利用遗传算法进行结构优化设计(开题报告)

利用遗传算法进行结构优化设计(开题报告)
利用遗传算法进行结构优化设计(开题报告)

本科生毕业设计开题报告书

题目利用遗传算法进行结构优

化设计的一些研究学生姓名

专业班级

指导老师

机械工程学院

2011年11月30日

论文题目用遗传算法进行结构优化设计的一些研究

课题目的、意义及相关研究动态:

优化设计是设计概念与方法的一种革命,它用系统的、目的定向的和有良好标准的过程与方法来代替传统的实验纠错的手工方法。优化设计是寻求最好或最合理的设计方案,而优化方法便是达到这一目的的手段。虽然对大多数现实问题而言,最好饿不一定能实现,但它提供了一种指导思想与标准,形成了概念和运作手段,只要一个问题存在有多种可能的解决方案,它就可以利用优化的思想和概念来更好地解决,故优化方法是求解问题和帮助决策的重要手段和工具。

现代工程结构设计中,大量的应用问题要求结构优化能够适用于各种类型的设计变量(尺寸变量、形状变量、拓扑变量、材料种类。结构布局等)、各种类型的约束(强度。刚度、稳定性、频率等)及各种类型的单元(杆、梁、板、壳、膜、二维元及三维实体元等)的组合结构的线性、非线性、静力、动力或控制结构优化等。为了有效地解决复杂工程优化问题,人们一直在不停地探索。多年来,通过对自然界的探索,人们认为自然界生物的某些行为是可以在计算机上模拟的优化过程。人们将这种生物行为的计算机模拟用于工程目的,提出了一些解决复杂工程优化问题的现代优化方法。

一类是用计算机模拟人类智能行为的智能计算方法,包括模拟人类大脑处理模糊信息能力的模糊系统、模拟人类大脑神经元的连接关系的神经网络和模拟生物进化过程中“物竞天择,适者生存”这一自然规律的进化计算三个方面。其中进化计算已经突破了传统优化方法基于数值计算的确定性搜索模式,而是采取非数值计算的概率性随机搜索模式,已经被广泛地应用于各个领域。进化计算又有分别模拟自然界生物进化不同方面的三条研究途径:遗传算法、进化策略和进化规划,其中以遗传算法(GAs)的研究最为深入、持久,应用也最为广泛。另一类是用计算机模仿生物的某种特性的仿生计算方法,如模拟生物免疫系统自我调节功能的人工免疫系统、模拟蚁群搜索食物过程的蚁群算法等。模拟自然界生物进化过程中“优胜劣汰”机制的遗传算法也属于仿生计算方法的范畴。我此次毕设主要研究的就是基于遗传算法的工程结构优化设计。

国内、国外研究现状:

在二十世纪60年代,美国Michigan大学的Holland教授及其他一些科学家分别独立地通过对自然和人工系统的研究,提出了遗传算法的基本思想。1975年,Holland教授出版了关于遗传算法的经典著作Adaptation in Nature and Artificial System,标志着遗传算法的正式诞生。Holland教授在文献中提出的遗传算法后来被人们称为简单遗传算法(SGA)。简单遗传算法的个体采取二进制编码方式,主要由交换算子产生新的个体,通过选择操作体现“优胜劣汰”的自然选择机制。简单遗传算法以图式定理或称型式定理、模式定理为理论基础,认为遗传算法具有隐含并行性和全局收敛性。这一结论现在被普遍认为是值得怀疑的。经过近三十年的发展,遗传算法的理论研究取得了很大进展,已有不少学术专著出版,有关人工智能的著作中一般也有关于遗传算法的章节,其应用研究更是取得了辉煌的成就。近年来,有不少博士学位论文对遗传算法的理论和应用作了专题论述。现在,遗传算法的实际应用已经渗透到了各行各业。

遗传算法是建立在自然选择和群体遗传学基础上的一种非数值计算优化方法。遗传算法将问题的解表示成字符串,并把这样的字符串当作人工染色体或称为个体,多个个体构成一个群体。随机产生若干个个体构成初始群体,通过对群体的不断进化,利用“优胜劣汰”的自然选择机制,使群体中的个体不断朝着最优解的方向移动,最终搜索到问题的最优解。个体通过遗传算子的作用生成子代个体。通过定义个体的评价函数,称为适应度函数来评价个体的优劣。个体的适应度反映个体适应环境的能力,适应度大的个体生存能力强。按照自然选择的基本原理,适应度越大的个体被选择用来繁殖后代的机会越大。遗传算法是模拟遗传行为的智能算法,研究基于遗传算法的子阵级波束形成,有利于提高子阵分割和波束形成的效率。而遗传算法的理论研究内容主要包括染色体的编码方法、遗传算子、算法的运行过程、遗传控制参数的选择、算法的收敛性和收敛速度以及遗传算法的改进和与其它方法的综合等。

