2011年青岛市中考数学试题及答案(word版)

合集下载

11年-山东省青岛市中考真题

11年-山东省青岛市中考真题

二○一一年山东省青岛市初级中学学业水平考试数 学 试 题1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题.其中1—8题为选择题,请将所选答案的标号填写在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题,请在试题给出的本题位置上做答.一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上.1.12-的倒数是( ) A .12-B.12C .2-D .22.如图,空心圆柱的主视图是( )3.已知⊙O 1与⊙O2的直径分别是4cm 和6cm ,O 1O 2=5cm ,则⊙O 1与⊙O 1的位置关系是( )A .外离B .外切C .相交D .内切 4.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )5.某种鲸的体重约为1.36×105千克.关于这个近似数,下列说法正确的是( ) A .精确到百分位,有3个有效数字 B .精确到个位,有6个有效数字 C .精确到千位,有6个有效数字 D .精确到千位,有3个有效数字6.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的 12,则点A 的对应点的坐标是( )A .(-4,3)B .(4,3)A .B .C .D .第2题OAy x64 225 -5-2C .(-2,6)D .(-2,3)7.如图①,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图②所示的一个圆锥,则圆锥的高为( )A .17cmB .4cmC .15cmD .3cm8.已知一次函数y 1=ax +b 与反比例函数y 2= kx在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是( )A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3请将1—8各小题所选答案的标号填写在下表的相应位置上:题号 1 2 3 4 5 6 7 8 答案二、填空题(本题满分18分,共有6道小题,每小题3分)请将9—14各小题的答案填写在第14小题后面给出表格的相应位置上.9.甲、乙两支仪仗队各有10名队员,这两支仪仗队队员身高的平均数都是178cm ,方差分别为0.6和1.2,则这两支仪仗队身高更整齐的是 仪仗队.10.如图,已知AB 是⊙O 的弦,半径OA =6cm ,∠AOB =120º,则AB =cm .11.某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为 .12.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕获500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约有__________只.13.如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1.若BC =32,1PB C S △=2,则BB 1= .图① 图② 第7题 A B O 第10题 第13题A A 1B B 1C C 1Py O x3-1 3 第8题 21 -2 -3 1214.如图,已知正方形ABCD 的边长为1,若以正方形ABCD 的边AB 为对角线作第二个正方形AEBO 1,再以边BE 为对角线作第三个正方形EFBO 2,如此作下去,…,则所作的第n 个正方形的面积S n = .请将9—14各小题的答案填写在下表的相应位置上:题号 9 10 11 答案 题号 12 13 14 答案三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.已知:如图,线段a 和h .求作:△ABC ,使AB =AC ,BC =a ,且BC 边上的高AD =h . 要求:尺规作图,不写作法,保留作图痕迹.结论:四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)解方程组:⎩⎨⎧4x +3y =5,x -2y =4.解:ahABCD EF O 1O 2 第14题(2)化简: b +1 a 2-4 ÷ b 2+ba +2.解:原式=17.(本小题满分6分)图①是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图①将数据统计整理后制成图②.根据图中的信息解答下列问题: (1)在图②中补全条形统计图;(2)这8天的日最高气温的中位数是 ºC ; (3)计算这8天的日最高气温的平均数.解:(3)18.(本小题满分6分)小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差(大数减小数)大于或等于2,小明得1分,否则小亮得1分.你认为游戏是否公平?请说明理由.若不公平,请你修改规则,使游戏对双方公平. 解:温度(ºC )日期O1 2 3 4 5 6 7 81 2 5 3 4 图①天数/天温度(ºC )123 412 3 4图②第17题1 24 第18题319.(本小题满分6分)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40º减至35º.已知原楼梯AB 长为5m,调整后的楼梯所占地面CD有多长?(结果精确到0.1m)(参考数据:sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)解:20.(本小题满分8分)某企业为了改善污水处理条件,决定购买A、B 两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.(1)企业有哪几种购买方案?(2)哪种购买方案更省钱?解:(1)(2)A型B型价格(万元/台)8 6 月处理污水量(吨/月)200 180 40º35ºADBC第19题21.(本小题满分8分)已知:□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE . (1)求证:△BEC ≌△DF A ;(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论.证明:(1)(2)22.(本小题满分10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y (件)与销售单价x (元)之间的函数关系式;(2)写出销售该品牌童装获得的利润w (元)与销售单价x (元)之间的函数关系式; (3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少元? 解:(1)(2)(3)A EB C F D 第21题a a a ab bbb 图①23.(本小题满分10分) 问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小.而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号来确定他们的大小,即要比较代数式M 、N 的大小,只要作出它们的差M -N ,若M -N >0,则M >N ;若M -N =0,则M =N ;若M -N <0,则M <N . 问题解决如图①,把边长为a +b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,试比较两个小正方形的面积之和M 与两个矩形面积之和N 的大小.解:由图可知,M =a 2+b 2,N =2ab . ∴M -N =a 2+b 2-2ab =(a -b )2.∵a ≠b ,∴(a -b )2>0. ∴M -N >0. ∴M >N .类比应用(1)已知小丽和小颖购买同一种商品的平均价格分别为a +b 2 元/千克、 2aba +b元/千克(a 、b 是正数,且a ≠b ),试比较小丽和小颖所购买商品的平均价格的高低.解:(2)试比较图②、图③两个矩形的周长M 1、N 1的大小(b >c ).解:图③a +bb +3cb +ca -c图②PB QAM D CF第24题联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,箱子的尺寸如图④所示(b >a >c >0),售货员分别可按图⑤、图⑥、图⑦三种方法进行捆绑,吻哪种方法用绳最短?哪种方法用绳最长?请说明理由.解:24.(本小题满分12分)已知,如图在△ABC 中,AB =AC =10cm ,BD ⊥AC 于D ,且BD =8cm .点M 从点A 出发,沿AC 方向匀速运动,速度为2cm/s ;同时,直线PQ 由点B 出发沿BA 的方向匀速运动,速度为1cm/s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于P 、交BC 于Q 、交BD 于F .连接PM ,设运动时间为t (s )(0<t <5).解答下列问题:(1)当t 为何值时,四边形PQCM 是平行四边形?(2)设四边形PQCM 的面积为y (cm )2,求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形PQCM = 916S △ABC ?若存在,求出t 的值;若不存在,说明理由;(4)连接PC ,是否存在某一时刻t ,使点M 在线段PC 的垂直平分线上?若存在,求出此时t 的值;若不存在,说明理由. 解:(1)(2) 图④ 图⑤ 图⑥ 图⑦a bc。

2011年青岛58中直升考试数学卷有答案

2011年青岛58中直升考试数学卷有答案

青岛58中2011年直升考试数学卷一、选择(每题6分,共42分)1,函数2+=ax y 与函数22++=bx ax y (0≠a )可能是( )2,我们定义 ,例如。

若A. 4 B -4 C. 3 D. -3 3,A. 8B. - 8C. 0D.21 4,把一枚六个面编号为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,若两个正面朝上的编号分别为m 、n ,则二次函数n mx x y ++=2的图像与x 轴没有交点的概率是( ) A125 B 94 C 3617 D 215,如图所示,在完全重合的两张矩形纸ABCD 中,AB=8,BC=16. 将上面的矩形纸张折叠,使点C 与点A 重合,折痕为EF ,点D 对应的点G ,连接DG 。

则图中阴影部分的面积为6,如图所示,点P 在正方形ABCD 内,且P A=-2,PB=4,PC=6.将三角形ABP 绕点B 顺时针旋转90°得三角形C BP ',连接'PP ,则∠C BP '的度数为( )A 120°B 135°C 150°D 165°7,已知二次函数)0(2<a c bx ax y ++=,满足:a+b+c=0;4a-2b+c=0,给出以下四个命题, ① 该二次函数的对称轴是21-=x ②若12,0<<则>x y - ③ a-b+c <0 ④ 4a+2b+c <0 真命题的个数为:( )A. 1个B. 2个C. 3个D.4个 二、填空(每题6分,42分) 8,在平面直角坐标系中,一次函数343+-=x y 与x 轴交于A 点,与y 轴交于B 点,坐标原点为O ,则△AOB 的内心和外心之间的距离为9,如图所示,在平行四边形ABCD 中,点E 在线段BC 上,且BE=2AE ,连接AC 、DE 相交于F ,则△AEF 、△ADF 、△DCF 和四边形BCFE 的面积之比为BCFE DCF ADF AEF 四边形△△△:::S S S S =10,将全体正整数排列成一个三角形数阵,按照此排列的规律,第五行最后一个数字是 ,第n 行最后一个数字是 (用含字母n 的代数式表示)。

青岛市2011年中考数学试题及答案(word版)

青岛市2011年中考数学试题及答案(word版)

