生物化学章习题答案

生物化学章习题答案
生物化学章习题答案

答案

第二章蛋白质化学

A型题

一、名词解释

1.氨基酸的等电点:当溶液在某一特定的pH值时,氨基酸以两性离子的形式存在,正电荷数与负电荷数相等,净电荷为零,在直流电场中既不向正极移动也不向负极移动,这时溶液的pH值称为该氨基酸的等电点,用pI表示。

2.肽键:是指C

O

N

H键,是一个氨基酸的α–COOH基和另一个氨基酸的α–

NH2基所形成的酰胺键。

3.多肽链:由许多氨基酸残基通过肽键彼此连接而成的链状多肽,称为多肽链。

4.肽平面:肽链主链的肽键具有双键的性质,因而不能自由旋转,使连接在肽键上的六个原子共处于一个平面上,此平面称为肽平面。

5.蛋白质的一级结构:多肽链上各种氨基酸残基的排列顺序,即氨基酸序列。

6.肽单位:多肽链上的重复结构,如Cα–CO–NH–Cα称为肽单位,每一个肽单位实际上就是一个肽平面。

7.多肽:含有三个以上的氨基酸的肽统称为多肽。

8.氨基酸残基:多肽链上的每个氨基酸,由于形成肽键而失去了一分子水,成为不完整的分子形式,这种不完整的氨基酸被称为氨基酸残基。

9.蛋白质二级结构:多肽链主链骨架中,某些肽段可以借助氢键形成有规律的构象,如α–螺旋、β–折叠和β–转角;另一些肽段则形成不规则的构象,如无规卷曲。这些多肽链主链骨架中局部的构象,就是二级结构。

10.超二级结构:在球状蛋白质分子的一级结构顺序上,相邻的二级结构常常在三维折叠中相互靠近,彼此作用,从而形成有规则的二级结构的聚合体,就是超二级结构。

11.结构域:在较大的蛋白质分子里,多肽链的三维折叠常常形成两个或多个松散连接的近似球状的三维实体,即是结构域。它是球蛋白分子三级结构的折叠单位。

12.蛋白质三级结构:指一条多肽链在二级结构(超二级结构及结构域)的基础上,进一步的盘绕、折叠,从而产生特定的空间结构。或者说三级结构是指多肽链中所有原子的空间排布。维系三级结构的力有疏水作用力、氢键、范德华力、盐键(静电引力)。另外二硫键在某些蛋白质中也起着非常重要的作用。

13.蛋白质四级结构:由相同或不同的亚基(或分子)按照一定的排布方式聚合而成的聚合体结构。它包括亚基(或分子)的种类、数目、空间排布以及相互作用。

14.二硫键:指两个硫原子之间的共价键,在蛋白质分子中二硫键对稳定蛋白质分子构象起重要作用。

15.二面角:在多肽链中,Cα碳原子刚好位于互相连接的两个肽平面的交线上。Cα碳原子上的Cα–N和Cα–C都是单键,可以绕键轴旋转,其中以Cα–N旋转的角度称为Φ,而以Cα–C旋转的角度称为Ψ,这就是α–碳原子上的一对二面角。它决定了由α

–碳原子连接的两个肽单位的相对位置。

16.α–螺旋:是蛋白质多肽链主链二级结构的主要类型之一。肽链主链骨架围绕中心轴盘绕成螺旋状,称为α–螺旋。

17.β–折叠或β–折叠片:二条β–折叠股平行排布,彼此以氢键相连,可以构成β–折叠片。β–折叠片又称为β–折叠。

18.β–转角:又称为β–回折。多肽链中的一段主链骨架以180°返回折叠;由四个连续的氨基酸残基组成;第一个肽单位上的C=O基氧原子和第三个肽单位的N–H基氢原子生成一个氢键。

19.无规卷曲:主链骨架片段中,大多数的二面角(Φ,Ψ)都不相同,其构象不规则。它存在于各种球蛋白之中,含量较多。

20.亚基:较大的球蛋白分子,往往由二条或更多条的多肽链组成功能单位。这些多肽链本身都具有球状的三级结构,彼此以非共价键相连。这些多肽链就是球蛋白分子的亚基。它是由一条肽链组成,也可以通过二硫键把几条肽链连接在一起组成。

21.寡聚蛋白:由两个或两个以上的亚基或单体组成的蛋白质统称为寡聚蛋白。

22.蛋白质的高级结构:指一条或数条多肽上的所有原子在三维空间中的排布,又称构象、三维结构、空间结构、立体结构。

23.蛋白质激活:指蛋白质前体在机体需要时经某些蛋白酶的限制性水解,切去部分肽段后变成有活性的蛋白质的过程。

24.分子病:由于基因突变导致蛋白质一级结构突变,使蛋白质生物功能下降或丧失,而产生的疾病被称为分子病。

25.变构效应:也称别构效应,在寡聚蛋白分子中一个亚基由于与配体的结合而发生的构象变化,引起相邻其它亚基的构象和与配体结合的能力亦发生改变的现象。

26.蛋白质变性:天然蛋白质,在变性因素作用下,其一级结构保持不变,但其高级结构发生了异常的变化,即由天然态(折叠态)变成了变性态(伸展态),从而引起了生物功能的丧失,以及物理、化学性质的改变。这种现象被称为蛋白质的变性。

27.蛋白质复性:除去变性剂后,在适宜的条件下,变性蛋白质从伸展态恢复到折叠态,并恢复全部生物活性的现象叫蛋白质的复性。

28.蛋白质的等电点:当溶液在某个pH时,使蛋白质分子所带的正电荷和负电荷数正好相等,即净电数为零,在直流电场中既不向正极移动也不向负极移动,此时的溶液的pH 就是该蛋白质的等电点,用pI表示。

29.电泳:在直流电场中,带正电荷的蛋白质分子向阴极移动,带负电荷的蛋白质分子向阳极移动的现象叫电泳。

30.盐溶:在蛋白质水溶液中,加入少量的中性盐,如硫酸铵等,会增加蛋白质分子表面的电荷,增强蛋白质分子与水分子的作用,从而使蛋白质在水溶液中的溶解度增大,这种现象称为盐溶。

31.盐析:在高浓度的盐溶液中,无机盐的离子从蛋白质分子的水膜中夺取水分子,将水膜除去,导致蛋白质分子的相互结合,从而发生沉淀,这种现象称为盐析。

32.简单蛋白质:又称单纯蛋白质,即水解后只产生各种氨基酸的蛋白质。

33.结合蛋白质:即由蛋白质和非蛋白质两部分结合而成的蛋白质,非蛋白质部分通常称为辅基。

二、填空题

1.纤维状蛋白

2.

C C O O N H H H α

2R 或 C C O O N H H αR _3+

3.两性、阴、阳

4.色氨酸、酪氨酸、苯丙氨酸

5.溶解度

6.带有数量相等的正负两种电荷的离子

7.等电点

8.甘氨酸

9.16%

10.氨基酸残基

11.氢键

12.中心轴、N –H 、C=O 、肽平面上的H 与O

13.氢键、范德华力、疏水作用力、离子键、配位键、二硫键

14.C α–C 、C α–N

15.α–螺旋、β–折叠、β–转角、无规卷曲

16.疏水作用力、离子键、氢键、范德华引力,疏水作用力

17.生物功能

18.蛋白质空间结构被破坏

19.协同、变构

20.守恒氨基酸残基

21.胰岛素原

22.α–、β–、Fe 2+、 Fe 2+

23.蛋白质变性

24.沉降速度法、凝胶过滤法(分子筛层析法)、SDS 聚丙烯酰胺凝胶电泳法

25.布朗运动、丁道尔现象、电泳行为、不能透过半透膜

26.高浓度盐、重金属离子、某些有机酸、生物碱、有机溶剂

27.蛋白质发生聚胶,形成了直径大于100nm 的大颗粒

28.大小、形状、净电荷量

29.球状蛋白质、纤维状蛋白质

30.简单蛋白质、结合蛋白质

31.辅基

三、简答题

1.答:α–螺旋结构特征:

(1)每一圈包含3.6个残基,螺距0.54nm ,残基高度0.15nm ,螺旋半径0.23nm 。

(2)每一个φ角等于-57°,每一个ψ角等于-47°。

(3)相邻螺圈之间形成链内氢键。即一个肽单位的c o 基氧原子与其前的第三个肽单位的N H 基氢原子生成一个氢键。氢键的取向与螺轴几乎平行。氢键封闭环本身包含13个原子。α–螺旋构象允许所有的肽键都能参与链内氢键的形成。因此,α–螺旋构象是相当稳定的,是最普遍的螺旋形式。α–螺旋依靠氢键维持。若破坏氢键,则α–螺旋构象遭到破坏,而变成伸展的多肽链。α–螺旋表示为3.613–螺旋。

2.答:二条β–折叠股平行排布,彼此以氢键相连,可以构成β–折叠片。β–折叠片又称为β–折叠。为了在相邻主链骨架之间形成最多的氢键,避免相邻侧链间的空间障碍,各主链骨架同时作一定程度的折叠,从而产生一个折叠的片层。其侧链近似垂直于相邻二个平面的交线,交替地位于片层的两侧。β–折叠片分为平行β–折叠片和反平行β–折叠片两种类型。

3.答:参与维持蛋白质空间结构的化学键有:

(1)范德华引力:参与维持蛋白质分子的三、四级结构。

(2)氢键:对维持蛋白质分子的二级结构起主要作用,对维持三、四级结构也起到一定的作用。

(3)疏水作用力:对维持蛋白质分子的三、四级结构起主要作用。

(4)离子键:参与维持蛋白质分子的三、四级结构。

(5)配位键:在一些蛋白质分子中参与维持三、四级结构。

(6)二硫键:对稳定蛋白质分子的构象起重要作用。

4.答:从胰岛细胞中合成的胰岛素原是胰岛素的前体。它是一条多肽链,包含84个左右的氨基酸残基(因种属而异)。对胰岛素原与胰岛素的化学结构加以对比,可以看出,胰岛素原与胰岛素的区别就在于:胰岛素原多一个C肽链。通过C肽链将胰岛素的A、B两条肽链首尾相连(B链–C链–A链),便是胰岛素原的一条多肽链了。因此,胰岛素原没有生理活性与C肽链有关。