课题的主要内容:

通过对遗传算法和结构优化设计等方面的内容的介绍与分析,在此基础上提出了遗传算法在工程结构优化设计的应用模型,并根据遗传算法的原理和特点,利用一个计算实例验证了遗传算法作为优化方法的高效性的优势。

研究方法、设计方案或论文撰写提纲:

主要运用了比较研究法,通过运用比较研究法,将简单遗传算法与改进的自适应遗传算法对同一桁架结构进行优化设计,并对所得结果进行比较分析,验证了改进的遗传算法的可行性和有效性。

完成期限和预期进度:

1、下达任务书:2011年10月31日前;

2、毕业设计开题:2011年11月30日前;

3、毕业分散实习调研:2012年1月8日-2月12日寒假期间要求进行毕业实习与调研并写出调研报告;

4、中期检查:2012年3月31日前;

5、结题、资格审查:2011年4月23-29日(第11周);

6、答辩时间:2012年5月7日-13日(第13周);

根据2008级专业人才培养计划,毕业设计及答辩主要工作阶段为:2012年上学期第1周至12周(2010年2月13日至5月6日);

主要参考资料:

[1] 韩瑞锋.遗传算法原理与应用实例[M].北京:兵器工业出版社,2007

[2] 王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2002

[3] 刘石夏.工程结构优化设计——原理、方法和应用[M].北京:科学出版社,1984

[4] 陈秀宁.机械优化设计[M].杭州:浙江大学出版社,1991

[5] 周翠玲.工程结构优化设计的遗传算法研究[D].合肥:合肥工业大学,2004

[6] Gerald Recktenwald .数值方法和MATLAB实现与应用[M].北京:机械工业出版社,2004

指导教师意见:

签名:年月日

开题报告会纪要

时间地点

与会人员姓名

职务(职

称)

姓名

职务(职

称)

姓名

职务(职

称)

会议记录摘要:

会议主持人:

记录人:

年月日

教研室主任签名:

年月日

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

TSP问题的遗传算法求解 优化设计小论文

TSP问题的遗传算法求解 摘要:遗传算法是模拟生物进化过程的一种新的全局优化搜索算法,本文简单介绍了遗传算法,并应用标准遗传算法对旅行包问题进行求解。 关键词:遗传算法、旅行包问题 一、旅行包问题描述: 旅行商问题,即TSP问题(Traveling Saleman Problem)是数学领域的一个著名问题,也称作货郎担问题,简单描述为:一个旅行商需要拜访n个城市(1,2,…,n),他必须选择所走的路径,每个城市只能拜访一次,最后回到原来出发的城市,使得所走的路径最短。其最早的描述是1759年欧拉研究的骑士周游问题,对于国际象棋棋盘中的64个方格,走访64个方格一次且最终返回起始点。 用图论解释为有一个图G=(V,E),其中V是顶点集,E是边集,设D=(d ij)是有顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只能通过一次的具有最短距离的回路。若对于城市V={v1,v2,v3,...,vn}的一个访问顺序为T=(t1,t2,t3,…,ti,…,tn),其中ti∈V(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:min L=Σd(t(i),t(i+1)) (i=1,…,n) 旅行商问题是一个典型组合优化的问题,是一个NP难问题,其可能的路径数为(n-1)!,随着城市数目的增加,路径数急剧增加,对与小规模的旅行商问题,可以采取穷举法得到最优路径,但对于大型旅行商问题,则很难采用穷举法进行计算。 在生活中TSP有着广泛的应用,在交通方面,如何规划合理高效的道路交通,以减少拥堵;在物流方面,更好的规划物流,减少运营成本;在互联网中,如何设置节点,更好的让信息流动。许多实际工程问题属于大规模TSP,Korte于1988年提出的VLSI芯片加工问题可以对应于1.2e6的城市TSP,Bland于1989年提出X-ray衍射问题对应于14000城市TSP,Litke于1984年提出电路板设计中钻孔问题对应于17000城市TSP,以及Grotschel1991年提出的对应于442城市TSP的PCB442问题。

遗传算法与组合优化.