2011年山东省青岛市中考数学试题一、选择题(本大题共8小题,每小题3分,满分24分) 1.- 12的倒数是【 】A .- 1 2B . 12 C .-2 D .22.如图,空心圆柱的主视图是【 】3.已知⊙O 1与⊙O 2的直径分别是4cm 和6cm ,O 1O 2=5cm ,则两圆的位置关系是【 】 A .外离 B .外切 C .相交 D .内切 4.下列汽车标志中,既是轴对称图形又是中心对称图形的是【 】5.某种鲸的体重约为1.36×105kg .关于这个近似数,下列说法正确的是【 】 A .精确到百分位,有3个有效数字 B .精确到个位,有6个有效数字 C .精确到千位,有6个有效数字 D .精确到千位,有3个有效数字 6.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的 12,则点A 的对应点的坐标是【 】A .(-4,3)B .(4,3)C .(-2,6)D .(-2,3) 7.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为【 】O x y 3-13 -1OAyx6 4 225 -5-2 图1图2A .B .C .D .A A 1B B 1CC 1A .17cmB .4cmC .15cmD .3cm8.已知一次函数y 1=kx +b 与反比例函数y 2= kx在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是【 】A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3二、填空题(本大题共6小题,每小题3分,满分18分)9.已知甲、乙两支仪仗队各有10名队员,这两支仪仗队队员身高的平均数都是178cm ,方差分别为0.6和1.2,则这两支仪仗队身高更整齐的是 仪仗队.10.如图,已知AB 是⊙O 的弦,半径OA =6cm ,∠AOB =120º,则AB = cm .11.某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为 .12.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 只. 13.如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1.若BC =32,△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1= . 14.如图,以边长为1的正方形ABCD 的边AB 为对角线作第二个正方形AEBO 1,再以BE 为对角线作第三个正方形EFBO 2,如此作下去,…,则所作的第n 个正方形的面积S n = .三、作图题(本题满分12分) 15.如图,已知线段a 和h .求作:△ABC ,使得AB =AC ,BC =a ,且BC 边上的高AD =h . 要求:尺规作图,不写作法,保留作图痕迹.ABOABC DE FO 1O 2四、解答题(本大题共9小题,满分74分) 16.(每小题4分,满分8分)(1)解方程组:⎩⎨⎧4x +3y =5,x -2y =4.(2)化简: b +1 a 2-4 ÷ b 2+ba +2 .17.(6分)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题: (1)将图2补充完整;(2)这8天的日最高气温的中位数是 ºC ; (3)计算这8天的日最高气温的平均数.18.(6分)小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差(大数减小数)大于或等于2,小明得1分,否则小亮得1分.你认为游戏是否公平?若公平,请说明理由;若不公平,请你修改规则,使游戏对双方公平.19.(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40º减至35º.已知原楼梯AB 长为5m ,调整后的楼梯所占地面CD 有多长? (结果精确到0.1m .参考数据:sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)ah温度/ºC天数/天温度/ºC日期O1 12 3 4 5 6 7 823 412 3 41 2 53 4 图1图21 2 43AAE BCF D20.(8分)某企业为了改善污水处理条件,决定购买A 、B 两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨. (1)企业有哪几种购买方案? (2)哪种购买方案更省钱?21.(8分)在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .(1)求证:△BEC ≌△DFA ;(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论.22.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y 件与销售单价x 元之间的函数关系式;(2)写出销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式; (3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?23.(10分)问题提出A 型B 型价 格(万元/台)86月处理污水量(吨/月) 200 180a a a a bbbb图1我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M 、N 的大小,只要作出它们的差M -N ,若M -N >0,则M >N ;若M -N =0,则M =N ;若M -N <0,则M <N .问题解决如图1,把边长为a +b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,试比较两个小正方形面积之和M 与两个矩形面积之和N 的大小. 解:由图可知:M =a 2+b 2,N =2ab .∴M -N =a 2+b 2-2ab =(a -b )2. ∵a ≠b ,∴(a -b )2>0. ∴M -N >0. ∴M >N . 类别应用(1)已知小丽和小颖购买同一种商品的平均价格分别为a +b 2 元/千克和 2aba +b元/千克(a 、b 是正数,且a ≠b ),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图2和图3中两个矩形周长M 1、N 1的大小(b >c ).联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b >a >c >0),售货员分别可按图5、图6、图7三种方法进行捆绑,吻哪种方法用绳最短?哪种方法用绳最长?请说明理由.图3a +bb +3cb +ca -c图2P B QAM DCF24.(12分)如图,在△ABC 中,AB =AC =10cm ,BD ⊥AC 于点D ,且BD =8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2cm/s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm/s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t s(0<t <5). (1)当t 为何值时,四边形PQCM 是平行四边形?(2)设四边形PQCM 的面积为y cm 2,求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形PQCM = 916S △ABC ?若存在,求出t 的值;若不存在,说明理由; (4)连接PC ,是否存在某一时刻t ,使点M 在线段PC 的垂直平 分线上?若存在,求出此时t 的值;若不存在,说明理由.图4 图5 图6 图7a bc。

2011年山东青岛中考数学试题

2011年山东青岛中考数学试题

2011年山东省青岛市中考数学试题一、选择题(本大题共8小题,每小题3分,满分24分)1.-12的倒数是【】A.-12B.12C.-2 D.22.如图,空心圆柱的主视图是【】3.已知⊙O1与⊙O2的直径分别是4cm和6cm,O1O2=5cm,则两圆的位置关系是【】A.外离B.外切C.相交D.内切4.下列汽车标志中,既是轴对称图形又是中心对称图形的是【】5.某种鲸的体重约为1.36×105kg.关于这个近似数,下列说法正确的是【】A.精确到百分位,有3个有效数字B.精确到个位,有6个有效数字C.精确到千位,有6个有效数字D.精确到千位,有3个有效数字6.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的12,则点A 的对应点的坐标是【】A.(-4,3)B.(4,3)C.(-2,6)D.(-2,3)7.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为【】A.17cm B.4cm C.15cm D.3cm8.已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x 的取值范围是【】A.x<-1或0<x<3 B.-1<x<0或x>3C.-1<x<0 D.x>3A.B.C.D.图111 二、填空题(本大题共6小题,每小题3分,满分18分)9.已知甲、乙两支仪仗队各有10名队员,这两支仪仗队队员身高的平均数都是178cm ,方差分别为0.6和1.2,则这两支仪仗队身高更整齐的是 仪仗队. 10.如图,已知AB 是⊙O 的弦,半径OA =6cm ,∠AOB =120º, 则AB = cm .11.某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为 .12.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 只. 13.如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1.若BC =△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1= .14.如图,以边长为1的正方形ABCD 的边AB 为对角线作第二个正方形AEBO 1,再以BE 为对角线作第三个正方形EFBO 2,如此作下去,…,则所作的第n 个正方形的面积S n = .三、作图题(本题满分12分)15.如图,已知线段a 和h .求作:△ABC ,使得AB =AC ,BC =a ,且BC 边上的高AD =h . 要求:尺规作图,不写作法,保留作图痕迹.四、解答题(本大题共9小题,满分74分)16.(每小题4分,满分8分)(1)解方程组:⎩⎨⎧4x +3y =5,x -2y =4.(2)化简: b +1 a 2-4 ÷ b 2+ba +2 .17.(6分)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题: (1)将图2补充完整;(2)这8天的日最高气温的中位数是 ºC ; (3)计算这8天的日最高气温的平均数. 温度/ºC图1图2ahA BOABCD EF O 1O 2A EB C F D 18.(6分)小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差(大数减小数)大于或等于2,小明得1分,否则小亮得1分.你认为游戏是否公平?若公平,请说明理由;若不公平,请你修改规则,使游戏对双方公平.19.(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40º减至35º.已知原楼梯AB 长为5m ,调整后的楼梯所占地面CD 有多长? (结果精确到0.1m .参考数据:sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)20.(8分)某企业为了改善污水处理条件,决定购买A 、B 两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.(1)企业有哪几种购买方案? (2)哪种购买方案更省钱?21.(8分)在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .(1)求证:△BEC ≌△DF A ;(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论.22.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件. (1)写出销售量y 件与销售单价x 元之间的函数关系式;(2)写出销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?a b 图1 23.(10分)问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M 、N 的大小,只要作出它们的差M -N ,若M -N >0,则M >N ;若M -N =0,则M =N ;若M -N <0,则M <N .问题解决如图1,把边长为a +b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,试比较两个小正方形面积之和M 与两个矩形面积之和N 的大小.解:由图可知:M =a 2+b 2,N =2ab .∴M -N =a 2+b 2-2ab =(a -b )2.∵a ≠b ,∴(a -b )2>0. ∴M -N >0. ∴M >N . 类别应用(1)已知小丽和小颖购买同一种商品的平均价格分别为a +b 2 元/千克和 2aba +b元/千克(a 、b 是正数,且a ≠b ),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图2和图3中两个矩形周长M 1、N 1的大小(b >c ).联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b >a>c >0),售货员分别可按图5、图6、图7三种方法进行捆绑,吻哪种方法用绳最短?哪种方法用绳最长?请说明理由.图4图5 图6 图7bc图3a +bb +3cb +ca -c图224.(12分)如图,在△ABC 中,AB =AC =10cm ,BD ⊥AC 于点D ,且BD =8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2cm/s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm/s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t s (0<t <5).(1)当t 为何值时,四边形PQCM 是平行四边形?(2)设四边形PQCM 的面积为y cm 2,求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形PQCM =916S △ABC?若存在,求出 t 的值;若不存在,说明理由;(4)连接PC ,是否存在某一时刻t ,使点M 在线段PC 的垂直平 分线上?若存在,求出此时t 的值;若不存在,说明理由.2011年青岛中考数学答案二、填空题 9. 甲10. 11.12012011.5x x-= 12. 1000 13.14.112n - 三、作图题 15. 正确作图; 正确写出结论。

2011年中考数学试题及答案(Word版)

2011年中考数学试题及答案(Word版)