如果用胰蛋白酶和羧肽酶从胰岛素原的多肽链上切除C肽链,就可以变成有生理活性的胰岛素了。

5.答:血红蛋白分子是寡聚蛋白,在结合氧的过程中,存在着亚基之间的相互作用,即变构效应,因此,其氧结合曲线是S形的。

此S形曲线具有重要的生理意义。在肺部,它有利于脱氧血红蛋白结合更多的氧;在肌肉中,它有利于氧合血红蛋白分子释放更多的氧,以满足肌肉中生物氧化的需要。

6.答:蛋白质分子在直流电场中的迁移率与蛋白质分子本身的大小、形状和净电荷量有关。净电荷量愈大,则迁移率愈大;分子愈大,则迁移率愈小;净电荷愈大,则迁移率愈大;球状分子的迁移率大于纤维状分子的迁移率。在一定的电泳条件下,不同的蛋白质分子,由于其净电荷量、大小、形状的不同,一般有不同的迁移率,因此可以采用电泳法将蛋白质分离开来。

7.答:蛋白质大小在胶体溶液的颗粒大小范围之内。绝大多数亲水基团在球蛋白分子的表面上,在水溶液中,能与极性水分子结合,从而使许多水分子在球蛋白分子的周围形成一层水化层(水膜)。由于水膜的分隔作用,使许多球蛋白分子不能互相结合,而以分子的形式,均匀地分布在水溶液中,从而形成亲水胶体溶液,比较稳定。此外,蛋白质分子带有相同的电荷,由于同性电荷相互排斥,使大分子不能结合成较大的颗粒。上述两个稳定因素使蛋白质分子能够在水溶液中稳定存在。

8.答:蛋白质之所以能够产生紫外吸收光谱,原因是:

(1)多肽链中所有的肽键在紫外光区(<220nm波长)有很强的光吸收;

(2)Trp、Tyr和Phe残基,由于其侧链基团含有共轭双键系统,在近紫外区(220~300nm 波长),有吸收光的能力。

四、论述题

1.答:催产素和加压素都是由人和高等动物的垂体后叶所分泌的多肽激素。催产素能促进子宫和乳腺平滑肌收缩,临床上用于引产和减少产后出血;加压素有增加血压和抗利尿的作用,临床上用于治疗尿崩症等。催产素和加压素的一级结构及其相似。所以催产素有微

弱的加压素的功能,加压素也有微弱的催产素的功能,但由于二者在第3位和第8位的残基不同,因此,它们有不同的生理功能。

2.答:天然蛋白质在变性因素作用之下,其一级结构保持不变,但其高级结构发生了异常的变化,即由天然态(折叠态)变成了变性态(伸展态),从而引起了生物功能的丧失,以及物理、化学性质的改变。这种现象,被称为变性。

变性因素是很多,其中物理因素包括:

热(60~100℃)、紫外线、X射线、超声波、高压、表面张力,以及剧烈的振荡、研磨、搅拌等;化学因素,又称为变性剂,包括:酸、碱、有机溶剂(如乙醇、丙酮等)、尿素、盐酸胍、重金属盐、三氯醋酸、苦味酸、磷钨酸以及去污剂等。不同的蛋白质对上述各种变性因素的敏感程度是不同的。

变性蛋白质主要有以下的表现:

(1)物理性质的改变:溶解度下降,有的甚至凝聚、沉淀;失去结晶的能力;特性粘度增加;旋光值改变;紫外吸收光谱和荧光光谱发生改变等。

(2)化学性质的改变:

①变性以后被蛋白水解酶水解速度就增加了,水解部位亦大大增加了,即消化率提高了;

②在变性之前,埋藏在蛋白质分子内部的某些基团,不能与某些试剂反应,但变性之后,由于暴露在蛋白质分子的表面上,从而变得可以与试剂反应了;③生物功能的改变,抗原性的改变;生物功能丧失。

蛋白质变性的鉴定方法:

(1)测定蛋白质的比活性。(2)以天然蛋白质作对照、测定蛋白质物理的变化。(3)测定蛋白质化学性质的变化。(4)用免疫法测定蛋白质的抗原性是否改变,抗体能否与抗原专一性结合。(5)观察蛋白质的溶解度是否下降,是否凝集、沉淀等。

检查蛋白质变性的情况,往往采用多种方法,最后,综合其结果,才能得到确切的结论。

3.答:蛋白质的物理化学性质:

(1)蛋白质的分子的大小形状:蛋白质分子有一定的大小,一般在6×103~106道尔顿之间。蛋白质分子有一定的形状,大多数是近似球形的或椭球形的。

(2)蛋白质的两性解离:在酸性溶液中,各种碱性基团与质子结合,使蛋白质分子带正电荷,在直流电场中,向阴极移动;在碱性溶液中,各种酸性基团释放质子,从而使蛋白质分子带负电荷,在直流电场中,向阳极移动。在等电点时,蛋白质比较稳定,溶解度最小。因此,可以利用蛋白质的等电点来分别沉淀不同的蛋白质,从而将不同的蛋白质分离开来。不同的蛋白质有不同的等电点。

(3)电泳:在直流电场中,带正电荷的蛋白质分子向阴极移动,带负电荷的蛋白质分子向阳极移动,这种移动现象,称为电泳。在一定的电泳条件下,不同的蛋白质分子,由于其净电荷量、分子大小、形状的不同,一般有不同的迁移率。因此,可以利用电泳法将不同的蛋白质分离开来。在蛋白质化学中,最常用的电泳法有:聚丙烯酰胺凝胶电泳、等电聚焦电泳、毛细管电泳等。

(4)蛋白质的胶体性质:球蛋白溶液具有亲水胶体的性质。这种亲水胶体溶液是比较稳定的。其稳定因素有两个:一个是球状大分子表面的水化层;另一个是球状大分子表面具有相同的电荷,由于同性电荷的相互排斥,使得大分子不能互相结合成较大的颗粒。

(5)蛋白质的沉淀:盐析法、加酸或碱沉淀蛋白质、有机溶剂沉淀蛋白质、重金属盐沉淀蛋白质、生物碱试剂沉淀蛋白质、抗体对蛋白质抗原的沉淀。

(6)蛋白质的呈色反应:蛋白质分子的自由–NH2基和–COOH基、肽键,以及某些氨基酸的侧链基团,如:Tyr的酚基、Phe和Tyr的苯环、Trp的吲哚基、以及Arg的胍基等,能够与某种化学试剂发生反应,产生有色物质。

(7)蛋白质的光谱特征:

蛋白质的紫外吸收光谱:蛋白质不能吸收可见光,但是,能够吸收一定波长范围的紫外光。用紫外分光光度计可以记录溶液中蛋白质的光吸收随入射光波长变化而变化的曲线。此曲线就是蛋白质的紫外吸收光谱。

蛋白质的荧光光谱:蛋白质吸收280nm波长的紫外光之后,能够发射不同波长的荧光。其荧光强度随荧光波长变化而变化。这是蛋白质的荧光光谱。

蛋白质的分离提纯的一般步骤:

(1)前处理;(2)沉淀分离;(3)分离纯化;(4)质量鉴定。

测定蛋白质分子量的方法:

(1)沉降速度法;(2)凝胶过滤法;(3)SDS聚丙烯酰胺凝胶电泳法。

4.答:以甲硫脑啡肽命名举例

中文氨基酸残基命名法:酪氨酰甘氨酰甘氨酰苯丙氨酰甲硫氨酸

中文单字表示法:酪–甘–甘–苯丙–甲硫

1 2 3 4 5

三字母符号表示法:Tyr·G1y·G1y·Phe·Met

B型题

1.解:该多肽共有氨基酸残基数为:

15120/120=126个

形成α–螺旋的长度为:126×0.15nm=18.9nm

α–螺共有的圈数为:126/3.6=35圈

2.答:氨基酸残基在β–伸展结构中的长度为0.36nm,故该多肽的长度为:

0.36×122r=43.92nm

该多肽的分子量为:122×120=14640Da

3.答:多肽链主链骨架实际上是由许多肽单位通过α–碳原子(Cα)连接而成的,肽单位是刚性平面结构。多肽链中所有的肽单位基本上都具有相同的结构,因此,多肽链的主链骨架构象,是由一系列α–碳原子的成对二面角(Φ,Ψ)所决定的。也就是说,二面角决定多肽链主链骨架的构象。蛋白质分子构象主要靠非共价键维持,如:氢键、范德华引力、疏水作用力,以及离子键。此外,在某些蛋白质中,还有二硫键、配位键参与维持构象。总而言之,维持蛋白质分子构象的主要是一些次级键,它们的键能虽然弱,但它们相互作用的数量大,叠加在一起就成为维持和稳定蛋白质空间结构的不可忽视的作用力,形成不同的二面角(Φ,Ψ),结果形成折叠盘绕的蛋白质空间构象。

4.答:将纯化蛋白质的肽键完全水解,测定其氨基酸组成。然后再部分水解蛋白质成为多个肽段,分析每个肽段中的氨基酸及其氨基末端或羧基末端的组成,在测定了肽段序列后,最后根据肽段的重叠比较,推算出整个肽链的氨基酸序列。

5.答:蛋白质在分离、提纯、贮藏的过程中,容易发生部分变性。这就需要对蛋白质进行鉴定,看它有没有变性,变性到什么程度。鉴定蛋白质变性的方法有很多。概括起来,有下列几种:测定蛋白质的比活性;以天然蛋白质作对照,测定蛋白质物理、化学性质的变化;用免疫法测定蛋白质的抗原性是否改变,抗体能否与抗原专一性结合;观察蛋白质的溶解度是否下降,是否凝集、沉淀等。总之,检查蛋白质变性的方法很多。但是,其中任何一种方法都不能单独地确定蛋白质构象的变化类型及变性程度。当然,也无法证明一种蛋白质的两种制剂,是否具有同样的构象。因此,检查蛋白质变性的情况,往往采用多种方法,最