第四章 遗传算法与组合优化 4.1 背包问题(knapsack problem ) 4.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

4.1.2 遗传编码 采用下标子集T 的二进制编码方案是常用的遗传编码方法。串T 的长度等于n(问题规模),T i (1≤i ≤n )=1表示该物件装入背包,T i =0表示不装入背包。基于背包问题有近似求解知识,以及考虑到遗传算法的特点(适合短定义距的、低阶的、高适应度的模式构成的积木块结构类问题),通常将P i ,S i 按P i /S i 值的大小依次排列,即P 1/S 1≥P 2/S 2≥…≥P n /S n 。 4.1.3 适应度函数 在上述编码情况下,背包问题的目标函数和约束条件可表示如下。 目标函数:∑==n i i i P T T J 1 )( 约束条件:C S T n i i i ≤∑=1 按照利用惩罚函数处理约束条件的方法,我们可构造背包问题的适应度函数f (T )如下式: f (T ) = J (T ) + g (T ) 式中g (T )为对T 超越约束条件的惩罚函数,惩罚函数可构造如下: 式中E m 为P i /S (1≤i ≤n )i 的最大值,β为合适的惩罚系数。 4.2 货郎担问题(Traveling Salesman Problem ——TSP ) 在遗传其法研究中,TSP 问题已被广泛地用于评价不同的遗传操作及选择机制的性能。之所以如此,主要有以下几个方面的原因: (1) TSP 问题是一个典型的、易于描述却难以处理的NP 完全(NP-complete )问题。有效地 解决TSP 问题在可计算理论上有着重要的理论价值。 (2) TSP 问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。因此,快速、有效 地解决TSP 问题有着极高的实际应用价值。 (3) TSP 问题因其典型性已成为各种启发式的搜索、优化算法的间接比较标准,而遗传算法 就其本质来说,主要是处理复杂问题的一种鲁棒性强的启发式随机搜索算法。因此遗传算法在TSP 问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP 问题等有着多方面的重要意义。

基于遗传算法的库位优化问题

Logistics Sci-Tech 2010.5 收稿日期:2010-02-07 作者简介:周兴建(1979-),男,湖北黄冈人,武汉科技学院经济管理学院,讲师,武汉理工大学交通学院博士研究生,研究方向:物流价值链、物流系统规划;刘元奇(1988-),男,甘肃天水人,武汉科技学院经济管理学院;李泉(1989-),男,湖北 武汉人,武汉科技学院经济管理学院。 文章编号:1002-3100(2010)05-0038-03 物流科技2010年第5期Logistics Sci-Tech No.5,2010 摘 要:应用遗传算法对邯运集团仓库库位进行优化。在充分考虑邯运集团仓库所存放的货物种类、货物数量、出入库频 率等因素的基础上进行库位预分区规划,建立了二次指派问题的数学模型。利用遗传算法对其求解,结合MATLAB 进行编程计算并得出最优划分方案。 关键词:遗传算法;预分区规划;库位优化中图分类号:F253.4 文献标识码:A Abstract:The paper optimize the storage position in warehouse of Hanyun Group based on genetic algorithm.With thinking of the factors such as goods categories,quantities and frequencies of I/O,etc,firstly,the storage district is planned.Then the model of quadratic assignment problems is build,and genetic algorithm is utilized to resolve the problem.The software MATLAB is used to program and figure out the best alternatives. Key words:genetic algorithm;district planning;storage position optimization 1 库位优化的提出 邯郸交通运输集团有限公司(简称“邯运集团”)是一家集多种业务为一体的大型综合性物流企业。邯运集团的主要业务板块有原料采购(天信运业及天昊、天诚、天恒等)、快递服务(飞马快运)、汽贸业务(天诚汽贸)及仓储配送(河北快运)等。其中,邯运集团的仓储配送业务由河北快运经营,现有仓库面积总共40000㎡,主要的业务范围为医药、日用百货、卷烟、陶瓷、化工产品的配送,其中以医药为主。邯运集团库存货物主要涉及两个方面:一个是大宗的供应商货物,如医药,化工产品等;另一方面主要是大规模的小件快递货物,如日用百货等[1]。经分析,邯运集团在仓储运作方面存在如下问题: (1)存储货物繁多而分拣速度低下。仓库每天到货近400箱,有近200多种规格,缺乏一套行之有效的仓储管理系统。(2)货架高度不当而货位分配混乱。现在采用的货架高度在2米以上,而且将整箱货物直接码垛在货架上,不严格按货位摆放。当需要往货架最上层码放货物需要借助梯子,增加操作难度且操作效率较低。货物在拣货区货架摆放是以件为单位的,分拣和搬运速度较慢。 (3)拣货货架设计不当而仓储效率低下。发货前装箱工作主要由人工协同完成,出库效率低,出错率难以控制。 (4)存储能力和分拣能力不能满足需求。根据邯运集团的业务发展现状及趋势,现有的仓库储存和分拣能力远远达不到集团公司对配送业务量的需求。 当前邯运集团的货位分配主要采用物理地址编码的方式,很少考虑货位分配对仓储管理员工作效率的影响。对其进行库位优化设计不仅直接影响到其库存量的大小、出入库的效率,还间接影响到邯运集团的整体经营效益。本文对邯运集团的仓库货位进行优化时,结合考虑仓库所存放的货物种类、货物数量、出入库频率等因素,对仓库货位进行规划,以提高仓储效率。 2库位预分区规划 在进行仓库货位规划时,作如下假设: (1)货物的存放种类已知; (2)货物每种类的单位时间内存放的数量己知; (3) 每一种货物的存取频率已知。 在仓库货位优化中一个重要的环节即预分区。所谓预分区,是指没有存放货物时的分区,分区时只考虑仓储作业人员的速基于遗传算法的库位优化问题 Optimization of Storage Position in Warehouse Based on Genetic Algorithm 周兴建1,2,刘元奇1,李泉1 ZHOU Xing-jian 1,2,LIU Yuan-qi 1,LI Quan 1 (1.武汉科技学院经济管理学院,湖北武汉430073;2.武汉理工大学交通学院,湖北武汉430063) (1.College of Economics &Management,Wuhan University of Science &Engineering,Wuhan 430073,China; 2.School of Transportation,Wuhan University of Technology,Wuhan 430063,China) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 38