A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。

青岛市2011年初三第二次模拟测试数学试题

青岛市2011年初三第二次模拟测试数学试题

2011年初三模拟测试数学参考答案及评分标准二、填空题(本题满分18分,共有6道小题,每小题3分)15、 解:正确做出两条中垂线,找出圆心 …………3分结论: …………4分四、解答题(本题满分74分) 16、(本题满分8分,每小题4分) 解:(1)12312--⨯ = 21312-⨯ …………2分 = 216- …………3分 =215…………4分 解:(2)不等式的解集是x <3,(求出解集3分,在数轴上正确表示1分) 17. (本题满分6分) 解:(1)该校学生报名总人数=160÷40%=400 ∴该校学生报名总人数有400人. ………2分 (2)篮球占10%;排球占25%;羽毛球100人. …………4分 (3)补充图形正确: …………6分 18、(本题满分6分) 解:根据题意可列表如下:从列表可以看出所有可能结果共有9种,且每种结果发生的可能性相同,其中结果为奇数的有4种,结果为偶数的有5种,即结果为奇数的概率为94,而结果为偶数的概率为95,所以游戏规则不公平. ……………6分 19、(本题满分6分)解:设甲种门票的价格为x 元,则乙种门票的价格为1.5x 元. ……………1分 根据题意得:25.130002800=-xx ……………3分 解得:x=400经检验x=400是原方程的根 所以1.5x=1.5×400=600答:甲种门票的价格为400元,乙种门票的价格为600元. ……………6分 20、(本题满分8分)解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD .则AB=20×2=40海里,设BD =x 海里,……………………1分在Rt △BCD 中,tan ∠CBD =CDBD,∴CD =x ·tan63.5°.在Rt △ACD 中,AD =AB +BD =(40+x )海里,tan ∠A =CDAD,∴CD =(40+x ) ·tan21.3°. ……………………5分∴x ·tan63.5°=(40+x )·tan21.3°,即.)40(522x x +=解得,x =10.答:轮船继续向东航行10海里,距离小岛C 最近. …………………………8分21、(本题满分8分) 证明:(1)∵∠A =90°,AB ∥CD ,∴∠ADE =90°.由沿DF 折叠后△DAF 与△DEF 重合,知AD =DE ,∠DEF =90°.∴四边形ADEF 是矩形,且邻边AD ,DE 相等.∴四边形ADEF 是正方形. ……………………3分 (2)∵CE ∥BG ,且CE ≠BG ,∴四边形GBCD 是梯形. ∵四边形ADEF 是正方形,∴AD =FE ,∠A =∠GFE =90°. 又点G 为AF 的中点,∴AG =FG .连接DG .在△AGD 与△FGE 中,∵AD =FE ,∠A =∠GFE ,AG =FG∴△AGD ≌△FGE ,∴∠DGA =∠EGB . ……………………6分 ∵BG =CD ,BG ∥CD ,∴四边形BCDG 是平行四边形. ∴DG ∥CD .∴∠B =∠DGA =∠EGB .∴四边形GBCE 是等腰梯形. ……………………8分 22、(本题满分10分) 解:(1)由图①可知,y 是x 的二次函数,且图象过原点 ∴可设)0(2≠=a ax y该图象过点(120,1200)∴12001202=⋅aB C DA ECBDAG F∴121=a 2121x y =…………2分 由图②可知,Z 是x 的一次函数 ∴可设)0(≠+=k b kx z该图象过点(0,30),(120,20) ∴⎩⎨⎧=+=2012030b k b 解得⎪⎩⎪⎨⎧-==12130k b∴30121+-=x z …………5分 (2)由题意,得x x x x x y zx w 3061121)30121(22+-=-+-=-=…………7分)180(612x x --= )9090180(61222-+--=x x1350)90(612+--=x15a =-<0 ∴当x=90时,w 最大值=1350 …………9分答:当年产量为90万件时,所获毛利润最大,最大毛利润是1350万元. …………10分23、(本题满分10分) 解:(1)∵AEFG 是正方形,且边长是b , ∴Rt △AEF 中,由勾股定理可求AF=b 2 ∴DF=b a 2-∴ab a a b a AB DF S DBF 2221)2(21212-=-=∙=∆ …………3分(2)∵BD 和AF 分别是正方形ABCD 与AEFG 的对角线 ∴∠DBF=∠FAG=045. ∴BD ∥AF ∴DBA DBF S S ∆∆= 又∵22121a AD BA S DBA =∙=∆N∴221a S DBF =∆ …………6分 (3)当b a >2时,存在最大值和最小值∵△BDF 的底边BD=a 2∴当F 点到BD 的距离取得最大、最小值时,DBF S ∆取得最大值、最小值.当点C 、A 、F 三点在同一直线上时,如图③,连接BF 、DF.ab a b a a S DBF +=+=∆221)2221221(的最大值 ab a b a a S DBF -=-=∆221)2221221(的最小值 …………10分 24、(本题满分12分)解:(1)点P 、Q 在运动的过程中,t =38时,PQ ∥AB 当CP =CQ 时,PQ ∥AB ,即8-2t =t 解得t =38………4分(2)根据题意得,AP =2t ,QB =8-t , △APM 和△QNB 是直角三角形,四边形 MNQP 是直角梯形. 在Rt △APM 和Rt △QNB 中)8(23),8(21,,3t QN t BN t AM t PM -=-=== 所以MN =AB -AM -BN =t 214- 1()2S PM QN MN =+ )214()8(23321t t t S -⨯⎥⎦⎤⎢⎣⎡-+=38832+-=t S ……………………8分 (3)假设存在某一时刻t ,使四边形MNQP 的面积S 等于△ABC 的面积的167, 即S =167S △ABC 3482116738832⨯⨯⨯=+-t 整理得:82=t解得,12t t ==-答:当t =MNQP 的面积S 等于△ABC 的面积的167.………12分。

山东省17市2011年中考数学试题分类解析专题(1-12)-3

山东省17市2011年中考数学试题分类解析专题(1-12)-3

山东省17市2011年中考数学专题1:实数一、选择题1. (日照3分)(﹣2)2的算术平方根是A、2B、±2C、﹣2D、2【答案】A。

【考点】有理数的乘方,算术平方根。

【分析】首先求得(﹣2)2的值,然后由4的算术平方根为2,即可求得答案。

故选A。

2.(日照4分)观察图中正方形四个顶点所标的数字规律,可知数2011应标在A、第502个正方形的左下角B、第502个正方形的右下角C、第503个正方形的左上角D、第503个正方形的右下角【答案】C。

【考点】分类归纳(数字的变化)。

【分析】观察发现:正方形的左下角是4的倍数,左上角是4的倍数余3,右下角是4的倍数余1,右上角是4的倍数余2。

2011除以4等于余3,所以数2011应标在第503个正方形的左上角。

故选C。

3.(滨州3分)在实数π、13、2、sin30°,无理数的个数为A、1B、2C、3D、4 【答案】B。

【考点】无理数,特殊角的三角函数值。

【分析】先把sin30°化为12的形式,再根据无理数的定义进行解答即可。

初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等这样无规律的数。

∵sin30°化为12,∴这一组数中的无理数有:π,2。

故选B。

4.(滨州3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为A、1,2B、1,3C、4,2D、4,3【答案】A。