后,综合其结果,才能得到确切的结论。

第三章酶

A型题

一、名词解释

1.酶:酶是生物体内一类具有催化活性和特殊空间构象的生物大分子物质,包括蛋白质和核酸等。

2.酶的专一性:酶对于底物和反应类型有严格的选择性。一般地说,酶只能作用于一种或一类化学底物,催化一种或一类化学反应,这就是酶的所谓的高度专一性。

3.全酶:酶蛋白与辅助因子结合之后所形成的复合物,称为全酶,只有全酶才有催化活性,将酶蛋白和辅助因子分开后均无催化作用。

4.辅酶:把那些与酶蛋白结合比较松弛,用透析法可以除去的小分子有机化合物,称为辅酶。

5.酶活性部位:酶分子中能直接与底物分子结合,并催化底物化学反应的部位,称为酶的活性部位或活性中心。它包括结合中心与催化中心。

6.酶原:有些酶,如参与消化的各种蛋白酶(如胃蛋白酶、胰蛋白酶,以及胰凝乳蛋白酶等),在最初合成和分泌时,没有催化活性。这种没有活性的酶的前体,被称为酶原。

7.必需基团:是指直接参与对底物分子结合和催化的基团以及参与维持酶分子构象的基团。

8.酶原激活:酶原必须经过适当的切割肽链,才能转变成有催化活性的酶。使无活性的酶原转变成活性酶的过程,称为酶原激活。这个过程实质上是酶活性部位组建、完善或者暴露的过程。

9.诱导契合学说:酶分子的活性部位结构原来并不与底物分子的结构互补,但活性部位有一定的柔性,当底物分子与酶分子相遇时可以诱导酶蛋白的构象发生相应的变化,使活性部位上各个结合基团与催化基团达到对底物结构正确的空间排布与定向从而使酶与底物互补结合,产生酶–底物复合物,并使底物发生化学反应。

10.定向效应:是指在酶活性部位中,催化基团与底物分子反应基团之间,形成了正确的定向排列,使分子间的反应按正确的方向相互作用形成中间产物,从而降低了底物分子的活化能,增加了底物反应速度。

11.共价催化:某些酶分子的催化基团可以通过共价键与底物分子结合形成不稳定的共价中间产物,这个中间产物极易变成过渡态,因而大大降低了活化能,使反应速度大为提高,这种催化称为共价催化。

12.酸催化:在酶活性中心上,有些催化基团是质子供体(酸催化基团),可以向底物分子提供质子,称为酸催化。

13.酶活力(酶活性)是指:酶催化底物化学反应的能力。

14.酶的活力单位:是衡量酶活力大小的计量单位,国际生物化学协会酶学委员会对酶活力单位作了下列规定:在25℃,最适PH,饱和底物浓度的反应条件下,1min内,将1微摩尔(μmol)的底物转化为产物所需要的酶量,定为一个国际单位(1U=1μmol/min)。

15.酶的比活力:比活力(比活性)是指:每mg蛋白质中所具有的酶活力(活力单位数)。

16.Kat:在最适条件下,每秒钟内,能使1mol底物转化成产物所需要的酶量,定为一个Kat单位(1Kat=1mol/s)。

17.K m:是当酶反应速度为最大反应速度一半时的底物浓度。

18.酶的最适pH:只有在特定的pH下,酶、底物和辅酶的解离状态,最适宜它们相互结合,并发生催化作用,从而使酶反应速度达到最大值,这个pH称为酶的最适pH。

19.酶的最适温度:使反应速度达到最大值的温度被称为最适温度。动物体内各种酶的最适温度一般在37~40℃。

20.竞争性抑制作用:有些抑制剂,其分子结构与底物分子结构十分相似,因而,也能够与酶分子的底物结合基团相结合,从而抑制酶活性。抑制剂和底物对酶的结合,是相互竞争、相互排斥的。这种抑制作用,称为竞争性抑制作用。

21.调节酶:对代谢途径的反应速度起调节作用的酶称为调节酶。

22.变构效应:调节物与酶分子的调节部位(或一个亚基的活性部位)结合之后,引起酶分子构象发生变化,从而提高或降低活性部位(或另一个亚基的活性部位)的酶活性(或对底物的亲和力)。这种效应称为变构效应。

23.正协同效应:提高酶活性的变构效应,称为变构激活或正协同效应。

24.效应子:能使变构酶产生变构效应的物质,称为效应物,又称效应子,调节物。

25.变构激活剂:与调节部位(或活性部位)结合之后,能提高酶活性的效应物,称为变构激活剂(或正效应物)。

26.共价修饰调节:有些酶,在其它酶的催化下,其分子结构中的某种特殊的基团能与特殊的化学基团,共价结合或解离,从而使酶分子从无活性(或低活性)形式变成活性(或高活性)形式,或者从有活性(高活性)形式变成无活性(或低活性)形式。这种修饰作用称为共价修饰调节。

27.同工酶:能催化相同的化学反应,但在蛋白质分子的结构、理化性质和生物学性质方面,都存在明显差异的一组酶。即能催化相同化学反应的数种不同分子形式的酶。

28.酶工程:是由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新的技术科学。酶工程分为化学酶工程和生物酶工程两大类。

29.固定化酶:是指采用物理或化学的方法,将酶固定在固相载体上,或者将酶包埋在微胶囊或凝胶中,从而使酶成为一种可以反复使用的形式。

30.多酶复合体:又称多酶体系,是由几种酶彼此嵌合而形成的复合体,分子量很大,一般有几百万,例如:丙酮酸脱氢酶复合体是由丙酮酸脱氢酶、二氢硫辛酸转乙酰基酶与二氢硫辛酸脱氢酶彼此嵌合而成的。它有利于一系列反应的连续进行。

二、填空题

1.蛋白质、核酸

2.活性中心、活性部位

3.结合部位、催化部位、底物、反应

4.底物和反应类型、相对专一性、绝对专一性、立体化学专一性

5.立体化学

6.单体酶、寡聚酶、多酶复合体

7.单纯酶、结合酶

8.蛋白质结构、蛋白质、非蛋白质的小分子有机化合物、酶蛋白、辅助因子

9.共价催化、酸碱催化、邻近定向效应、底物形变、活性部位疏水空穴的影响

10.亲核催化、亲电催化

11.共价催化、酸碱催化

12.离子键、氢键、范德华键

13.供体、受体

14.pH、温度、[S] >> [E](即底物浓度比酶浓度过量的多)

15.酶促反应进行的速度、大

16.活力大小、1min、1微摩尔、25℃、最适pH值、饱和底物浓度

17.单位时间内底物浓度的减少量、单位时间内产物浓度的增加量

18.酶促反应的初速度、5~10min

19.比活力的大小、高

20.竞争性

21.9

22.C、A

23.酶浓度、底物浓度、温度、pH、抑制剂、激活剂

24.37℃~40℃、6.5~8.0

25.功能、组成或结构

26.同促效应、异促效应、正协同效应、负协同效应

27.分子构象、共价修饰、合成和降解、酶浓度

28.调节酶、变构酶、共价调节酶、同工酶

29.化学酶工程、生物酶工程、初级酶工程、高级酶工程

30.能够重复使用的酶

31.包埋法、吸附法、共价偶联法、交联法

32.氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类、合成酶类

三、简答题

1.答:优点:

(1)高度专一性

(2)高催化效率

(3)条件温和

(4)易调控

缺点:酶易变性失活

2.答:在全酶分子中,金属离子可能有下列作用:

(1)作为酶活性部位的组成成分,参加催化底物反应;

(2)对酶活性所必需的分子构象起稳定作用;

(3)在酶与底物分子之间起桥梁作用。

3.答:不同点:即它们与酶蛋白结合的牢固程度不同。在酶的辅助因子当中把那些与酶蛋白结合比较牢固的,用透析法不易除去的小分子有机化名物,称为辅基;把那些与酶蛋白结合比较松弛,用透析法可以除去的小分子有机化合物,称为辅酶。

相同点:它们都是有机小分子,在酶的催化反应中都起着传递电子、原子、和某些化学基团的作用。

4.答:维生素B族,如维生素B1(硫胺素)、维生素B2(核黄素)、维生素PP(烟酰胺)、维生素B6、叶酸、泛酸等,几乎全部参与辅酶的形成。甚至于有些维生素,如硫辛酸、维生素C等,本身就是辅酶。

在酶促反应过程中,辅酶作为载体,在供体与受体之间传递H原子或者某种功能团(如:氨基、酰基、磷酸基、一碳基团等)。

具体例子略。

5.答:有些酶,如参与消化的各种蛋白酶(如胃蛋白酶、胰蛋白酶,以及胰凝乳蛋白酶等),在最初合成和分泌时,没有催化活性。这种没有活性的酶的前体,被称为酶原。酶

原必须经过适当的切割肽键,才能转变成有催化活性的酶。使无活性的酶原转变成活性酶的过程,称为酶原激活。这个过程实质上是酶活性部位组建、完善或者暴露的过程。例如胰凝乳蛋白酶原在胰腺细胞内合成时没有催化活性,从胰腺细胞分泌出来,进入小肠之后,就被胰蛋白酶激活,接着自身激活(指酶原被自身的活性酶激活)。

6.答:磺胺类药物是治疗细菌性传染病的有效药物。它能抑制细菌的生长繁殖,而不伤害人和畜禽。细菌体内的叶酸合成酶能够催化对氨基苯甲酸变成叶酸。磺胺类药物,由于与对氨基苯甲酸的结构,非常相似,因此,对叶酸合成酶有竞争性抑制作用。人和畜禽能够利用食物中的叶酸,而细菌不能利用外源的叶酸,必须自己合成。一旦合成叶酸的反应受阻,则细菌由于缺乏叶酸,便停止生长繁殖。因此,磺胺类药物有抑制细菌生长繁殖的作用,而不伤害人和畜禽。