基于遗传算法的齿轮减速器优化设计

煤矿机械Coal Mine Machinery Vol.30No.12 Dec.2009 第30卷第12期2009年12月 0引言 工程机械中所用电动机的转速较高,为了满足工作机低转速的需要,一般在电动机和工作机之间安装减速器,用来降低电机的转速或增大转矩,减速器是一种机械传动装置,广泛地应用于运输机械、矿山机械和建筑机械等重型机械中。因此,减速器的设计非常重要。 遗传算法(GA)是模拟生物在自然界中优胜劣汰的自然进化过程而形成的一种具有全局范围内优化的启发式搜索算法。这种方法已在很多学科得到广泛的应用,为减速器的优化设计提供有力的保证。因此,本文采用遗传算法对两级齿轮减速器进行优化设计,并通过与惩罚函数法和模拟退火算法等优化方法计算结果进行比较,来探讨适合于减速器的优化设计方法。 1建立数学模型 两级齿轮传动减速器结构如图1所示。该减速器的总中心距 a∑=[m n1z1(1+i1)+m n2z3(1+i2)]/2cosβ(1)式中m n1、m n2—— —高速级与低速级的齿轮法面模 数; i1、i2—— —高速级与低速级传动比; z1、z3—— —高速级与低速级的小齿轮齿数: β—— —2组齿轮组的螺旋角。 1.1设计变量的确定 在进行两级齿轮传动减速器设计时,一般选择齿轮传动独立的基本参数或性能参数,如齿轮的齿数、模数、传动比、螺旋角等为设计变量。两级齿轮传动由4个齿轮组成,分别用z1、z2、z3、z4表示,高速级的传动比由i1表示,低速级传动比由i2表示,两组齿轮组的法面模数分别由m n1和m n2表示,2组齿轮的螺旋角用β表示,由于两级齿轮传动减速器的总传动比i0,在设计时会给出具体数据,并且满足i0=i1i2,可以得出i2=i0/i1,可以确定独立的参数有z1、z3、m n1、m n2、i1和β。因此,可以确定该设计变量X=[z1,z3,m n1,m n2,i1,β]T=[x1,x2,x3,x4,x5,x6]T。 图1减速器结构简图 1.2目标函数的建立 在对减速器进行优化设计时,首先要确定目标函数。确定目标函数的原则是在满足各种性能要求的前提下,使减速器的体积最小,这样设计的减速器既经济又实用,从而达到了优化的目的。要使减速器的体积最小,必须使减速器的总中心距最小。因此,以减速器的中心距最小建立目标函数为 a∑=[x3x1(1+x5)+x4x2(1+i0/x5)] 6 (2)1.3约束条件的确定 为使两级齿轮传动减速器满足强度、设计变量 基于遗传算法的齿轮减速器优化设计* 吴婷,张礼兵,黄磊 (安徽建筑工业学院机电学院,合肥230601) 摘要:对两级齿轮减速器优化设计进行了分析,建立了其优化设计的数学模型,确定了优化设计的约束条件,采用遗传算法对两级齿轮减速器进行优化设计,并通过实例说明,采用遗传算法对减速器进行优化,可以得到更加优化的设计结果。 关键词:减速器;遗传算法;优化设计 中图分类号:TH132文献标志码:A文章编号:1003-0794(2009)12-0009-03 Gear Reducer Optimal Design Based on Genetic Algorithm WU Ting,ZHANG Li-bing,HUANG Lei (School of Mechanical and Electrical Engineering,Anhui University of Architecture,Hefei230601,China)Abstract:T he optimal design of a gear reducer was analyzed,the mathematic model was established, and the restriction condition was confirmed.Design of the gear reducer was optimized with genetic algorithm and the examples showed that design of the gear reducer based on genetic algorithm can gain more optimized result. Key words:reducer;genetic algorithm;optimal design *安徽省教育厅自然基金项目(2006KJ015C) 轴1轴2轴3 z1z2 z3z4 9