【考点】有理数的混合运算。

【分析】∵6×7=10×3+12=10×(1+2)+4×3,∴计算6×7时左手伸出1根手指,右手伸出2根手指,两只手伸出手指数的和为3,未伸出手指数的积为12。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年高中阶段教育学校招生考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -4的相反数是( )A. 4B. -4C. 14D.14-2. 某运动品牌经销商到一所学校对某年级学生的鞋码大小进行抽样调查,经销商最感兴趣的是所得数据的( )A. 中位数B. 众数C. 平均数D. 方差3. 下列计算中,正确的是( )A. 234265+= B. 333236⨯= C. 2733÷= D. 2(3)3-=-4. 如图1,已知射线OP的端点O在直线MN上,∠2比∠1的2倍少30°,设∠2的度数为x,∠1的度数为y,则x、y满足的关系为( )A.180,230x yx y+=⎧⎨=+⎩B.180,230x yx y+=⎧⎨=-⎩C.90,230x yy x+=⎧⎨=-⎩D.180,230x yy x+=⎧⎨=-⎩图1资阳市数学试卷第1页(共13页)资阳市数学试卷第2页(共13页)5. 图2所示的几何体的左视图是( )6. 将一张正方形纸片如图3所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是( )7. 如图4,在数轴上表示实数14的点可能是( ) A. 点M B. 点N C. 点PD. 点Q8. 如图5,若正方形EFGH 由正方形ABCD 绕某点旋转得到,则可以作为旋转中心的是( )A. M 或O 或NB. E 或O 或CC. E 或O 或ND. M 或O 或C9. 在某校校园文化建设活动中,小彬同学为班级设计了一个班徽,这个班徽图案由一对大小相同的较大半圆挖去一对大小相同的较小半圆而得.如图6,若它们的直径在同一直线上,较大半圆O 1的弦AB ∥O 1O 2,且与较小半圆O 2相切, AB =4,则班徽图案的面积为( )A. 25πB. 16πC. 8πD. 4π10. 给出下列命题:①若m =n +1,则22120m mn n -+-=;② 对于函数(0)y kx b k =+≠,若y 随x 的增大而增大,则其图象不能同时经过第二、四象限;③ 若a 、b (a ≠b )为2、3、4、5这四个数中的任意两个,则满足2a b ->4的有序数组(a ,b )共有5组.其中所有正确....命题的序号是( )A . ①②B . ①③C . ②③D. ①②③图4图2图3图5图6资阳市数学试卷第3页(共13页)2011年高中阶段教育学校招生考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 一元二次方程x 2+x =0的两根为________________. 12. 若正n 边形的一个外角等于40°,则n =____________ .13. 在资阳市团委发起的“暖冬行动”中,某班50名同学响应号召,纷纷捐出零花钱.若不同捐款金额的捐款人数百分比统计结果如图7所示,则该班同学平均每人捐款________元.14. 如图8,在△ABC 中,若AD ⊥BC 于D ,BE ⊥AC 于E ,且AD 与BE 相交于点F ,BF =AC ,则∠ABC =_________°.15. 将抛物线221y x =-沿x 轴向右平移3个单位后,与原抛物线交点的坐标为________.16. 甲、乙、丙三位同学组成乒乓球兴趣小组参加课外活动,约定活动规则如下:两人先打,输了的被另一人换下,赢了的继续打,下一次活动接着上一次进行.假设某段时间内甲打的场次为a ,乙打的场次为b ,丙打的场次为c .若a =b ,显然有c 最大值=a +b ;若a ≠b ,通过探究部分情况,得到c 的最大值如上表所示. 进一步探究可得,当a =27,b =20时,c 的最大值是____________.a1 2 23 3 34 4 4 45 5 5 5 56 6 6 6 6 6 …b 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 …c 的 最大 值1 不存在 3 不存在2 5 不存在 不存在 4 7 不存在 不存在3 6 9 不存在 不存在 不存在 5 8 11 …图8 图7资阳市数学试卷第4页(共13页)三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17. (本小题满分6分)化简:219(1)44x x x --÷++.18. (本小题满分7分)如图9,已知四边形ABCD 为平行四边形,AE ⊥BD 于E ,CF ⊥BD 于F . (1) 求证:BE = DF ;(5分)(2) 若 M 、N 分别为边AD 、BC 上的点,且DM =BN ,试判断四边形MENF 的形状(不必说明理由).(2分)19. (本小题满分7分)某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1) 需租用48座客车多少辆? (5分)解 设需租用48座客车x 辆.则需租用64座客车_________辆.当租用64座客车时,未坐满的那辆车还有___________________个空位(用含x 的代数式表示).由题意,可得不等式组:解这个不等式组,得:图9因此,需租用48座客车辆.(2) 若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?(2分)资阳市数学试卷第5页(共13页)资阳市数学试卷第6页(共13页)20. (本小题满分8分)小国同学的父亲参加旅游团到某地旅游,准备买某种礼物送给小国.据了解,沿旅游线路依次有A 、B 、C 三个地点可以买到此种礼物,其质量相当,价格各不相同,但不知哪家更便宜.由于时间关系,随团旅游车不会掉头行驶.(1) 若到A 处就购买,写出买到最低价格礼物的概率;(2分)(2) 小国同学的父亲认为,如果到A 处不买,到B 处发现比A 处便宜就马上购买,否则到C 处购买,这样更有希望买到最低价格的礼物.这个想法是否正确?试通过树状图分析说明.(6分)21. (本小题满分8分)如图10,A 、B 、C 、D 、E 、F 是⊙O 的六等分点.(1) 连结AB 、AD 、AF ,求证:AB +AF = AD ;(5分)(2) 若P 是圆周上异于已知六等分点的动点,连结PB 、PD 、PF ,写出这三条线段长度的数量关系(不必说明理由).(3分)图10资阳市数学试卷第7页(共13页)22. (本小题满分8分)如图11,已知反比例函数y =mx(x >0)的图象与一次函数y =-x +b 的图象分别交于A (1,3)、B 两点.(1) 求m 、b 的值;(2分)(2) 若点M 是反比例函数图象上的一动点,直线MC ⊥x 轴于C ,交直线AB 于点N ,MD ⊥y 轴于D ,NE ⊥y 轴于E ,设四边形MDOC 、NEOC 的面积分别为S 1、S 2,S =S 2 –S 1,求S 的最大值.(6分)23. (本小题满分9分)如图12-1,在梯形ABCD 中,已知AD ∥BC ,∠B =90°,AB =7,AD =9,BC =12,在线段BC 上任取一点E ,连结DE ,作EF DE ,交直线AB 于点F .(1) 若点F 与B 重合,求CE 的长;(3分)(2) 若点F 在线段AB 上,且AF =CE ,求CE 的长; (4分)(3) 设CE =x ,BF =y ,写出y 关于x 的函数关系式 (直接写出结果即可).(2分)图11资阳市数学试卷第8页(共13页)24. (本小题满分9分)在一次机器人测试中,要求机器人从A 出发到达B 处.如图13-1,已知点A在O 的正西方600cm 处,B 在O 的正北方300cm 处,且机器人在射线AO 及其右侧(AO 下方)区域的速度为20cm/秒,在射线AO 的左侧(AO 上方)区域的速度为10cm/秒.(1) 分别求机器人沿A →O →B 路线和沿A →B 路线到达B 处所用的时间(精确到秒);(3分)(2) 若∠OCB =45°,求机器人沿A →C →B 路线到达B 处所用的时间(精确到秒);(3分)(3) 如图13-2,作∠OAD =30°,再作BE ⊥AD 于E ,交OA 于P .试说明:从A 出发到达B 处,机器人沿A →P →B 路线行进所用时间最短.(3分) (参考数据:2≈1.414,3≈1.732,5≈2.236,6≈2.449)资阳市数学试卷第9页(共13页)25. (本小题满分10分)已知抛物线C :y =ax 2+bx +c (a <0)过原点,与x 轴的另一个交点为B (4,0),A为抛物线C 的顶点.(1) 如图14-1,若∠AOB =60°,求抛物线C 的解析式;(3分) (2) 如图14-2,若直线OA 的解析式为y =x ,将抛物线C 绕原点O 旋转180°得到抛物线C ′,求抛物线C 、C ′的解析式;(3分)(3) 在(2)的条件下,设A ′为抛物线C ′的顶点,求抛物线C 或C ′上使得PB PA '=的点P 的坐标.(4分)图14-1图14-22011年高中阶段教育学校招生考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABCBD;6-10. CCADD.二、填空题(每小题3分,共6个小题,满分18分):11.x1=0,x2=-1;12. 9;13. 14;14. 45;15. (32,72);16. 35.三、解答题(共9个小题,满分72分):17.219(1)44xx x--÷++=(4)14xx+-+÷294xx-+·························································································2分=(4)14xx+-+÷(3)(3)4x xx+-+················································································4分=34xx++×4(3)(3)xx x++-······················································································5分=13x-. ······································································································6分18. (1) ∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,·····················································································1分∴∠ABD=∠CDB. ························································································2分∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD =90°.·······································3分∴△ABE≌△CDF(A.A.S.), ·············································································4分∴BE=DF.···································································································5分资阳市数学试卷第10页(共13页)资阳市数学试卷第11页(共13页)(2) 四边形MENF 是平行四边形. ···································································· 7分19. (1) (x -1) ··································································································· 1分(16x -64)(此空没有化简同样给分). ······························································ 2分 16640,166432.x x ->⎧⎨-<⎩······························································································· 4分 (注:若只列出一个正确的不等式,得1分)解得 4<x <6.∵ x 为整数,∴x =5. ··································································· 5分 因此需租用48座客车5辆.(2) 租用48座客车所需费用为5×250=1250(元),租用64座客车所需费用为(5-1)×300=1200(元), ················································· 6分 ∵ 1200<1250,∴ 租用64座客车较合算. ························································· 7分 因此租用64座客车较合算.20. (1) P A 处买到最低价格礼物=13. ··················································································· 2分 (2) 作出树状图如下:·························································· 6分由树状图可知:P 购到最低价格礼物=36=12, ································································· 7分 ∵12>13,∴他的想法是正确的. ······································································ 8分 (注:若判断了想法正确,但没有说理,得1分)21. (1) 连结OB 、OF . ······················································································· 1分∵A 、B 、C 、D 、E 、F 是⊙O 的六等分点,∴ AD 是⊙O 的直径,····················································································· 2分 且∠AOB =∠AOF =60°, ··················································································· 3分 ∴ △AOB 、△AOF 是等边三角形. ···································································· 4分 ∴AB =AF =AO ,∴AB +AF = AD . ······································································· 5分(2) 当P 在BF 上时,PB +PF = PD ;当P 在BD 上时,PB +PD = PF ;当P 在DF 上时,PD +PF =PB . ························································································································ 8分(注:若只写出一个关系式且未注明点P 的位置,不得分;若写出两个关系式且未注明点P 的位置,得1分;若写出三个关系式且未注明点P 的位置,得2分.)22. (1) 把A (1,3)的坐标分别代入y =m x、y =-x +b ,可求得m =3,b =4. ······················· 2分 (2) 由(1)知,反比例函数的解析式为y =3x,一次函数的解析式为y =-x +4. ∵ 直线MC ⊥x 轴于C ,交直线AB 于点N ,资阳市数学试卷第12页(共13页) ∴ 可设点M 的坐标为(x ,3x),点N 的坐标为(x ,-x +4),其中,x >0. ···················· 3分 又∵ MD ⊥y 轴于D ,NE ⊥y 轴于E ,∴ 四边形MDOC 、NEOC 都是矩形, ··············· 4分∴ S 1=x ·3x=3,S 2=x ·(-x +4)=-x 2+4x , ································································ 5分 ∴ S =S 2 –S 1=(-x 2+4x )-3=-(x -2)2+1.其中,x >0. ············································· 6分 ∴ 当x =2时,S 取得最大值,其最大值为1. ······················································ 8分23. (1) ∵F 与B 重合,且EF ⊥DE ,∴DE ⊥BC , ····················································· 1分∵AD ∥BC ,∠B =90°,∴∠A =∠B =90°,∴四边形ABED 为矩形, ················································································· 2分 ∴BE =AD =9,∴CE =12-9=3. ···························································································· 3分(2) 作DH ⊥BC 于H ,则DH = AB =7,CH =3.设AF =CE =x ,∵F 在线段AB 上,∴点E 在线段BH 上,∴HE =x -3,BF =7 –x , ·········································································· 4分∵∠BEF +90°+∠HED =180°,∠HDE +90°+∠HED =180°,∴∠BEF =∠HDE ,又∵∠B =∠DHE =90°,∴△BEF ∽△HDE , ······················································································· 6分 ∴73127x x x --=-,整理得x 2-22x +85=0,(x -5)(x -17)=0,∴x =5或17,经检验,它们都是原方程的解,但x =17不合题意,舍去.∴x =CE =5. ······················································ 7分(3) y =2211536(03),77711536(312).777x x x x x x ⎧-+≤<⎪⎪⎨⎪-+-≤≤⎪⎩ ··································································· 9分 (注:未写x 取值范围不扣分,写出一个关系式得1分)24. (1) 沿A →O →B 路线行进所用时间为:600÷20+300÷10=60(秒), ····························· 1分在Rt △OBA 中,由勾股定理,得AB =22600300+=3005(cm). ··························· 2分 ∴沿A →B 路线行进所用时间为:3005÷10≈300×2.236÷10≈67(秒).························ 3分(2) 在Rt △OBC 中,OB =300,∠OCB =45°,∴OC = OB =300cm,BC =300sin 45º=3002(cm) ····· 4分 ∴AC =600-300=300(cm).∴沿A →C →B 路线行进所用时间为:AC ÷20+BC ÷10=300÷20+3002÷10≈15+42.42≈57(秒). ·················································································································· 6分(3) 在AO 上任取异于点P 的一点P ′,作P ′E ′⊥AD 于E ′,连结P ′B ,在Rt △APE 和Rt △AP ′E ′中,sin30°=EP AP =E P AP ''',∴EP =2AP ,E ′P ′=2AP '.················· 7分 ∴沿A →P →B 路线行进所用时间为:AP ÷20+PB ÷10= EP ÷10+PB ÷10=(EP +PB )÷10=110BE (秒), 沿A →P ′→B 路线行进所用时间为:AP ′÷20+P ′B ÷10= E ′P ′÷10+P ′B ÷10=(E ′P ′+P ′B )÷10= 110(E ′P ′+P ′B )(秒). ······················· 8分 连结BE ′,则E ′P ′+P ′B > BE ′>BE ,∴110BE <110(E ′P ′+P ′B ).。

2011年山东省青岛中考数学试题

2011年山东省青岛中考数学试题
(1)求证:△BEC≌△DFA;
(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.
22.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.
(1)写出销售量y件与销售单价x元之间的函数关系式;
2011年山东省青岛市中考数学试题
一、选择题(本大题共8小题,每小题3分,满分24分)
1.- 的倒数是【】
A.- B. C.-2D.2
2.如图,空心圆柱的主视图是【】
3.已知⊙O1与⊙O2的直径分别是4cm和6cm,O1O2=5cm,则两圆的位置关系是【】
A.外离B.外切C.相交D.内切
4.下列汽车标志中,既是轴对称图形又是中心对称图形的是【】
根据图中信息,解答下列问题:
(1)将图2补充完整;
(2)这8天的日最高气温的中位数是ºC;
(3)计算这8天的日最高气温的平均数.
18.(6分)小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差(大数减小数)大于或等于2,小明得1分,否则小亮得1分.你认为游戏是否公平?若公平,请说明理由;若不公平,请你修改规则,使游戏对双方公平.
24.(12分)如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为ts(0<t<5).
(1)当t为何值时,四边形PQCM是平行四边形?
(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;