有些抑制剂,如有机磷杀虫剂、有机汞化合物、有机砷化合物、一氧化碳、氰化物等剧毒物质能比较牢固以共价键与酶分子的必需基团相结合,从而抑制酶活性,用透析、超滤等物理方法,不能除去抑制剂使酶活性恢复。这种抑制作用称为不可逆抑制作用;这种抑制剂,称为不可逆抑制剂。

7.答:可逆抑制作用的抑制剂与酶分子的必需基团以非共价键结合,从而抑制酶活性,用透析等物理方法可以除去抑制剂,便酶活性得到恢复。

而不可逆抑制作用的抑制剂,以共价键与酶分子的必需基团相结合,从而抑制酶活性,用透析、超滤等物理方法,不能除去抑制剂使酶活性恢复。

8.答:竞争性抑制的一个重要特征是可以通过加入大量的底物来消除竞争性抑制剂对酶活性的抑制作用。从动力学方面看,在竞争性抑制剂作用下,V max不降低;K m增大。

非竞争性抑制的特征:加入大量底物不能解除非竞争性抑制剂对酶活性的抑制;在非竞争性抑制剂作用下,V max明显降低,但K m值不改变。

9.答:变构酶是由调节亚基与催化亚基组成,第一个底物分子与酶分子中第一个亚基的活性部位结合之后,使该亚基的构象发生变化,此亚基的构象变化引起了相邻第二个亚基的构象发生变化,从而提高了第二个亚基的活性部位对第二个底物分子的结合力(亲和力)。其余第三、第四个亚基对第三、第四个底物分子的结合,依此类推。这就是正协同效应。变构酶的速度–底物动力学曲线呈S型。

在S型曲线的陡段,酶活性对[S]的变化十分敏感。这对于维持细胞内的[S]于一定水平,颇为重要。在此水平附近,[S]对酶活性有较强的调节作用。由此可见,在[S]很低时[S]的改变对活性的影响很小;在曲线陡段,[S]稍有改变,则酶活性有较大的变化,即酶活性对[S]的变化非常敏感,在反应速度接近最大反应速度时,[S]的改变对酶活性的影响很小。

10.答:酶活力(酶活性)就是指:酶催化底物发生化学反应的能力。

因此,测定酶活力,实际上就是测定酶促反应进行的速度。酶促反应速度越快,酶活力就越大;反之,速度越慢,酶活力就越小。引起反应速度下降的原因很多,例如:底物浓度下降;产物对酶的抑制;由于产物浓度增加而加速了逆反应酶变性等。因此,为了排除上述干扰,酶活力应该用酶促反应的初速度来表示。

11.答:酶分子中能直接与底物分子结合,并催化底物化学反应的部位,称为酶的活性部位或活性中心。

活性部位是酶分子中的微小区域。它通常位于酶分子表面的一个深陷的空穴或一条深沟中。

对单纯酶来讲,活性部位是由一些极性氨基酸残基的侧链基团(如:His的咪唑基、Ser 的羟基、Cys的巯基、Lys的ε–NH2基、Asp与Glu的羧基等)所组成的。有些酶还包括

主链骨架上的亚氨基和羰基。对于结合酶来讲,除了上述基团而外,还包括金属离子或辅酶分子的某一部分。

12.答:将米氏方程式整理后,得:

当酶促反应处于

时,则K m =[S]。由此可知,K m 值是当酶反应速度为最大反应速度一半时的底物浓度。其单位是底物浓度的单位,一般用mol/L 或mmol/L 表示。米氏常数是酶的特征性物理常数。

米氏常数的求法:最常用的是Lineweaver –Burk 的作图法(双倒数作图法)。将米氏方程式改写为下列倒数形式:

该方程式相当于y =ax+b 直线方程。实验时,选择不同的[S]测定相对应的V 0。然后,以1/[S ]为横坐标,以1/v 为纵坐标作图,绘出直线。

13.答:按照化学组成,酶可以分为单纯酶和结合酶。

有些酶,如脲酶、胃蛋白酶、脂肪酶等。其活性仅仅决定于它的蛋白质结构。这类酶属于单纯酶(简单蛋白质)。另一些酶,如乳酶脱氢酶、细胞色素氧化酶等,除了需要蛋白质而外,还需要非蛋白质的小分子物质,才有催化活性。这类酶属于结合酶(结合蛋白质)。结合酶中的蛋白质称为酶蛋白;非蛋白质的小分子物质称为辅助因子。酶蛋白与辅助因子结合之后所形成的复合物,称为“全酶”。全酶=酶蛋白 + 辅助因子,只有全酶才有催化活性。将酶蛋白和辅因子分开后均无催化作用。

四、论述题

1.答:变构酶是含有2个或2个以上亚基的寡聚酶,分为同促变构酶、异促变构酶以及同促异促变构酶三种类型。提高酶活性的变构效应,称为变构激活或正协同效应;降低酶活性的变构效应,称为变构抑制或负协同效应。具有变构效应的酶,称为变构酶。生理意义:当终产物过多,将导致细胞中毒时,变构抑制剂与变构酶的调节部位相结合,快速抑制该酶催化部位的活性,从而降低代谢途径的总反应速度,因此,有效地减少了原始底物的消耗,避免了终产物的过多产生。这对于维持生物体内的代谢恒定起了重要的作用。

别构激活亦有重要的生理意义。有些异促别构酶,以底物(A )或其前体作为别构激活剂,结合到酶分子的调节部位上,通过变构而提高该酶催化部位的活力,从而避免过多底物的积累。

2.温度、pH 、底物浓度、酶浓度、激活剂、抑制剂等。并简要论述这些因素的影响。 如温度:高温变性、低温抑制、最适温度;最适pH ,过酸过碱使酶变性失活;底物浓度与酶促反应速度成米氏方程关系;酶浓度与酶促反应速度成正比;抑制剂可抑制酶促反应速度,分为不可逆抑制和可逆抑制;激活剂可激活酶活性等。

B 型题

一、简答题

)Km S []=(v V 1=v V

2

1

1.答:化学酶工程又称为初级酶工程。它是由酶化学与化学工程技术相结合的产物。它的主要研究内容是:酶的制备工艺、酶和细胞的固定化技术、酶分子化学修饰、人工酶的合成、酶反应器、酶传感器以及酶的应用等。其中,酶和细胞的固定化,在工农业生产以及医疗等应用上,具有巨大的潜力,引起人们特别的关注。

生物酶工程又称为高级酶工程。它是在化学酶工程的基础上发展起来的,是酶学与DNA 重组技术为主的现代分子生物学技术相结合的产物。用DNA重组技术(基因工程技术)大量生产酶。这些酶称为克隆酶。例如:用DNA重组技术将人尿激酶原的结构基因,从人细胞转移到大肠杆菌细胞内可以使大肠杆菌细胞生产人尿激酶原,从而取代从大量的人尿中提取尿激酶。尿激酶原和尿激酶都是治疗血栓病的有效药物。用蛋白质工程技术定点改变酶结构基因。生产性能稳定、活性更高的酶。这些酶被称为突变酶(遗传修饰酶)。例如:酪氨酰–tRNA合成酶的突变酶,其突变部位是Ala51取代了Thr51,从而使该酶对底物ATP的亲和力提高了100倍。用蛋白工程技术,设计新的酶结构基因,生产自然界从未有过的性能稳定、活性更高的新酶。

2.答:酶的变构调节和共价修饰调节在调节物作用方式、调节快慢、调节幅度、所需能量、生理意义等几个方面不同。

生物化学题库及答案大全

《生物化学》题库 习题一参考答案 一、填空题 1蛋白质中的苯丙氨酸、酪氨酸和__色氨酸__3种氨基酸具有紫外吸收特性,因而使蛋白质在 280nm处有最大吸收值。 2蛋白质的二级结构最基本的有两种类型,它们是_α-螺旋结构__和___β-折叠结构__。前者的螺距为 0.54nm,每圈螺旋含_3.6__个氨基酸残基,每个氨基酸残基沿轴上升高度为__0.15nm____。天然 蛋白质中的该结构大都属于右手螺旋。 3氨基酸与茚三酮发生氧化脱羧脱氨反应生成__蓝紫色____色化合物,而脯氨酸与茚三酮反应 生成黄色化合物。 4当氨基酸溶液的pH=pI时,氨基酸以两性离子离子形式存在,当pH>pI时,氨基酸以负 离子形式存在。 5维持DNA双螺旋结构的因素有:碱基堆积力;氢键;离子键 6酶的活性中心包括结合部位和催化部位两个功能部位,其中前者直接与底物结合,决定酶的 专一性,后者是发生化学变化的部位,决定催化反应的性质。 72个H+或e经过细胞内的NADH和FADH2呼吸链时,各产生3个和2个ATP。 81分子葡萄糖转化为2分子乳酸净生成______2________分子ATP。 糖酵解过程中有3个不可逆的酶促反应,这些酶是己糖激酶;果糖磷酸激酶;丙酮酸激酶9。 10大肠杆菌RNA聚合酶全酶由σββα'2组成;核心酶的组成是'2ββα。参

与识别起始信号的是σ因子。 11按溶解性将维生素分为水溶性和脂溶性性维生素,其中前者主要包括V B1、V B2、V B6、 V B12、V C,后者主要包括V A、V D、V E、V K(每种类型至少写出三种维生素。) 12蛋白质的生物合成是以mRNA作为模板,tRNA作为运输氨基酸的工具,蛋白质合 成的场所是 核糖体。 13细胞内参与合成嘧啶碱基的氨基酸有:天冬氨酸和谷氨酰胺。 14、原核生物蛋白质合成的延伸阶段,氨基酸是以氨酰tRNA合成酶?GTP?EF-Tu三元复合体的形式进 位的。 15、脂肪酸的β-氧化包括氧化;水化;再氧化和硫解4步化学反应。 二、选择题 1、(E)反密码子GUA,所识别的密码子是: A.CAU B.UG C C.CGU D.UAC E.都不对 2、(C)下列哪一项不是蛋白质的性质之一? A.处于等电状态时溶解度最小 B.加入少量中性盐溶解度增加 C.变性蛋白质的溶解度增加 D.有紫外吸收特性 3.(B)竞争性抑制剂作用特点是:

生化习题及答案

一.选择题 1.唾液淀粉酶应属于下列那一类酶( D ); A 蛋白酶类 B 合成酶类 C 裂解酶类 D 水解酶类 2.酶活性部位上的基团一定是( A ); A 必需基团 B 结合基团 C 催化基团 D 非必需基团 3.实验上,丙二酸能抑制琥珀酸脱氢酶的活性,但可用增加底物浓度的方法来消除其抑制,这种抑制称为( C ); A 不可逆抑制 B 非竟争性抑制 C 竟争性抑制 D 非竟争性抑制的特殊形式 4.动物体肝脏内,若葡萄糖经糖酵解反应进行到3-磷酸甘油酸即停止了,则此过程可净生成( A )ATP; A 0 B -1 C 2 D 3 5.磷酸戊糖途径中,氢受体为( B ); A NAD+ B NADP+ C FA D D FMN 6.高等动物体内NADH呼吸链中,下列那一种化合物不是其电子传递体( D ); A 辅酶Q B 细胞色素b C 铁硫蛋白 D FAD 7.根据化学渗透假说理论,电子沿呼吸链传递时,在线粒体内产生了膜电势,其中下列正确的是( A ); A 内膜外侧为正,内侧为负 B 内膜外侧为负,内侧为正 C 外膜外侧为正,内侧为负 D 外膜外侧为负,内侧为正 8.动物体内,脂酰CoA经β-氧化作用脱氢,则这对氢原子可生成( B )分子ATP; A 3 B 2 C 4 D 1 9.高等动物体内,游离脂肪酸可通过下列那一种形式转运( C ); A 血浆脂蛋白 B 高密度脂蛋白 C 可溶性复合体 D 乳糜微粒 10.对于高等动物,下列属于必需氨基酸的是(B ); A 丙氨酸 B 苏氨酸 C 谷氨酰胺 D 脯氨酸 11.高等动物体内,谷丙转氨酶(GPT)最可能催化丙酮酸与下列那一种化合物反应( D );

生物化学试题及参考答案

121.胆固醇在体内的主要代谢去路是(C) A.转变成胆固醇酯 B.转变为维生素D3 C.合成胆汁酸 D.合成类固醇激素 E.转变为二氢胆固醇 125.肝细胞内脂肪合成后的主要去向是(C) A. C. E. A.胆A.激酶 136.高密度脂蛋白的主要功能是(D) A.转运外源性脂肪 B.转运内源性脂肪 C.转运胆固醇 D.逆转胆固醇 E.转运游离脂肪酸 138.家族性高胆固醇血症纯合子的原发性代谢障碍是(C)

A.缺乏载脂蛋白B B.由VLDL生成LDL增加 C.细胞膜LDL受体功能缺陷 D.肝脏HMG-CoA还原酶活性增加 E.脂酰胆固醇脂酰转移酶(ACAT)活性降低 139.下列哪种磷脂含有胆碱(B) A.脑磷脂 B.卵磷脂 C.心磷脂 D.磷脂酸 E.脑苷脂 )A. D. A. E. A. 谢 A. 216.直接参与胆固醇合成的物质是(ACE) A.乙酰CoA B.丙二酰CoA C.ATP D.NADH E.NADPH 217.胆固醇在体内可以转变为(BDE) A.维生素D2 B.睾酮 C.胆红素 D.醛固酮 E.鹅胆酸220.合成甘油磷脂共同需要的原料(ABE)

A.甘油 B.脂肪酸 C.胆碱 D.乙醇胺 E.磷酸盐 222.脂蛋白的结构是(ABCDE) A.脂蛋白呈球状颗粒 B.脂蛋白具有亲水表面和疏水核心 C.载脂蛋白位于表面 D.CM、VLDL主要以甘油三酯为核心 E.LDL、HDL主要的胆固醇酯为核心 过淋巴系统进入血液循环。 230、写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质?

答:胆固醇合成的基本原料是乙酰CoA、NADPH和ATP等,限速酶是HMG-CoA还原酶,胆固醇在体内可以转变为胆汁酸、类固醇激素和维生素D3。231、简述血脂的来源和去路? 答:来源:食物脂类的消化吸收;体内自身合成的 2、 (β-[及 胰岛素抑制HSL活性及肉碱脂酰转移酶工的活性,增加乙酰CoA羧化酶的活性,故能促进脂肪合成,抑制脂肪分解及脂肪酸的氧化。 29、乙酰CoA可进入以下代谢途径: 答:①进入三羧酸循环氧化分解为和O,产生大量

生物化学试题带答案

一、选择题 1、蛋白质一级结构的主要化学键就是( E ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 2、蛋白质变性后可出现下列哪种变化( D ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物就是( B ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的就是( A ) A、IMP B、AMP C、GMP D、XMP E、ATP 6、体内氨基酸脱氨基最主要的方式就是( B ) A、氧化脱氨基作用 B、联合脱氨基作用 C、转氨基作用 D、非氧化脱氨基作用 E、脱水脱氨基作用 7、关于三羧酸循环,下列的叙述哪条不正确( D ) A、产生NADH与FADH2 B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 8、胆固醇生物合成的限速酶就是( C ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶就是酵解过程中的限速酶( D ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶 E、3一磷酸甘油脱氢酶

10、DNA二级结构模型就是( B ) A、α一螺旋 B、走向相反的右手双螺旋 C、三股螺旋 D、走向相反的左手双螺旋 E、走向相同的右手双螺旋 11、下列维生素中参与转氨基作用的就是( D ) A、硫胺素 B、尼克酸 C、核黄素 D、磷酸吡哆醛 E、泛酸 12、人体嘌呤分解代谢的终产物就是( B ) A、尿素 B、尿酸 C、氨 D、β—丙氨酸 E、β—氨基异丁酸 13、蛋白质生物合成的起始信号就是( D ) A、UAG B、UAA C、UGA D、AUG E、AGU 14、非蛋白氮中含量最多的物质就是( D ) A、氨基酸 B、尿酸 C、肌酸 D、尿素 E、胆红素 15、脱氧核糖核苷酸生成的方式就是( B ) A、在一磷酸核苷水平上还原 B、在二磷酸核苷水平上还原 C、在三磷酸核苷水平上还原 D、在核苷水平上还原 16、妨碍胆道钙吸收的物质就是( E ) A、乳酸 B、氨基酸 C、抗坏血酸 D、柠檬酸 E、草酸盐 17、下列哪种途径在线粒体中进行( E ) A、糖的无氧酵介 B、糖元的分解 C、糖元的合成 D、糖的磷酸戊糖途径 E、三羧酸循环 18、关于DNA复制,下列哪项就是错误的( D ) A、真核细胞DNA有多个复制起始点 B、为半保留复制 C、亲代DNA双链都可作为模板 D、子代DNA的合成都就是连续进行的

生物化学题库及答案.

生物化学试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有种,一般可根据氨基酸侧链(R)的大小分为侧链氨基酸和侧链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有性;而后一类氨基酸侧链(或基团)共有的特征是具有性。碱性氨基酸(pH6~7时荷正电)有两种,它们分别是氨基酸和氨基酸;酸性氨基酸也有两种,分别是氨基酸和氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子中含有氨基酸、氨基酸或氨基酸。 3.丝氨酸侧链特征基团是;半胱氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是,除脯氨酸以外反应产物的颜色是;因为脯氨酸是α—亚氨基酸,它与水合印三酮的反应则显示色。 5.蛋白质结构中主键称为键,次级键有、、 、、;次级键中属于共价键的是键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 氨酸被氨酸所替代,前一种氨基酸为性侧链氨基酸,后者为性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是;在寡肽或多肽序列测定中,Edman反应的主要特点是。 8.蛋白质二级结构的基本类型有、、 和。其中维持前三种二级结构稳定键的次级键为 键。此外多肽链中决定这些结构的形成与存在的根本性因与、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的α-螺旋往往会。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是 和。 10.蛋白质处于等电点时,所具有的主要特征是、。 11.在适当浓度的β-巯基乙醇和8M脲溶液中,RNase(牛)丧失原有活性。这主要是因为RNA酶的被破坏造成的。其中β-巯基乙醇可使RNA酶分子中的键破坏。而8M脲可使键破坏。当用透析方法去除β-巯基乙醇和脲的情况下,RNA酶又恢复原有催化功能,这种现象称为。 12.细胞色素C,血红蛋白的等电点分别为10和7.1,在pH8.5的溶液中它们分别荷的电性是、。 13.在生理pH条件下,蛋白质分子中氨酸和氨酸残基的侧链几乎完全带负电,而氨酸、氨酸或氨酸残基侧链完全荷正电(假设该蛋白质含有这些氨基酸组分)。 14.包含两个相邻肽键的主肽链原子可表示为,单个肽平面及包含的原子可表示为。 15.当氨基酸溶液的pH=pI时,氨基酸(主要)以离子形式存在;当pH>pI时,氨基酸

生物化学试题库(试题库+答案)

生物化学试题库及其答案——糖类化学 一、填空题 1.纤维素是由________________组成,它们之间通过________________糖苷键相连。 2.常用定量测定还原糖的试剂为________________试剂和 ________________试剂。 3.人血液中含量最丰富的糖是________________,肝脏中含量最丰富的糖是 ________________,肌肉中含量最丰富的糖是________________。 4.乳糖是由一分子________________和一分子________________组成,它们之间通过________________糖苷键相连。 5.鉴别糖的普通方法为________________试验。 6.蛋白聚糖是由________________和________________共价结合形成的复合物。 7.糖苷是指糖的________________和醇、酚等化合物失水而形成的缩醛(或缩酮)等形式的化合物。 8.判断一个糖的D-型和L-型是以________________碳原子上羟基的位置作依据。 9.多糖的构象大致可分为________________、________________、 ________________和________________四种类型,决定其构象的主要因素是 ________________。 二、是非题 1.[ ]果糖是左旋的,因此它属于L-构型。 2.[ ]从热力学上讲,葡萄糖的船式构象比椅式构象更稳 定。 3.[ ]糖原、淀粉和纤维素分子中都有一个还原端,所以它们都有还原性。 4.[ ]同一种单糖的α-型和β-型是对映体。 5.[ ]糖的变旋现象是指糖溶液放置后,旋光方向从右旋变成左旋或从左旋变成右旋。 6.[ ]D-葡萄糖的对映体为L-葡萄糖,后者存在于自然界。 7.[ ]D-葡萄糖,D-甘露糖和D-果糖生成同一种糖脎。 8.[ ]糖链的合成无模板,糖基的顺序由基因编码的转移酶决定。 9.[ ]醛式葡萄糖变成环状后无还原性。 10.[ ]肽聚糖分子中不仅有L-型氨基酸,而且还有D-型氨基酸。 三、选择题