遗传算法电机优化设计简介

收稿日期:20001225 综 述 遗传算法电机优化设计简介 李鲲鹏,胡虔生 (东南大学,南京210096) B rief I ntroduction of Motor Optimizing Design B ased on G enetic Algorithms L I Kun -peng ,HU Qian -sheng (S outheast University ,Nanjing 210096,China ) 摘 要:介绍了遗传算法的基本思想及其特点,实现了基于遗传算法的电机优化设计,讨论了保证其全局收敛性的方法,最后给出了基于遗传算法的电机优化设计实例。 关键词:电机优化设计;遗传算法;全局收敛性中图分类号:T M302 文献标识码:A 文章编号:1004-7018(2001)04-0032-02 Abstract :In this paper ,the essence and a pplications of genetic alg orithms are friendly introduced.Based on com paris ons between ge 2netic alg orithms and conventional methods ,the a pplication of genetic alg orithm to motor design is im plemented.In this process ,the meth 2ods to improve the global convergence of genetic alg orithm are dis 2cussed.Finally ,the results of the optimization of three -phase electri 2cal machine design based on genetic alg orithms are presented. K eyw ords :motor optimal design ;genetic alg orithms (G A );glob 2al convergence 1遗传算法的基本思想及其特点 遗传算法是模拟生物进化机制的一种现代优化计算方法。其基本思想是:首先通过编码操作将问题空间映射到编码空间(如[0,1]L ),然后在编码空间内进行选择、交叉、变异三种遗传操作及其循环迭代操作,模拟生物遗传进化机制,搜索编码空间的最优解,最后逆映射到原问题空间,从而得到原问题的最优解。选择操作模拟了个体之间和个体与环境之间的生存竞争,优良个体有更多的生存繁殖机会。在这种选择压力作用下,个体之间通过交叉、变异遗传操作进行基因重组,期望得到更优秀的后代个体,在这场竞争中胜出。选择、交叉、变异遗传操作都是以概率值进行的。这些概率值与当时生存环境和个体适应能力密切相关。从这里可以看出遗传算法是一种随机性搜索算法,但是它不同于传统的随机搜索算法。遗传算法通过交叉算子(Cross over operator )和变异算子(Mutation Operator )的协同作用确保状态空间([0,1]L )各点的概 率可达性,在选择算子(Selection Operator )的作用下保证迭代进程的方向性。 2电机优化设计的数学模型和一般优化方法 电机优化设计的一般数学模型: min/max :f (x ) g i (X )≤0,i =1,2,3,…,m X j ∈[a j ,b j ],j =1,2,3,…,n (1) 其中:X =[x 1,x 2,x 3,…,x n ]为设计参量即电磁系统的参数,如冲片尺寸、绕组参量等。g i (X )(i =1,2,3,…,m )为约束条件,如性能约束和一般约束。由于目标函数f (X )和约束条件g i (X )都是X 的高度非线性函数,因此电机优化设计问题是求解约束非线性最优化问题。 由于电机设计的目标函数f (X )不是一个单纯的数学表达式,而是一段电机设计分析计算程序,在计算目标函数值的同时还计算各个性能指标值,即约束条件函数值,因此利用目标函数的梯度确定搜索方向的优化方法在电机优化设计中是相当繁琐,直接利用目标函数值的优化方法在电机优化设计中具有优势,遗传算法通过选择、交叉、变异算子的协同作用,既保证了搜索的方向性,又满足了状态空间各点的概率可达性,具有概率意义下的全局收敛性。遗传算法继承了传统确定性算法和一般随机算法的优点,是一种新的启发式随机搜索算法。 遗传算法对约束的处理有两种思路:增加修正算子将约束条件反映在遗传算子的设计中;利用惩罚函数法将有约束优化问题转化为无约束优化问题。在电机优化设计中常采取后者。基于遗传算法的惩罚函数主要分为静态惩罚函数、动态惩罚函数和自适应惩罚函数三种[4]。自适应惩罚函数法效果较好,但较复杂; 静态、动态惩罚函数相对较简单,经常使用。约束条件 23 微特电机 2001年第4期