山东省十三地市2011年中考数学试卷汇编(共8份有详解)-1

山东省十三地市2011年中考数学试卷汇编(共8份有详解)-1

2011年山东省菏泽市中考数学试卷—解析版一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题4分,共32分)1、﹣的倒数是()A、B、C、﹣D、﹣考点:倒数。

分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣×()=1,,∴﹣的倒数是.故选D.点评:此题主要考查了倒数的定义,需要掌握并熟练运用.2、(2011•菏泽)为了加快3G网络建设,我市电信运营企业将根据各自发展规划,今年预计完成3G投资2800万元左右,将2800万元用科学记数法表示为多少元时,下列记法正确的是()A、2.8×103B、2.8×106C、2.8×107D、2.8×108考点:科学记数法—表示较大的数。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2800万元用科学记数法表示为2.8×107元.故选C.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2010•枣庄)将一副三角板按图中方式叠放,则角α等于()A、30°B、45°C、60°D、75°考点:三角形的外角性质;平行线的性质。

专题:计算题。

分析:利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.解答:解:如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.点评:本题利用了两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和.4、(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A、7B、﹣7C、2a﹣15D、无法确定考点:二次根式的性质与化简;实数与数轴。

2011年中考数学试题含答案

2011年中考数学试题含答案

2011年高中阶段学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是 A .4B .2C .-2D .2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点3.下列运算正确的是 A .(ab )5=ab 5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 24.如图2,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是 A .α的余角只有∠B B .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补5.下列说法正确的是A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数)A .-26°CB .-22°CC .-18°CD .22°C图2图17.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是A.r>15 B.15<r<20 C.15<r<25 D.20<r<25 9.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 2324得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.图4图313.若A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,则当1x 、2x 满足_______________时,1y >2y .14.如图5,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x ,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x --2144x x -+)÷222x x-,其中x =1.18.(本小题满分7分)如图7,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.图5图7图619.(本小题满分8分)惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回...地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少米?(结果可保留根号)23.(本小题满分10分)阅读下列材料,按要求解答问题: 如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a 2-b 2=(3b )2-b 2=2b 2=b ·c .即a 2-b 2= bc . 于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a 2-b 2=bc 都成立. (1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.图8图9-1图9-2图9-324.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB为直径作⊙O ′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线.(1)求抛物线所对应的函数关系式; (2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图102011年高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分)1-5. DCBDC ;6-10. AACBB.二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB≌ΔCOD、ΔAOD≌ΔCOB、ΔADB≌ΔCBD、ΔABC≌ΔCDA之一均可;12.3434+(或34+3);13.x1<x2<0或0<x1<x2;14.4;15.10 ;16.9,12;三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x-–21(2)x-]×(2)2x x-······························································ 3分=1(2)x x-×(2)2x x-–21(2)x-×(2)2x x-=12–2(2)xx-·········································································································· 4分=22(2)xx--–2(2)xx-=12x-····················································································································· 5分当x=1时,原式=121-·············································································································· 6分= 1 ··························································································································· 7分图7 说明:以上步骤可合理省略 . 18.(1) 内. ············································································································ 2分 (2) 证法一:连接CD , ························································································· 3分 ∵ DE ∥AC ,DF ∥BC , ∴ 四边形DECF 为平行四边形,·········································································· 4分 又∵ 点D 是△ABC 的内心, ∴ CD 平分∠ACB ,即∠FCD =∠ECD , ································································ 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , ··········································································································· 6分 ∴ □DECF 为菱形. ······························································································ 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ·································· 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ·············································································································· 4分 ∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ··········································································· 5分 ∴S □DECF =CE ·DH =CF ·DI , ∴CE =CF . ·············································································································· 6分 ∴□DECF 为菱形. ······························································································· 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13,·················································· 1分 ∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区.································································································································ 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆, ········································ 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩·············································································· 5分解得:1.5≤x ≤5 ····································································································· 6分注意到x 为正整数,∴x =2,3,4,5 ···································································· 7分 ∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车 2 3 4 5 乙种货车7654································································································································ 8分 说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平. ································································· 1分 可能出现的所有结果列表如下:1 2 344812大双积 小双5510 15或列树状图如下:·························································· 4分∴P(大双得到门票)= P(积为偶数)=46=23, P(小双得到门票)= P(积为奇数)=13, ···································································· 6分∵23≠13,∴大双的设计方案不公平. ··································································· 7分 (2) 小双的设计方案不公平. ················································································ 9分 参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y =2kx的图象经过点(1,1), ∴1=2k ····················································································································· 1分 解得k =2, ·············································································································· 2分∴反比例函数的解析式为y =1x. ··········································································· 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ························································· 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A (12-,–2). ······································································································· 6分(3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分) ································ 9分22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°, 则BQ =cot30°×PQ =103, ············································································ 2分 又在Rt △APQ 中,∠P AB =45°, 则AQ =tan45°×PQ =10,即:AB =(103+10)(米); ························································· 5分 (2) 过A 作AE ⊥BC 于E ,图8在Rt△ABE中,∠B=30°,AB =103+10,∴AE=sin30°×AB=12(103+10)=53+5, ··············································· 7分∵∠CAD=75°,∠B=30°,∴∠C=45°,····································································································· 8分在Rt△CAE中,sin45°=AE AC,∴AC =2(53+5)=(56+52)(米) ·······················································10分23. (1) 由题意,得∠A=90°,c=b,a =2b,∴a2–b2=(2b)2–b2=b2=bc. ······················································3分(2) 小明的猜想是正确的.·······················································4分理由如下:如图3,延长BA至点D,使AD=AC=b,连结CD,···································································································5分则ΔACD为等腰三角形.∴∠BAC=2∠ACD,又∠BAC=2∠B,∴∠B=∠ACD=∠D,∴ΔCBD为等腰三角形,即CD=CB=a, ·······················································6分又∠D=∠D,∴ΔACD∽ΔCBD,···············································7分∴AD CDCD BD=.即b aa b c=+.∴a2=b2+bc.∴a2–b2= bc············8分(3) a=12,b=8,c=10. ························································· 10分24.(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,∴∠OCA+∠OCB=90°,又∵∠OCB+∠OBC=90°,∴∠OCA=∠OBC,又∵∠AOC= ∠COB=90°,∴ΔAOC∽ ΔCOB,·································································································· 1分∴OA OCOC OB=.又∵A(–1,0),B(9,0),∴19OCOC=,解得OC=3(负值舍去).∴C(0,–3), ································································································································ 3分设抛物线解析式为y=a(x+1)(x–9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x–9),即y=13x2–83x–3.································· 4分(2) ∵AB为O′的直径,且A(–1,0),B(9,0),∴OO′=4,O′(4,0),······························································································ 5分∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,∴∠BCD=12∠BCE=12×90°=45°,连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5.图9-3。

青岛市中考数学试卷含答案解析(Word版)

青岛市中考数学试卷含答案解析(Word版)