生化试题及答案

一、填空题 2.蛋白质分子表面的_电荷层_____和__水化膜____使蛋白质不易聚集,稳定地分散在水溶液中。 5.写出下列核苷酸的中文名称:A TP__三磷酸腺苷__和dCDP_脱氧二磷酸胞苷______。6.结合蛋白质酶类是由__酶蛋白__和__辅助因子____相结合才有活性。 7.竞争性抑制剂与酶结合时,对Vm的影响__不变_____,对Km影响_是增加_____。有机磷杀虫剂中毒是因为它可以引起酶的___不可逆____抑制作用。 8.米氏方程是说明___底物浓度___和__反应速度__之间的关系,Km的定义__当反应速度为最大速度的1/2时的底物的浓度___________。 9.FAD含维生素B2_____,NAD+含维生素____PP________。 12.磷酸戊糖途径的主要生理意义是__生成磷酸核糖__和__NADPH+H_。 13.糖酵解的主要产物是乳酸___。 14.糖异生过程中所需能量由高能磷酸化合物_ATP__和__GTP__供给。 15.三羧酸循环过程的限速酶_柠檬酸合酶__、_异柠檬酸脱氢酶、_a—酮戊二酸脱氢酶复合体。 16.糖酵解是指在无氧条件下,葡萄糖或糖原分解为_乳酸______的过程,成熟的_红细胞____靠糖酵解获得能量。 17.乳糜微粒(CM)在__小肠粘膜细胞__合成,其主要功能是_转运外源性甘油三酯____。极低密度脂蛋白在__肝脏_合成。 18.饱和脂酰CoAβ—氧化主要经过脱氢、_ 加水__、__再脱氢___、__硫解___四步反应。19.酮体是由__乙酰乙酸___、__2---_羟基丁酸____、__丙酮_____三者的总称。 20.联合脱氨基作用主要在__肝____、_肾__、__脑___等组织中进行。 21.氨在血液中主要是以__谷氨酰胺__和__丙氨酸_____的形式被运输的。 22.A TP的产生有两种方式,一种是作用物水平磷_酸化____,另一种_氧化磷酸化____。23.线粒体外NADH的转运至线粒体内的方式有_苹果酸-天冬氨酸_和_a_---磷酸甘油___。24.携带一碳单位的主要载体是_四氢叶酸__,一碳单位的主要功用是_合成核苷酸等______。25.脂肪酸的合成在__肝脏______进行,合成原料中碳源是_乙酰CoA__;供氢体是_NADPH+H_,它主要来自_磷酸戊糖途径____。 26.苯丙酮酸尿症患者体内缺乏__苯丙氨酸氧化_酶,而白化病患者是体内缺乏_酪氨酸____酶。使血糖浓度下降的激素是_胰岛素___。 27.某些药物具有抗肿瘤作用是因为这些药物结构与酶相似,其中氨甲嘌呤(MTX)与__叶酸____结构相似,氮杂丝氨酸与__谷氨酰胺____结构相似。 28.核苷酸抗代谢物中,常见的嘌呤类似物有__6—MP______,常见的嘧啶类似物有__5—FU______。 29.在嘌呤核苷酸从头合成中重要的调节酶是_磷酸核糖焦磷酸激_酶和_磷酸核糖氨基酸转移__酶。 30.生物体物质代谢调节的基本方式是__酶调节___、__激素调节__、_整体水平调节___。31.化学修饰最常见的方式是磷酸化和___脱磷酸化_____。 33.DNA合成的原料是__四种脱氧核糖核苷酸__,复制中需要的引物是_RNA______。34.“转录”是指DNA指导合成__RNA__________的过程;“翻译”是指由RNA指导合成__蛋白质___的过程。 35.在体内DNA的双链中,只有一条链可以转录生成RNA,此链称为__模板链______。另一条链无转录功能,称为__编码链______。 36.阅读mRNA密码子的方向是___5----3_________,多肽合成的方向是___C端---N端___。

生物化学题库及答案1

生物膜 五、问答题 1.正常生物膜中,脂质分子以什么的结构和状态存在? 答:.脂质分子以脂双层结构存在,其状态为液晶态。 2.流动镶嵌模型的要点是什么? 答:.蛋白质和脂质分子都有流动性,膜具有二侧不对称性,蛋白质附在膜表面或嵌入膜内部 3.外周蛋白和嵌入蛋白在提取性质上有那些不同?现代生物膜的结构要点是什么? 4.什么是生物膜的相变?生物膜可以几种状态存在? 5.什么是液晶相?它有何特点? 6.影响生物膜相变的因素有那些?他们是如何对生物膜的相变影响的? 7.物质的跨膜运输有那些主要类型?各种类型的要点是什么? 1.脂质分子以脂双层结构存在,其状态为液晶态。 2.蛋白质和脂质分子都有流动性,膜具有二侧不对称性,蛋白质附在膜表面或嵌入膜内部 3.由于外周蛋白与膜以极性键结合,所以可以有普通的方法予以提取;由于嵌入蛋白与膜通过非极性键结合,所以只能用特殊的方法予以提取。 现代生物膜结构要点:脂双层是生物膜的骨架;蛋白质以外周蛋白和嵌入蛋白两种方式与膜结合;膜脂和膜蛋白在结构和功能上都具有二侧不对称性;膜具有一定的流动性;膜组分之间有相互作用。 4.生物膜从一种状态变为另一种状态的变化过程为生物膜的相变,一般指液晶相与晶胶相之间的变化。生物膜可以三种状态存在,即:晶胶相、液晶相和液相。 5.生物膜既有液态的流动性,又有晶体的有序性的状态称为液晶相。其特点为:头部有序,尾部无序,短程有序,长程无序,有序的流动,流动的有序。 6.影响生物膜相变的因素及其作用为:A、脂肪酸链的长度,其长度越长,膜的相变温度越高;B、脂肪酸链的不饱和度,其不饱和度越高,膜的相变温度越低;C、固醇类,他们可使液晶相存在温度范围变宽;D、蛋白质,其影响与固醇类相似。 7.有两种运输类型,即主动运输和被动运输,被动运输又分为简单扩散和帮助扩散两种。简单扩散运输方 向为从高浓度向低浓度,不需载体和能量;帮助扩散运输方向同上,需要载体,但不需能量;主动运输运 输方向为从低浓度向高浓度,需要载体和能量。 生物氧化与氧化磷酸化 一、选择题 1.生物氧化的底物是: A、无机离子 B、蛋白质 C、核酸 D、小分子有机物 2.除了哪一种化合物外,下列化合物都含有高能键? A、磷酸烯醇式丙酮酸 B、磷酸肌酸 C、ADP D、G-6-P E、1,3-二磷酸甘油酸 3.下列哪一种氧化还原体系的氧化还原电位最大? A、延胡羧酸→丙酮酸 B、CoQ(氧化型) →CoQ(还原型) C、Cyta Fe2+→Cyta Fe3+ D、Cytb Fe3+→Cytb Fe2+ E、NAD+→NADH 4.呼吸链的电子传递体中,有一组分不是蛋白质而是脂质,这就是:

生化题库及答案

第一章蛋白质的结构与功能 一、A型选择题 1、某一溶液中蛋白质的百分含量为55%,此溶液蛋白质含氮量的百分浓度为:A A.8.8% B. 8.0% C. 8.4% D. 9.2% E. 9.6% 2、关于肽键的特点哪项叙述是不正确的?D A.肽键中的C—N键比相邻的N—Cα键短 B.肽键的C—N键具有部分双键性质 C.与α碳原子相连的N和C所形成的化学键可以自由旋转 D.肽键的C—N键可以自由旋转 E.肽键中C—N键所相连的四个原子在同一平面上 3、维持蛋白质一级结构的化学键主要是: E A.盐键 B. 二硫键 C. 疏水键 D. 氢键E.肽键 4、蛋白质中的α-螺旋和β折叠都属于: B A.一级结构 B.二级结构 C. 三级结构 D.四级结构E.侧链结构 5、α-螺旋每上升一圈相当于几个氨基酸? B A.2.5 B.3.6 C.2.7 D.4.5 E.3.4 6、关于蛋白质分子三级结构的叙述哪项是错误的?B A.天然蛋白质分子均有这种结构 B.具有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要由次级键维持 D.亲水基团大多聚集在分子的表面 E.决定盘绕折叠的因素是氨基酸残基 7、关于α-螺旋的论述哪项是不正确的? D A.α-螺旋是二级结构的常见形式 B.多肽链的盘绕方式是右手螺旋 C.每 3.6个氨基酸残基盘绕一圈 D.其稳定性靠相连的肽键平面间形成的氢键 E.影响螺旋的因素是氨基酸残基侧链的结构与性质 8、具有四级结构的蛋白质特征是: E A.分子中一定含有辅基 B.是由两条或两条以上具有三级结构的多肽链进一步折叠盘绕而成 C.其中每条多肽链都有独立的生物学活性 D.其稳定性依赖肽键的维系E.靠亚基的聚合和解聚改变生物学活性 9、关于蛋白质四级结构的论述哪项是正确的? E A.由多个相同的亚基组成 B.由多个不同的亚基组成 C.一定是由种类相同而不同数目的亚基组成 D.一定是由种类不同而相同数目的亚基组成 E.亚基的种类和数目均可不同 10、关于蛋白质结构的论述哪项是正确的? A A.一级结构决定二,三级结构B.二,三级结构决定四级结构 C.三级结构都具有生物学活性D.四级结构才具有生物学活性 E.无规卷曲是在二级结构的基础上盘曲而成 11、蛋白质的一级结构及高级结构决定于: D A.分子中氢键B.分子中盐键C.分子内部疏水键 D.氨基酸的组成及顺序E.氨基酸残基的性质 12、关于β-折叠的论述哪项是错误的? C A.β-折叠是二级结构的常见形式B.肽键平面折叠呈锯齿状排列 C.仅由一条多肽链回折靠拢形成D.其稳定靠肽链间形成的氢键维系

生物化学题库(含答案).

