和各种标准规范,还对建筑的设计、规范、工程技术和生产管理都有系统的论述,是我国和世界建筑史上的珍贵文献。北宋致力于总结前代建筑经验,木架建筑采用了古典的模数制。《营造法式》中规定,把“材”作为造屋的标准,即木架建筑的用“材”尺寸分成大小八等,按屋宇的大小主次用“材”,“材”一经选定,木构架的所有尺寸都随之而来,不仅设计可以省时,工料估算有统一标准,施工也方便。中国古典园林设计 中国古典园林特别善于利用具有浓厚的民族风格的各种建筑物,如亭、台、楼、阁、廊、榭、轩、舫、馆、桥等,配合自然的水、石、花、木等组成体现各种情趣的园景。以常见的亭、廊、桥为例,它们所构成的艺术形象和艺术境界都是独具匠心的。明末清初苏州古典园林设计最为著名的是拙政园、留园、狮子林、沧浪亭和网师园。假山是园景中的重要因素。也是表现我国古代园林风格的最重要的手法之一。明代造园家计成的《园冶》是关于中国传统园林设计的专著,是实践的总结,也是理论的概括。书中主旨是要“相地合宜,构园得体”,要“巧于因借,精在体宜” 。 中国古典园林的园景主要是摹仿自然,达到明代计成《园冶》里“虽有人作,宛自天开”的艺术境界。中国古典园林是建筑、山池、园艺、绘画、雕刻以至诗文等多种艺术的综合体。 借景

PCB电路板原理图的设计步骤

PCB电路板原理图的设计步骤 PCB从单层发展到双面、多层和挠性,并且仍旧保持着各自的发展趋势。由于不断地向高精度、高密度和高可靠性方向发展,不断缩小体积、减少成本、提高性能,使得印刷板在未来设备的发展工程中,仍然保持着强大的生命力。那 么PCB是如何设计的呢?看完以下七大步骤就懂啦! 1、前期准备 包括准备元件库和原理图。在进行PCB设计之前,首先要准备好原理图SCH 元件库和PCB元件封装库。PCB元件封装库最好是工程师根据所选器件的标准尺寸资料建立。原则上先建立PC的元件封装库,再建立原理图SCH元件库PCB元件封装库要求较高,它直接影响PCB的安装;原理图SCH元件库要求相对宽松,但要注意定义好管脚属性和与PCB元件封装库的对应关系。 2、PCB结构设计 根据已经确定的电路板尺寸和各项机械定位,在PCB设计环境下绘制PCB

板框,并按定位要求放置所需的接插件、按键/开关、螺丝孔、装配孔等等。充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。 3、PCB布局设计 布局设计即是在PCB板框内按照设计要求摆放器件。在原理图工具中生成网络表(Design→Create Netlist),之后在PCB软件中导入网络表(Design →Import Netlist)。网络表导入成功后会存在于软件后台,通过Placement操作可以将所有器件调出、各管脚之间有飞线提示连接,这时就可以对器件进行布局设计了。 PCB布局设计是PCB整个设计流程中的重要工序,越复杂的PCB板,布局的好坏越能直接影响到后期布线的实现难易程度。布局设计依靠电路板设计师的电路基础功底与设计经验丰富程度,对电路板设计师属于较高的要求。初级电路板设计师经验尚浅、适合小模块布局设计或整板难度较低的PCB布局设计任务。 4、PCB布线设计

有限元mems仿真

预应力微镜 介绍 这一种产生如弹簧结构或在镀的结构上诱导曲率的方法,这种方法是给基板电镀一层材料,使得这一层(材料)在镀后存在残余应力。电镀过程能控制这个应力,从而可以压缩或拉伸,甚至对类似的材料产生同样的作用。汽车工业已经对这一现象进行了深入的研究,因为高受压的铬比非受压的铬更有光泽和顺滑。微机电系统(MEMS)设备制造厂商有时使用这个效应来制造弯曲的悬臂梁或弹簧微机械结构,这种结构在用蚀刻剂进行底切时能抬高底层。由静电控制的微镜就是这样一种装置。它非常小,通过这些装置的阵列可以实现一个投射系统。他们充当着光学redirectors和类似的反射装置。本节介绍如何建立和求解预应力电镀装置的基本原理。 模型定义 这个单一物理模型使用3 D结构分析。微镜包括一个僵硬、扁平的反射中心部分,这个部分是由四个悬臂预应力电镀弹簧支撑的。为了使网格体积很小和处理时间合理,这次练习研究有两层镀层的结构。它还假设电镀过程在最高和最底层产生了大小相等、方向相反的(压应力和拉应力)初始应力。这种(假设带来的)便利使得模型(可以)直接建立。你可以把初始应力分布设置为任意想象的复杂,如这个例子所示。根据变形的大小,最好的建议是用有限变形非线性分析的模拟来求解。注意,后者更有可能收敛。因此这个数值模型使用复数线性组合和参数线性规划线兼有的有限变形分析来求解。特别注意的是,有薄层的3 D结构,比如在这个模型里的结构会导致一个非常大的非结构化四面体网格。为了避免这种情况,这个例子首先生成一个2 D的四边形网格进行网格映射,然后挤压成3 D产生一种有立体(砖)元素的网格。这样,你就可以用网格创建一个高长径比的结构性要素。 你想在这类问题中确定的一个关键工艺参数通常是什么样的预应力水平是导致预期发射所必要的。另一个共同关心的问题是应力变化可能对位移的影响有多大。一项参数研究回答了这个问题。 结果和讨论 以下两幅图是对铝和钢板的发射比较。钢比铝更硬,变形更小。

相关文档
最新文档