山东省青岛市中考数学试卷一.选择题:本大题共8个小题,每小题3分,共24分.在每小题给出四个选项中,只有一项是符合题目要求.1.(3分)观察下列四个图形,中心对称图形是()A. B. C. D.2.(3分)斑叶兰被列为国家二级保护植物,它一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣63.(3分)如图,点A所表示数绝对值是()A.3B.﹣3C.D.4.(3分)计算(a2)3﹣5a3•a3结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a65.(3分)如图,点A.B.C.D在⊙O上,∠AOC=140°,点B是中点,则∠D度数是()A.70°B.55°C.35.5°D.35°6.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC长是()A. B. C.3 D.7.(3分)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A.B对应点分别是点A'.B',则点A'坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)8.(3分)已知一次函数y=x+c图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中图象可能是()A. B. C. D.二.填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)已知甲.乙两组数据折线图如图,设甲.乙两组数据方差分别为S甲2.S乙2,则S甲2S乙2(填“>”.“=”.“<”)10.(3分)计算:2﹣1×+2cos30°=.11.(3分)5月份,甲.乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y方程组为.12.(3分)如图,已知正方形ABCD边长为5,点E.F分别在AD.DC上,AE=DF=2,BE与AF相交于点G,点H为BF中点,连接GH,则GH长为.13.(3分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O 为圆心,以OA为半径圆与CB相切于点E,与AB相交于点F,连接OE.OF,则图中阴影部分面积是.14.(3分)一个由16个完全相同小立方块搭成几何体,其最下面一层摆放了9个小立方块,它主视图和左视图如图所示,那么这个几何体搭法共有种.三.作图题:本大题满分4分.15.(4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD底边,点P在∠ABC内部,且点P 到∠ABC两边距离相等.四.解答题(本大题共9小题,共74分.解答应写出文字说明.证明过程或演算步骤.)16.(8分)(1)解不等式组:(2)化简:(﹣2)•.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同卡片上分别标记4.5.6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出两张卡片标记数字之和为偶数,则按照小明想法参加敬老服务活动,若抽出两张卡片标记数字之和为奇数,则按照小亮想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书人数约为多少.19.(6分)某区域平面示意图如图,点O在河一侧,AC和BC表示两条互相垂直公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈20.(8分)已知反比例函数图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1﹣y2=4时,求m值;(2)如图,过点B.C分别作x轴.y轴垂线,两垂线相交于点D,点P在x轴上,若三角形PBD面积是8,请写出点P坐标(不需要写解答过程).21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G 为AD中点,连接CG,CG延长线交BA延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF形状,并证明你结论.22.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年利润W1(万元)与售价x(元/件)满足函数关系式;(2)该产品第一年利润为20万元,那么该产品第一年售价是多少?(3)第二年,该公司将第一年利润20万元(20万元只计入第二年成本)再次投入研发,使产品生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年利润W2至少为多少万元.23.(10分)问题提出:用若干相同一个单位长度细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数规律.问题探究:我们先从简单问题开始探究,从中找出解决问题方法.探究一用若干木棒来搭建横长是m,纵长是n矩形框架(m.n是正整数),需要木棒条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒条.问题(二):当矩形框架横长是m,纵长是n时,横放木棒为条,纵放木棒为条.探究二用若干木棒来搭建横长是m,纵长是n,高是s长方体框架(m.n.s是正整数),需要木棒条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为条,竖放木棒条数为条.实际应用:现在按探究二搭建方式搭建一个纵长是2.高是4长方体框架,总共使用了170条木棒,则这个长方体框架横长是.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5正三棱柱框架,需要木棒条.24.(12分)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们运动速度均为2cm/s.点P和点Q同时出发,以QA.QP为边作平行四边形AQPE,设运动时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t代数式表示AP;(2)设四边形CPQB面积为S(cm2),求S与t函数关系式;(3)当QP⊥BD时,求t值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD平分线上?若存在,求出t值;若不存在,请说明理由.参考答案与试题解析一.选择题:本大题共8个小题,每小题3分,共24分.在每小题给出四个选项中,只有一项是符合题目要求.1.(3分)观察下列四个图形,中心对称图形是()A. B. C. D.【分析】根据中心对称图形概念对各选项分析判断即可得解.【解答】解:A.不是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项错误;C.是中心对称图形,故本选项正确;D.不是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)斑叶兰被列为国家二级保护植物,它一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣6【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数科学记数法不同是其所使用是负指数幂,指数由原数左边起第一个不为零数字前面0个数所决定.【解答】解:将0.0000005用科学记数法表示为5×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零数字前面0个数所决定.3.(3分)如图,点A所表示数绝对值是()A.3B.﹣3C.D.【分析】根据负数绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.【点评】此题考查绝对值问题,关键是根据负数绝对值是其相反数解答.4.(3分)计算(a2)3﹣5a3•a3结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a6【分析】直接利用幂乘方运算法则化简,再利用单项式乘以单项式.合并同类项法则计算得出答案.【解答】解:(a2)3﹣5a3•a3=a6﹣5a6=﹣4a6.故选:C.【点评】此题主要考查了幂乘方运算.单项式乘以单项式,正确掌握运算法则是解题关键.5.(3分)如图,点A.B.C.D在⊙O上,∠AOC=140°,点B是中点,则∠D度数是()A.70°B.55°C.35.5°D.35°【分析】根据圆心角.弧.弦关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.【点评】本题考查是圆心角.弧.弦关系定理.圆周角定理,掌握在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对圆心角一半是解题关键.6.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC长是()A. B. C.3 D.【分析】由折叠性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形性质可知EF=AB,所以AB=AC长可求,再利用勾股定理即可求出BC长.【解答】解:∵沿过点E直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.【点评】本题考查了折叠性质.等腰直角三角形判断和性质以及勾股定理运用,求出∠AFB=90°是解题关键.7.(3分)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A.B对应点分别是点A'.B',则点A'坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【分析】画图可得结论.【解答】解:画图如下:则A'(5,﹣1),故选:D.【点评】本题考查了旋转性质,熟练掌握顺时针或逆时针旋转某个点或某直线位置关系.8.(3分)已知一次函数y=x+c图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中图象可能是()A. B. C. D.【分析】根据反比例函数图象一次函数图象经过象限,即可得出<0.c>0,由此即可得出:二次函数y=ax2+bx+c图象对称轴x=﹣>0,与y轴交点在y轴负正半轴,再对照四个选项中图象即可得出结论.【解答】解:观察函数图象可知:<0.c>0,∴二次函数y=ax2+bx+c图象对称轴x=﹣>0,与y轴交点在y轴负正半轴.故选:A.【点评】本题考查了一次函数图象以及二次函数图象,根据一次函数图象经过象限,找出<0.c>0是解题关键.二.填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)已知甲.乙两组数据折线图如图,设甲.乙两组数据方差分别为S甲2.S乙2,则S甲2<S乙2(填“>”.“=”.“<”)【分析】结合图形,根据数据波动较大方差较大即可求解.【解答】解:从图看出:乙组数据波动较小,故乙方差较小,即S甲2<S乙2.故答案为:<.【点评】本题考查了方差意义.方差是用来衡量一组数据波动大小量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.(3分)计算:2﹣1×+2cos30°=2.【分析】根据特殊角三角函数值和有理数乘法和加法可以解答本题.【解答】解:2﹣1×+2cos30°===2,故答案为:2.【点评】本题考查实数运算.负整数指数幂.特殊角三角函数值,解答本题关键是明确它们各自计算方法.11.(3分)5月份,甲.乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y方程组为.【分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份用水量及6月份用水量,即可得出关于x.y二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:.故答案为:.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题关键.12.(3分)如图,已知正方形ABCD边长为5,点E.F分别在AD.DC上,AE=DF=2,BE与AF相交于点G,点H为BF中点,连接GH,则GH长为.【分析】根据正方形四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF中点,∴GH=BF,∵BC=5.CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.【点评】本题考查了正方形性质,全等三角形判定与性质,直角三角形两锐角互余等知识,掌握三角形全等判定方法与正方形性质是解题关键.13.(3分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O 为圆心,以OA为半径圆与CB相切于点E,与AB相交于点F,连接OE.OF,则图中阴影部分面积是﹣π.【分析】根据扇形面积公式以及三角形面积公式即可求出答案.【解答】解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF面积为:=∵OA为半径圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC面积为:×3×3=∵△OAF面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π【点评】本题考查扇形面积公式,涉及含30度角直角三角形性质,勾股定理,切线性质,扇形面积公式等知识,综合程度较高.14.(3分)一个由16个完全相同小立方块搭成几何体,其最下面一层摆放了9个小立方块,它主视图和左视图如图所示,那么这个几何体搭法共有4种.【分析】先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.【解答】解:这个几何体搭法共有4种:如下图所示:故答案为:4.【点评】本题考查几何体三视图.由几何体主视图.左视图及小立方块个数,可知俯视图列数和行数中最大数字.三.作图题:本大题满分4分.15.(4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD底边,点P在∠ABC内部,且点P 到∠ABC两边距离相等.【分析】根据角平分线性质.线段垂直平分线性质即可解决问题.【解答】解:∵点P在∠ABC平分线上,∴点P到∠ABC两边距离相等(角平分线上点到角两边距离相等),∵点P在线段BD垂直平分线上,∴PB=PD(线段垂直平分线上点到线段两个端点距离相等),如图所示:【点评】本题考查作图﹣复杂作图.角平分线性质.线段垂直平分线性质等知识,解题关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.四.解答题(本大题共9小题,共74分.解答应写出文字说明.证明过程或演算步骤.)16.(8分)(1)解不等式组:(2)化简:(﹣2)•.【分析】(1)先求出各不等式解集,再求出其公共解集即可.(2)根据分式混合运算顺序和运算法则计算可得.【解答】解:(1)解不等式<1,得:x<5,解不等式2x+16>14,得:x>﹣1,则不等式组解集为﹣1<x<5;(2)原式=(﹣)•=•=.【点评】本题主要考查分式混合运算和解一元一次不等式组,解题关键是掌握解一元一次不等式组步骤和分式混合运算顺序和运算法则.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同卡片上分别标记4.5.6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出两张卡片标记数字之和为偶数,则按照小明想法参加敬老服务活动,若抽出两张卡片标记数字之和为奇数,则按照小亮想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【分析】首先根据题意列表,然后根据表求得所有等可能结果与和为奇数.偶数情况,再利用概率公式求解即可.【解答】解:不公平,列表如下:456489105910116101112由表可知,共有9种等可能结果,其中和为偶数有5种结果,和为奇数有4种结果,所以按照小明想法参加敬老服务活动概率为,按照小亮想法参加文明礼仪宣传活动概率为,由≠知这个游戏不公平;【点评】此题考查了列表法求概率.注意树状图与列表法可以不重不漏表示出所有等可能情况.用到知识点为:概率=所求情况数与总情况数之比.18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书人数约为多少.【分析】(1)由读书1本人数及其所占百分比可得总人数;(2)总人数乘以读4本百分比求得其人数,减去男生人数即可得出女生人数,用读2本人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【解答】解:(1)参与问卷调查学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书人数约为1500×38%=570人.【点评】本题考查是条形统计图和扇形统计图综合运用,读懂统计图,从不同统计图中得到必要信息是解决问题关键.条形统计图能清楚地表示出每个项目数据;扇形统计图直接反映部分占总体百分比大小.19.(6分)某区域平面示意图如图,点O在河一侧,AC和BC表示两条互相垂直公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈【分析】作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形性质用x表示出OM.MC,根据正切定义用x表示出BM,根据题意列式计算即可.【解答】解:作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,解得,x=480,答:点O到BC距离为480m.【点评】本题考查是解直角三角形应用,掌握锐角三角函数定义.正确标注方向角是解题关键.20.(8分)已知反比例函数图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1﹣y2=4时,求m值;(2)如图,过点B.C分别作x轴.y轴垂线,两垂线相交于点D,点P在x轴上,若三角形PBD面积是8,请写出点P坐标(不需要写解答过程).【分析】(1)先根据反比例函数图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数解析式为y=,再由反比例函数图象上点坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m值;(2)设BD与x轴交于点E.根据三角形PBD面积是8列出方程••PE=8,求出PE=4m,再由E(2m,0),点P在x轴上,即可求出点P坐标.【解答】解:(1)设反比例函数解析式为y=,∵反比例函数图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数解析式为y=,∵反比例函数图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1;(2)设BD与x轴交于点E.∵点B(2m,),C(6m,),过点B.C分别作x轴.y轴垂线,两垂线相交于点D,∴D(2m,),BD=﹣=.∵三角形PBD面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,0),点P在x轴上,∴点P坐标为(﹣2m,0)或(6m,0).【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点坐标特征以及三角形面积,正确求出双曲线解析式是解题关键.21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G 为AD中点,连接CG,CG延长线交BA延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF形状,并证明你结论.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点评】本题考查平行四边形判定和性质.矩形判定.全等三角形判定和性质等知识,解题关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年利润W1(万元)与售价x(元/件)满足函数关系式;(2)该产品第一年利润为20万元,那么该产品第一年售价是多少?(3)第二年,该公司将第一年利润20万元(20万元只计入第二年成本)再次投入研发,使产品生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年利润W2至少为多少万元.【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量取值范围,再根据二次函数,利用而学会设性质即可解决问题;【解答】解:(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年利润W2至少为18万元.【点评】本题考查二次函数应用.一元二次方程应用等知识,解题关键是理解题意,学会构建方程或函数解决问题,属于中考常考题型.23.(10分)问题提出:用若干相同一个单位长度细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数规律.问题探究:我们先从简单问题开始探究,从中找出解决问题方法.探究一用若干木棒来搭建横长是m,纵长是n矩形框架(m.n是正整数),需要木棒条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒22条.问题(二):当矩形框架横长是m,纵长是n时,横放木棒为m(n+1)条,纵放木棒为n(m+1)条.探究二用若干木棒来搭建横长是m,纵长是n,高是s长方体框架(m.n.s是正整数),需要木棒条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:现在按探究二搭建方式搭建一个纵长是2.高是4长方体框架,总共使用了170条木棒,则这个长方体框架横长是4.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5正三棱柱框架,需要木棒1320条.【分析】从特殊到一般探究规律后利用规律即可解决问题;【解答】解:问题(一):当m=4,n=2时,横放木棒为4×(2+1)条,纵放木棒为(4+1)×2条,共需22条;问题(二):当矩形框架横长是m,纵长是n时,横放木棒为m(n+1)条,纵放木棒为n(m+1)条;问题(三):当长方体框架横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m (n +1)+n (m +1)](s +1)条,竖放木棒条数为(m +1)(n +1)s 条.实际应用:这个长方体框架横长是 s ,则:[3m +2(m +1)]×5+(m +1)×3×4=170,解得m=4,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5正三棱柱框架,横放与纵放木棒条数之和为165×6=990条,竖放木棒条数为60×5=330条需要木棒1320条.故答案为22,m (n +1),n (m +1),[m (n +1)+n (m +1)](s +1),(m +1)(n +1)s ,4,1320;【点评】本题考查规律型﹣图形变化类问题,解题关键是理解题意,学会用分类讨论思想解决问题,属于中考填空题中压轴题.24.(12分)已知:如图,四边形ABCD ,AB ∥DC ,CB ⊥AB ,AB=16cm ,BC=6cm ,CD=8cm ,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们运动速度均为2cm/s.点P 和点Q 同时出发,以QA.QP 为边作平行四边形AQPE ,设运动时间为t (s ),0<t <5.根据题意解答下列问题:(1)用含t 代数式表示AP ;(2)设四边形CPQB 面积为S (cm 2),求S 与t 函数关系式;(3)当QP ⊥BD 时,求t 值;(4)在运动过程中,是否存在某一时刻t ,使点E 在∠ABD 平分线上?若存在,求出t 值;若不存在,请说明理由.【分析】(1)如图作DH ⊥AB 于H 则四边形DHBC 是矩形,利用勾股定理求出AD 长即可解决问题;(2)作PN ⊥AB 于N.连接PB ,根据S=S △PQB +S △BCP ,计算即可;。