蛋白质 一、填空R (1)氨基酸的结构通式为H2N-C-COOH 。 (2)组成蛋白质分子的碱性氨基酸有赖氨酸、组氨酸、精氨酸,酸性氨基酸有天冬氨酸、谷氨酸。 (3)氨基酸的等电点pI是指氨基酸所带净电荷为零时溶液的pH值。 (4)蛋白质的常见结构有α-螺旋β-折叠β-转角和无规卷曲。 (5)SDS-PAGE纯化分离蛋白质是根据各种蛋白质分子量大小不同。 (6)氨基酸在等电点时主要以两性离子形式存在,在pH>pI时的溶液中,大部分以__阴_离子形式存在,在pH

生物化学试题及答案(1)

生物化学试题(1) 第一章蛋白质的结构与功能 [测试题] 一、名词解释:1.氨基酸 2.肽 3.肽键 4.肽键平面 5.蛋白质一级结构 6.α-螺旋 7.模序 8.次级键 9.结构域 10.亚基 11.协同效应 12.蛋白质等电点 13.蛋白质的变性 14.蛋白质的沉淀 15.电泳 16.透析 17.层析 18.沉降系数 19.双缩脲反应 20.谷胱甘肽 二、填空题 21.在各种蛋白质分子中,含量比较相近的元素是____,测得某蛋白质样品含氮量为15.2克,该样品白质含量应为____克。 22.组成蛋白质的基本单位是____,它们的结构均为____,它们之间靠____键彼此连接而形成的物质称为____。 23.由于氨基酸既含有碱性的氨基和酸性的羧基,可以在酸性溶液中带____电荷,在碱性溶液中带____电荷,因此,氨基酸是____电解质。当所带的正、负电荷相等时,氨基酸成为____离子,此时溶液的pH值称为该氨基酸的____。 24.决定蛋白质的空间构象和生物学功能的是蛋白质的____级结构,该结构是指多肽链中____的排列顺序。25.蛋白质的二级结构是蛋白质分子中某一段肽链的____构象,多肽链的折叠盘绕是以____为基础的,常见的二级结构形式包括____,____,____和____。 26.维持蛋白质二级结构的化学键是____,它们是在肽键平面上的____和____之间形成。 27.稳定蛋白质三级结构的次级键包括____,____,____和____等。 28.构成蛋白质的氨基酸有____种,除____外都有旋光性。其中碱性氨基酸有____,____,____。酸性氨基酸有____,____。 29.电泳法分离蛋白质主要根据在某一pH值条件下,蛋白质所带的净电荷____而达到分离的目的,还和蛋白质的____及____有一定关系。 30.蛋白质在pI时以____离子的形式存在,在pH>pI的溶液中,大部分以____离子形式存在,在pH

生物化学试题及答案(4)

生物化学试题及答案(4) 第四章糖代谢 【测试题】 一、名词解释 1.糖酵解(glycolysis)11.糖原累积症 2.糖的有氧氧化12.糖酵解途径 3.磷酸戊糖途径13.血糖(blood sugar) 4.糖异生(glyconoegenesis)14.高血糖(hyperglycemin) 5.糖原的合成与分解15.低血糖(hypoglycemin) 6.三羧酸循环(krebs循环)16.肾糖阈 7.巴斯德效应(Pastuer效应) 17.糖尿病 8.丙酮酸羧化支路18.低血糖休克 9.乳酸循环(coris循环)19.活性葡萄糖 10.三碳途径20.底物循环 二、填空题 21.葡萄糖在体内主要分解代谢途径有、和。 22.糖酵解反应的进行亚细胞定位是在,最终产物为。 23.糖酵解途径中仅有的脱氢反应是在酶催化下完成的,受氢体是。两个 底物水平磷酸化反应分别由酶和酶催化。 24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。 25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶—2催化生成,该酶是一双功能酶同时具有和两种活性。 26.1分子葡萄糖经糖酵解生成分子ATP,净生成分子A TP,其主要生理意义在于。 27.由于成熟红细胞没有,完全依赖供给能量。 28.丙酮酸脱氢酶复合体含有维生素、、、和。 29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、 - 次脱羧和次底物水平磷酸化,共生成分子A TP。 30.在三羧酸循环中催化氧化脱羧的酶分别是和。 31.糖有氧氧化反应的进行亚细胞定位是和。1分子葡萄糖氧化成CO2和H2O净生成或分子ATP。 32.6—磷酸果糖激酶—1有两个A TP结合位点,一是ATP作为底物结合,另一是与ATP亲和能力较低,需较高浓度A TP才能与之结合。 33.人体主要通过途径,为核酸的生物合成提供。 34.糖原合成与分解的关键酶分别是和。在糖原分解代谢时肝主要受的调控,而肌肉主要受的调控。 35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生成增多。 36.糖异生主要器官是,其次是。 37.糖异生的主要原料为、和。 38.糖异生过程中的关键酶分别是、、和。 39.调节血糖最主要的激素分别是和。 40.在饥饿状态下,维持血糖浓度恒定的主要代谢途径是。 三、选择题

生物化学试题及答案 .

生物化学试题及答案 绪论 一.名词解释 1.生物化学 2.生物大分子 蛋白质 一、名词解释 1、等电点 2、等离子点 3、肽平面 4、蛋白质一级结构 5、蛋白质二级结构 6、超二级结构 7、结构域 8、蛋白质三级结构 9、蛋白质四级结构 10、亚基 11、寡聚蛋白 12、蛋白质变性 13、蛋白质沉淀 14、蛋白质盐析 15、蛋白质盐溶 16、简单蛋白质 17、结合蛋白质 18、必需氨基酸 19、同源蛋白质 二、填空题 1、某蛋白质样品中的氮含量为0.40g,那么此样品中约含蛋白 g。 2、蛋白质水解会导致产物发生消旋。 3、蛋白质的基本化学单位是,其构象的基本单位是。 4、芳香族氨基酸包括、和。 5、常见的蛋白质氨基酸按极性可分为、、和。 6、氨基酸处在pH大于其pI的溶液时,分子带净电,在电场中向极游动。 7、蛋白质的最大吸收峰波长为。 8、构成蛋白质的氨基酸除外,均含有手性α-碳原子。 9、天然蛋白质氨基酸的构型绝大多数为。 10、在近紫外区只有、、和具有吸收光的能力。 11、常用于测定蛋白质N末端的反应有、和。 12、α-氨基酸与茚三酮反应生成色化合物。 13、脯氨酸与羟脯氨酸与茚三酮反应生成色化合物。 14、坂口反应可用于检测,指示现象为出现。 15、肽键中羰基氧和酰胺氢呈式排列。 16、还原型谷胱甘肽的缩写是。 17、蛋白质的一级结构主要靠和维系;空间结构则主要依靠维系。 18、维持蛋白质的空间结构的次级键包括、、和等。 19、常见的蛋白质二级结构包括、、、和等。 20、β-折叠可分和。 21、常见的超二级结构形式有、、和等。 22、蛋白质具有其特异性的功能主要取决于自身的排列顺序。 23、蛋白质按分子轴比可分为和。 24、已知谷氨酸的pK1(α-COOH)为2.19,pK2(γ-COOH)为4.25,其pK3(α-NH3+)为9.67,其pI为。 25、溶液pH等于等电点时,蛋白质的溶解度最。 三、简答题

(完整版)生物化学试题及答案(4)

生物化学试题及答案( 4) 第四章糖代谢 【测试题】 一、名词解释 1.糖酵解( glycolysis ) 2.糖的有氧氧化 3.磷酸戊糖途径 4.糖异生( glyconoegenesis) 5.糖原的合成与分解6.三羧酸循环( krebs 循环) 7.巴斯德效应(Pastuer 效应) 8.丙酮酸羧化支路 9.乳酸循环( coris 循环) 10.三碳途径 二、填空题 21.葡萄糖在体内主要分解代谢途径有22.糖酵解反应的进行亚细胞定位是在23.糖酵解途径中仅有的脱氢反应是在底物水平磷酸化反应分别由 11.糖原累积症 12.糖酵解途径 13.血糖(blood sugar) 14.高血糖(hyperglycemin) 15.低血糖 (hypoglycemin) 16.肾糖阈 17.糖尿病 18.低血糖休克 19.活性葡萄糖 20.底物循环 、和 ,最终产物为。酶催化下完成的,受氢体是酶和酶催化。 24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。 25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶— 2 催化生成,该酶是一双功能酶同时具有和两种活性。 26.1 分子葡萄糖经糖酵解生成分子ATP,净生成分子ATP,其主要生理意义在于。 27.由于成熟红细胞没有,完全依赖供给能量。 28.丙酮酸脱氢酶复合体含有维生素、、、和。 29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、 - 次脱羧和次底物水平磷酸化,共生成分子ATP。 30.在三羧酸循环中催化氧化脱羧的酶分别是和。 31.糖有氧氧化反应的进行亚细胞定位是和。1 分子葡萄糖氧化成CO2和H2O 净生 成或分子ATP。 32.6—磷酸果糖激酶—1有两个ATP结合位点,一是ATP 作为底物结合,另一是与 ATP亲和能力较低,需较高浓度ATP才能与之结合。 33.人体主要通过途径,为核酸的生物合成提供。 34.糖原合成与分解的关键酶分别是和。在糖原分解代谢时肝主要受的调控, 而肌肉主要受的调控。 35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生 成增多。 36.糖异生主要器官是,其次是。 37.糖异生的主要原料为、和。 38.糖异生过程中的关键酶分别是、、和。 39.调节血糖最主要的激素分别是和。