山东青岛中考数学试题解析版.doc

山东青岛中考数学试题解析版.doc

山东省青岛市2011年中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分)1、(2011•青岛)﹣的倒数是()A、﹣B、C、﹣2D、22、(2011•青岛)如图,空心圆柱的主视图是()A、B、C、D、3、(2011•青岛)已知⊙O1与⊙O2的直径分别是4cm和6cm,O1O2=5cm,则两圆的位置关系是()A、外离B、外切C、相交D、内切4、(2006•娄底)下列汽车标志中既是轴对称又是中心对称图形的是()A、B、C、D、5、(2011•青岛)某种鲸的体重约为1.36×105kg.关于这个近似数,下列说法正确的是()A、精确到百分位,有3个有效数字B、精确到个位,有6个有效数字C、精确到千位,有6个有效数字D、精确到千位,有3个有效数字6、(2011•青岛)如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是()A、(﹣4,3)B、(4,3)C、(﹣2,6)D、(﹣2,3)7、(2011•青岛)如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()A、cmB、4cmC、cmD、cm8、(2011•青岛)已知一次函数y1=kx+b与反比例函数y2=在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A、x<﹣1或0<x<3B、﹣1<x<0或x>3C、﹣1<x<0D、x>3二、填空题(本大题共6小题,每小题3分,满分18分)9、(2011•青岛)已知甲、乙两支仪仗队各有10名队员,这两支仪仗队队员身高的平均数都是178cm,方差分别为0.6和1.2,则这两支仪仗队身高更整齐的是_________仪仗队.10、(2011•青岛)如图,已知AB是⊙O的弦,半径OA=6cm,∠AOB=120°,则AB=_________cm.11、(2011•青岛)某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x个零件,则根据题意可列方程为_________.12、(2011•青岛)生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为_________只.13、(2011•青岛)如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=_________.14、(2011•青岛)如图,以边长为1的正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以BE为对角线作第三个正方形EFBO2,如此作下去,…,则所作的第n个正方形的面积S n=_________.三、作图题(本题满分12分)15、(2011•青岛)如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.四、解答题(本大题共9小题,满分74分)16、(2011•青岛)(1)解方程组:;(2)化简:÷.17、(2011•青岛)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题:(1)将图2补充完整;(2)这8天的日最高气温的中位数是_________°C;(3)计算这8天的日最高气温的平均数.18、(2011•青岛)小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差(大数减小数)大于或等于2,小明得1分,否则小亮得1分.你认为游戏是否公平?若公平,请说明理由;若不公平,请你修改规则,使游戏对双方公平.19、(2011•青岛)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40°减至35°.已知原楼梯AB 长为5m,调整后的楼梯所占地面CD有多长?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,sin35°≈0.57,tan35°≈0.70)20、(2011•青岛)某企业为了改善污水处理条件,决定购买A、B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.(1)企业有哪几种购买方案?(2)哪种购买方案更省钱?A型B型价格(万元/台)8 6月处理污水量(吨/月)200 18021、(2011•青岛)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.22、(2011•青岛)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?23、(2011•青岛)问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M﹣N,若M﹣N>0,则M>N;若M﹣N=0,则M=N;若M﹣N<0,则M<N.问题解决如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.解:由图可知:M=a2+b2,N=2ab.∴M﹣N=a2+b2﹣2ab=(a﹣b)2.∵a≠b,∴(a﹣b)2>0.∴M﹣N>0.∴M>N.类别应用(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克和元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c).联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.24、(2011•青岛)如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为ts(0<t<5).(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.答案与评分标准一、选择题(本大题共8小题,每小题3分,满分24分)1、(2011•青岛)﹣的倒数是()A、﹣B、C、﹣2D、2考点:倒数。

青岛市中考数学试题及答案(word解析版)

青岛市中考数学试题及答案(word解析版)

山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()D.A.﹣7 B.7C.﹣考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106B.6.09×104C.609×104D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人B.2万人C.1.5万人D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.B.﹣=2﹣=2D.﹣=2C.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC 的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.点评:本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.23.(10分)(•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:+++…+=1﹣,所以,+++…+=﹣.拓广应用:计算+++…+.考点:作图—应用与设计作图;规律型:图形的变化类.专题:规律型.分析:探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m﹣1)即可得解;拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.解答:解:探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续四等分,…,第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:+++…+,最后的空白部分的面积是,根据第n次分割图可得等式:+++…+=1﹣,两边同除以3,得+++…+=﹣;解决问题:+++…+=1﹣,+++…+=﹣;故答案为:+++…+=1﹣,﹣;拓广应用:+++…+,=1﹣+1﹣+1﹣+…+1﹣,=n﹣(+++…+),=n﹣(﹣),=n﹣+.点评:本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.24.(12分)(•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D 出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.考点:四边形综合题.分析:(1))由四边形ABCD是菱形,OA=AC,OB=BD.在Rt△AOB中,运用勾股定理求出AB=10.再由△DFQ∽△DCO.得出=.求出DF.由AP=DF.求出t.(2)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG=AC•BD,求出CG.据S梯=(AP+DF)•CG.S△EFD=EF•QD.得出y与t之间的函数关系式;形APFD(3)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG,求出CG,由S四边形APFE:S=17:40,求出t,再由△PBN∽△ABO,求得PN,BN,据线段关系求出EM,菱形ABCDPM再由勾股定理求出PE.解答:解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC=AC=6,OB=OD=BD=8.在Rt△AOB中,AB==10.∵EF⊥BD,∴∠FQD=∠COD=90°.又∵∠FDQ=∠CDO,∴△DFQ∽△DCO.∴=.即=,∴DF=t.∵四边形APFD是平行四边形,∴AP=DF.即10﹣t=t,解这个方程,得t=.∴当t=s时,四边形APFD是平行四边形.(2)如图,过点C作CG⊥AB于点G,∵S菱形ABCD=AB•CG=AC•BD,即10•CG=×12×16,∴CG=.∴S梯形APFD=(AP+DF)•CG=(10﹣t+t)•=t+48.∵△DFQ∽△DCO,∴=.即=,∴QF=t.同理,EQ=t.∴EF=QF+EQ=t.∴S△EFD=EF•QD=×t×t=t2.∴y=(t+48)﹣t2=﹣t2+t+48.(3)如图,过点P作PM⊥EF于点M,PN⊥BD于点N,若S四边形APFE:S菱形ABCD=17:40,则﹣t2+t+48=×96,即5t2﹣8t﹣48=0,解这个方程,得t1=4,t2=﹣(舍去)过点P作PM⊥EF于点M,PN⊥BD于点N,当t=4时,∵△PBN∽△ABO,∴==,即==.∴PN=,BN=.∴EM=EQ﹣MQ==.PM=BD﹣BN﹣DQ==.在Rt△PME中,PE===(cm).点评:本题主要考查了四边形的综合知识,解题的关键是根据三角形相似比求出相关线段.。

2011年初中毕业升学考试(中考)数学试卷和答案

2011年初中毕业升学考试(中考)数学试卷和答案

1 / 17准考证号:**市2011年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。

考试时间120分钟,满分150分。

考试结束后,第Ⅱ卷和答题卡按规定装袋上交。

第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。

3.考试结束后,本试卷由考场统一收回,集中管理。

一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222b a ab a --3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠2 / 176.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+C.23+D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC3 / 17绝密★启用前【考试时间:2011年6月】**市2011年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。

2011年山东省青岛中考数学试题及答案

2011年山东省青岛中考数学试题及答案

2011年山东省青岛市中考数学试题一、选择题(本大题共8小题,每小题3分,满分24分)1.- 12的倒数是【 】A .- 1 2B . 12C .-2D .22.如图,空心圆柱的主视图是【 】3.已知⊙O 1与⊙O 2的直径分别是4cm 和6cm ,O 1O 2=5cm ,则两圆的位置关系是【 】 A .外离 B .外切 C .相交 D .内切 4.下列汽车标志中,既是轴对称图形又是中心对称图形的是【 】5.某种鲸的体重约为1.36×105kg .关于这个近似数,下列说法正确的是【 】 A .精确到百分位,有3个有效数字 B .精确到个位,有6个有效数字 C .精确到千位,有6个有效数字 D .精确到千位,有3个有效数字6.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的 12,则点A的对应点的坐标是【 】A .(-4,3)B .(4,3)C .(-2,6)D .(-2,3)7.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为【 】 A .17cm B .4cm C .15cm D .3cm8.已知一次函数y 1=kx +b 与反比例函数y 2= kx在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x的取值范围是【 】A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3图1A .B .C .D .11 二、填空题(本大题共6小题,每小题3分,满分18分)9.已知甲、乙两支仪仗队各有10名队员,这两支仪仗队队员身高的平均数都是178cm ,方差分别为0.6和1.2,则这两支仪仗队身高更整齐的是 仪仗队. 10.如图,已知AB 是⊙O 的弦,半径OA =6cm ,∠AOB =120º, 则AB = cm .11.某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为 .12.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 只. 13.如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1.若BC =△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1= .14.如图,以边长为1的正方形ABCD 的边AB 为对角线作第二个正方形AEBO 1,再以BE 为对角线作第三个正方形EFBO 2,如此作下去,…,则所作的第n 个正方形的面积S n = .三、作图题(本题满分12分)15.如图,已知线段a 和h .求作:△ABC ,使得AB =AC ,BC =a ,且BC 边上的高AD =h . 要求:尺规作图,不写作法,保留作图痕迹.四、解答题(本大题共9小题,满分74分)16.(每小题4分,满分8分)(1)解方程组:⎩⎨⎧4x +3y =5,x -2y =4.(2)化简: b +1 a 2-4 ÷ b 2+ba +2 .17.(6分)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题: (1)将图2补充完整;(2)这8天的日最高气温的中位数是 ºC ; (3)计算这8天的日最高气温的平均数. ah温度/ºC图1图2A BOABCD EF O 1O 2A EB C F D 18.(6分)小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差(大数减小数)大于或等于2,小明得1分,否则小亮得1分.你认为游戏是否公平?若公平,请说明理由;若不公平,请你修改规则,使游戏对双方公平.19.(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40º减至35º.已知原楼梯AB 长为5m ,调整后的楼梯所占地面CD 有多长? (结果精确到0.1m .参考数据:sin40º≈0.64,cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)20.(8分)某企业为了改善污水处理条件,决定购买A 、B 两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.(1)企业有哪几种购买方案? (2)哪种购买方案更省钱?21.(8分)在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .(1)求证:△BEC ≌△DF A ;(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论.22.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件. (1)写出销售量y 件与销售单价x 元之间的函数关系式;(2)写出销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?a b 图1 23.(10分)问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M 、N 的大小,只要作出它们的差M -N ,若M -N >0,则M >N ;若M -N =0,则M =N ;若M -N <0,则M <N .问题解决如图1,把边长为a +b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,试比较两个小正方形面积之和M 与两个矩形面积之和N 的大小.解:由图可知:M =a 2+b 2,N =2ab .∴M -N =a 2+b 2-2ab =(a -b )2.∵a ≠b ,∴(a -b )2>0. ∴M -N >0. ∴M >N . 类别应用(1)已知小丽和小颖购买同一种商品的平均价格分别为a +b 2 元/千克和 2aba +b元/千克(a 、b 是正数,且a ≠b ),试比较小丽和小颖所购买商品的平均价格的高低.(2)试比较图2和图3中两个矩形周长M 1、N 1的大小(b >c ).联系拓广小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b >a>c >0),售货员分别可按图5、图6、图7三种方法进行捆绑,吻哪种方法用绳最短?哪种方法用绳最长?请说明理由.图3a +bb +3cb +ca -c图2图4图5 图6 图7bc24.(12分)如图,在△ABC 中,AB =AC =10cm ,BD ⊥AC 于点D ,且BD =8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2cm/s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm/s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t s (0<t <5).(1)当t 为何值时,四边形PQCM 是平行四边形?(2)设四边形PQCM 的面积为y cm 2,求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形PQCM =916S △ABC?若存在,求出 t 的值;若不存在,说明理由;(4)连接PC ,是否存在某一时刻t ,使点M 在线段PC 的垂直平 分线上?若存在,求出此时t 的值;若不存在,说明理由.2011年青岛中考数学答案二、填空题 9. 甲10. 11.12012011.5x x-= 12. 1000 13.14.112n - 三、作图题 15. 正确作图; 正确写出结论。

2011年中考数学考试试题答案

2011年中考数学考试试题答案

1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★★★★★
2011年山东省青岛市中考数学试题
一、选择题(本大题共8小题,每小题3分,满分24分)
1.- 1 2
的倒数是【 】 A .-
1 2 B . 1 2 C .-2 D .2 2.如图,空心圆柱的主视图是【 】
3.已知⊙O 1与⊙O 2的直径分别是4cm 和6cm ,O 1O 2=5cm ,则两圆的位置关系是【 】
A .外离
B .外切
C .相交
D .内切
4.下列汽车标志中,既是轴对称图形又是中心对称图形的是【 】
5.某种鲸的体重约为1.36×105
kg .关于这个近似数,下列说法正确的是【 】
A .精确到百分位,有3个有效数字
B .精确到个位,有6个有效数字
C .精确到千位,有6个有效数字
D .精确到千位,有3个有效数字
6.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的 1 2
,则点A 的对应点的坐标是【 】 A .(-4,3) B .(4,3) C .(-2,6) D .(-2,3)
7.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所
图1 A . B . C . D .
11 示的一个圆锥,则圆锥的高为【 】
A .17cm
B .4cm
C .15cm
D .3cm
8.已知一次函数y 1=kx +b 与反比例函数y 2= k x
在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是【 】
A .x <-1或0<x <3
B .-1<x <0或x >3
C .-1<x <0
D .x >3
二、填空题(本大题共6小题,每小题3分,满分18分)
9.已知甲、乙两支仪仗队各有10名队员,这两支仪仗队队员身高的平均
数都是178cm ,方差分别为0.6和1.2,则这两支仪仗队身高更整齐的
是 仪仗队.
10.如图,已知AB 是⊙O 的弦,半径OA =6cm ,∠AOB =120º,
则AB = cm .
11.某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零
件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为 .
12.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给
它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 只.13.如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1.若BC =32,
△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1= .
14.如图,以边长为1的正方形ABCD 的边AB 为对角线作第二
个正方形AEBO 1,再以BE 为对角线作第三个正方形EFBO 2,
如此作下去,…,则所作的第n 个正方形的面积S n
= .
三、作图题(本题满分12分)
15.如图,已知线段a 和h .
求作:△ABC ,使得AB =AC ,BC =a ,且BC 边上的高AD =h .
要求:尺规作图,不写作法,保留作图痕迹. A B O B C D F O 1 O 2
四、解答题(本大题共9小题,满分74分)
16.(每小题4分,满分8分)
(1)解方程组:⎩⎨⎧4x +
3y =5,x -2y =4. (2)化简: b +1 a 2-4 ÷ b 2+b a +2 .
17
.(6分)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据
图1将数据统计整理后制成了图2.
根据图中信息,解答下列问题:
(1)将图2补充完整;
(2)这8天的日最高气温的中位数是 ºC ;
(3)计算这8天的日最高气温的平均数.
18.(6分)小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之差(大数减
小数)大于或等于2,小明得1分,否则小亮得1分.你认为游戏是否公平?若公平,请说明理由;若不公平,请你修改规则,使游戏对双方公平.
a
h
温度/ºC 图1
图2
A E
B C F D
19.(6分)某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40º减至35º.已知原
楼梯AB 长为5m ,调整后的楼梯所占地面CD 有多长?
(结果精确到0.1m .参考数据:sin40º≈0.64,
cos40º≈0.77,sin35º≈0.57,tan35º≈0.70)
20.(8分)某企业为了改善污水处理条件,决定购买A 、B 两种型号的污水处理设备共8台,
其中每台的价格、月处理污水量如下表:
经预算,企业最多支出57万元购买污水处理设备,
且要求设备月处理污水量不低于1490吨.
(1)企业有哪几种购买方案?
(2)哪种购买方案更省钱?
21.(8分)在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .
(1)求证:△BEC ≌△DFA ;
(2)连接AC ,当CA =CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论.
a
b 图1
22.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时
间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.
(1)写出销售量y 件与销售单价x 元之间的函数关系式;
(2)写出销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式;
(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?
23.(10分)
问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M 、N 的大小,只要作出它们的差M -N ,若M -N >0,则M >N ;若M -N =0,则M =N ;若M -N <0,则M <N .
问题解决
如图1,把边长为a +b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,试比较两个小正方形面积之和M 与两个矩形面积之和N 的大小.
解:由图可知:M =a 2+b 2,N =2ab .
∴M -N =a 2+b 2-2ab =(a -b )2.
∵a ≠b ,∴(a -b )2>0.
∴M -N >0.
∴M >N .
类别应用
(1)已知小丽和小颖购买同一种商品的平均价格分别为 a +b 2 元/千克和 2ab a +b
元/千克(a 、b 是正数,且a ≠b ),试比较小丽和小颖所购买商品的平均价格的高低.
(2)试比较图2和图3中两个矩形周长M 1、N 1的大小(b >c ).
联系拓广 小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b >a >c >0),售货员分别可按图5、图6、图7三种方法进行捆绑,吻哪种方法用绳最短?哪种方法用绳最长?请说明理由.
图3 a +b
b +3
c b +c
a -c
图2
24.(12分)如图,在△ABC 中,AB =AC =10cm ,BD ⊥AC 于点D ,且BD =8cm .点M 从点A 出
发,沿AC 的方向匀速运动,速度为2cm/s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm/s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t s(0<t <5).
(1)当t 为何值时,四边形PQCM 是平行四边形?
(2)设四边形PQCM 的面积为y cm 2,求y 与t 之间的函数关系式;
(3)是否存在某一时刻t ,使S 四边形PQCM = 9 16S △ABC ?若存在,求出 t 的值;若不存在,说明理由; (4)连接PC ,是否存在某一时刻t ,使点M 在线段PC 的垂直平
分线上?若存在,求出此时t 的值;若不存在,说明理由.
图4
图5 图6 图7 a
b
c。

相关文档
最新文档