生物化学试题及答案

《基础生物化学》试题一 一、判断题(正确的画“√”,错的画“×”,填入答题框。每题1分,共20分) 1、DNA是遗传物质,而RNA则不是。 2、天然氨基酸都有一个不对称α-碳原子。 3、蛋白质降解的泛肽途径是一个耗能的过程,而蛋白酶对蛋白质的水解不需要ATP。 4、酶的最适温度是酶的一个特征性常数。 5、糖异生途径是由相同的一批酶催化的糖酵解途径的逆转。 6、哺乳动物无氧下不能存活,因为葡萄糖酵解不能合成ATP。 7、DNA聚合酶和RNA聚合酶的催化反应都需要引物。 8、变性后的蛋白质其分子量也发生改变。 9、tRNA的二级结构是倒L型。 10、端粒酶是一种反转录酶。 11、原核细胞新生肽链N端第一个残基为fMet,真核细胞新生肽链N端为Met。 12、DNA复制与转录的共同点在于都是以双链DNA为模板,以半保留方式进行,最后形成链状产物。 13、对于可逆反应而言,酶既可以改变正反应速度,也可以改变逆反应速度。 14、对于任一双链DNA分子来说,分子中的G和C的含量愈高,其熔点(Tm)值愈大。 15、DNA损伤重组修复可将损伤部位彻底修复。 16、蛋白质在小于等电点的pH溶液中,向阳极移动,而在大于等电点的pH溶液中将向阴极移动。 17、酮体是在肝内合成,肝外利用。 18、镰刀型红细胞贫血病是一种先天性遗传病,其病因是由于血红蛋白的代谢发生障碍。 19、基因表达的最终产物都是蛋白质。 20、脂肪酸的从头合成需要NADPH+H+作为还原反应的供氢体。 二、单项选择题(请将正确答案填在答题框内。每题1分,共30分) 1、NAD+在酶促反应中转移() A、氨基 B、氧原子 C、羧基 D、氢原子 2、参与转录的酶是()。 A、依赖DNA的RNA聚合酶 B、依赖DNA的DNA聚合酶 C、依赖RNA的DNA聚合酶 D、依赖RNA的RNA聚合酶 3、米氏常数Km是一个可以用来度量()。 A、酶和底物亲和力大小的常数 B、酶促反应速度大小的常数 C、酶被底物饱和程度的常数 D、酶的稳定性的常数 4、某双链DNA纯样品含15%的A,该样品中G的含量为()。 A、35% B、15% C、30% D、20% 5、具有生物催化剂特征的核酶(ribozyme)其化学本质是()。 A、蛋白质 B、RNA C、DNA D、酶 6、下列与能量代谢有关的途径不在线粒体内进行的是()。 A、三羧酸循环 B、氧化磷酸化 C、脂肪酸β氧化 D、糖酵解作用 7、大肠杆菌有三种DNA聚合酶,其中主要参予DNA损伤修复的是()。 A、DNA聚合酶Ⅰ B、DNA聚合酶Ⅱ C、DNA聚合酶Ⅲ D、都不可以 8、分离鉴定氨基酸的纸层析是()。 A、离子交换层析 B、亲和层析 C、分配层析 D、薄层层析 9、糖酵解中,下列()催化的反应不是限速反应。 A、丙酮酸激酶 B、磷酸果糖激酶 C、己糖激酶 D、磷酸丙糖异构酶 10、DNA复制需要:(1)DNA聚合酶Ⅲ;(2)解链蛋白;(3)DNA聚合酶Ⅰ;(4)DNA指导的RNA聚合酶;(5)DNA连接酶参加。其作用的顺序是()。

生化试题及答案答案已填

二、单项选择题 1.关于蛋白质等电点的叙述下列哪项是正确的(D) A.蛋白质溶液的pH值等于7.0时溶液的pH值B.等电点时蛋白质变性沉淀 C.在等电点处,蛋白质的稳定性增加D.在等电点处,蛋白质分子所带净电荷为零 E.蛋白质分子呈正离子状态时溶液的pH值 2.蛋白质变性是由于( D) A.氨基酸排列顺序的改变B.氨基酸组成的改变 C.肽键的断裂D.蛋白质空间构象的破坏E.蛋白质的水解 3.蛋白质变性会出现下列哪种现象(B) A.分子量改变B.溶解度降低 C.粘度下降D.不对称程度降低E.无双缩脲反应 4.蛋白质分子中维持一级结构的主要化学键是(A) A.肽键B.二硫键C.酯键D.氢键E.疏水键5.关于肽键与肽,正确的是(A) A.肽键具有部分双键性质B.是核酸分子中的基本结构键 C.含三个肽键的肽称为三肽D.多肽经水解下来的氨基酸称氨基酸残基 E.蛋白质的肽键也称为寡肽链 6.DNA水解后可得下列哪组产物(A) A.磷酸核苷B.核糖C.腺嘌呤、尿嘧啶 D.胞嘧啶、尿嘧啶E.胞嘧啶、胸腺嘧啶 7.DNA分子中的碱基组成是( A ) A.A+C=G+T B.T=G C.A=C D.C+G=A+T E.A=G 8.核酸分子中核苷酸之间连接的方式是(C) A.2′,3′磷酸二酯键B.2′,5′磷酸二酯键 C.3′,5′磷酸二酯键D.肽键E.糖苷键 9.大部分真核细胞mRNA的3`—末端都具有(C) A.多聚A B.多聚U C.多聚T D.多聚C E.多聚G 10.关于tRNA的叙述哪一项错误的(D) A.tRNA二级结构呈三叶草形B.tRNA分子中含有稀有碱基 C.tRNA二级结构有二氢尿嘧啶环D.反密码环上有CCA三个碱基组成反密码子E.tRNA分子中有一个额外环 11.影响Tm值的因素有(B )。 A.核酸分子长短与Tm值大小成正比B.DNA分子中G、C对含量高,则Tm值增高C.溶液离子强度低,则Tm值增高D.DNA中A、T对含量高,则Tm值增高E.溶液的酸度 12.DNA分子杂交的基础是(A) A.DNA变性后在一定条件下可复性B.DNA 的黏度大 C.不同来源的DNA链中某些区域不能建立碱基配对 D.DNA变性双链解开后,不能重新缔合 E.DNA的刚性和柔性 13.关于酶的叙述正确的一项是(C) A.酶的本质是蛋白质,因此蛋白质都有催化活性

生物化学测试题及答案

生物化学第一章蛋白质化学测试题 一、单项选择题 1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少?B(每克样品*6.25) A.2.00g B.2.50g C.6.40g D.3.00g E.6.25g 2.下列含有两个羧基的氨基酸是:E A.精氨酸B.赖氨酸C.甘氨酸 D.色氨酸 E.谷氨酸 3.维持蛋白质二级结构的主要化学键是:D A.盐键 B.疏水键 C.肽键D.氢键 E.二硫键(三级结构) 4.关于蛋白质分子三级结构的描述,其中错误的是:B A.天然蛋白质分子均有的这种结构 B.具有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素是氨基酸残基 5.具有四级结构的蛋白质特征是:E A.分子中必定含有辅基 B.在两条或两条以上具有三级结构多肽链的基础上,肽链进一步折叠,盘曲形成 C.每条多肽链都具有独立的生物学活性 D.依赖肽键维系四级结构的稳定性 E.由两条或两条以上具在三级结构的多肽链组成 6.蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定:C A.溶液pH值大于pI B.溶液pH值小于pI C.溶液pH值等于pI D.溶液pH值等于7.4 E.在水溶液中 7.蛋白质变性是由于:D A.氨基酸排列顺序的改变B.氨基酸组成的改变C.肽键的断裂D.蛋白质空间构象的破坏E.蛋白质的水解 8.变性蛋白质的主要特点是:D A.粘度下降B.溶解度增加C.不易被蛋白酶水解 D.生物学活性丧失 E.容易被盐析出现沉淀

9.若用重金属沉淀pI为8的蛋白质时,该溶液的pH值应为:B A.8 B.>8 C.<8 D.≤8 E.≥8 10.蛋白质分子组成中不含有下列哪种氨基酸?E A.半胱氨酸 B.蛋氨酸 C.胱氨酸 D.丝氨酸 E.瓜氨酸二、多项选择题 1.含硫氨基酸包括:AD A.蛋氨酸 B.苏氨酸 C.组氨酸D.半胖氨酸2.下列哪些是碱性氨基酸:ACD A.组氨酸B.蛋氨酸C.精氨酸D.赖氨酸 3.芳香族氨基酸是:ABD A.苯丙氨酸 B.酪氨酸 C.色氨酸 D.脯氨酸 4.关于α-螺旋正确的是:ABD A.螺旋中每3.6个氨基酸残基为一周 B.为右手螺旋结构 C.两螺旋之间借二硫键维持其稳定(氢键) D.氨基酸侧链R基团分布在螺旋外侧 5.蛋白质的二级结构包括:ABCD A.α-螺旋 B.β-片层C.β-转角 D.无规卷曲 6.下列关于β-片层结构的论述哪些是正确的:ABC A.是一种伸展的肽链结构 B.肽键平面折叠成锯齿状 C.也可由两条以上多肽链顺向或逆向平行排列而成 D.两链间形成离子键以使结构稳定(氢键) 7.维持蛋白质三级结构的主要键是:BCD A.肽键B.疏水键C.离子键D.范德华引力 8.下列哪种蛋白质在pH5的溶液中带正电荷?BCD(>5) A.pI为4.5的蛋白质B.pI为7.4的蛋白质 C.pI为7的蛋白质D.pI为6.5的蛋白质 9.使蛋白质沉淀但不变性的方法有:AC A.中性盐沉淀蛋白 B.鞣酸沉淀蛋白 C.低温乙醇沉淀蛋白D.重金属盐沉淀蛋白 10.变性蛋白质的特性有:ABC

相关文档
最新文档