基于遗传算法和神经网络算法的吊车结构优化设计与实现

·制造业信息化· 图1吊车结构系统有限元模型 Fig.1The finite element model of a fixed crane Based on Genetic Algorithms and Artificial Neural Network Algorithms to Optimize the Structure Design and Implementation of Crane XUE Jia-Hai ,YU Xiao-Mo ,QING Ai-Ling ,ZHOU Wen-Jing ,YE Jun-Ke (College of Mechanical Engineering,Guangxi University,Nanning Guangxi 530004,China ) Abstract:This paper by using the finite element method,orthogonal test method,BP neural network and genetic algorithm to optimization of crane structure system.At last ,the neural network model will be optimized through the generic algorithm and the optimal parameters of the structure dynamic behavior will be obtained . Key words :finite element ;orthogonal experimental method ;BP-neural network ;genetic algorithm 0引言 随着吊车向大型化方向发展,结构在动载荷作用下的振动问题变得日益突出。因此,进行基于动态特性的优化设计,使产品在设计阶段就可以预测其动态特性,可有效减小系统的振动,提高整机工作性能。结构动力学建模方法主要有有限元法、试验模态法、混合建模法及基于人工神经网络的建模方法。基于人工神经网络的动态优化设计建模方法,是利用多层人工神经网络极强的非线性映射功能,来描述和处理动态系统中设计变量及其动态参数之间的关系。人工神经网络模型一旦建立,可取代有限元模型进行结构动态特性重分析,其分 析过程简单而直接,且远比有限元模型计算速度快,尤其适用于工程技术人员使用。由于吊车结构系统的动态特性很难用设计变量显式表达,因此用遗传算法对建立的神经网络模型寻优,计算出可行区域内动态特性最优时的设计变量及目标值。 1吊车结构系统动态特性分析 图1所示为某厂生产的固定式吊车的有限元模型。主要参数为:塔身高48.5m ,起重臂长70m ,最大起重力矩4400kN ·m 。吊车结构的弦杆、腹杆、钢丝绳及集中质量分别以空间梁单元、杆单元、弹簧单元及质量单元模拟。表1所示 为按最大起重力矩工况计算的系统前8阶固有频率。修稿日期:2012-12-21 作者简介:薛加海(1986-),男,云南彝族人,在读硕士研究生。主要研究方向:制造业管理信息化研究;于晓默(1982-),男,蒙古族人,在读博士研究生。主要研究方向:制造业管理信息化研究。 摘要:论文综合利用BP 神经网络、遗传算法有限元法以及正交试验法对吊车结构系统进行优化研究。利 用遗传算法和BP 神经网络建立复杂结构系统动态优化的计算模型,该模型可代替系统原来的有限元模型。首先对吊车起重机结构系统进行模态分析及谐响应动力学分析,找出对结构动态特性影响最大的模态频率,再利用灵敏度分析,确定对动态特性较敏感的设计变量作为神经网络的输入变量,并利用正交试验法确定神经网络训练样本,用有限元模型计算出样本点数据,建立反映结构振动特性的人工神经网络模型,最后利用遗传算法对所建立的神经网络模型寻优,得到使结构动态性能最优的设计参数。 关键词:有限元法;正交试验法;BP 神经网络;遗传算法中图分类号:TP18 文献标识码:A doi:10.3969/j.issn.1002-6673.2013.01.037 文章编号:1002-6673(2013)01-093-03 基于遗传算法和神经网络算法的吊车结构优化设计与实现 薛加海,于晓默,秦爱玲,周文景,叶俊科 (广西大学机械工程学院,广西南宁530004) 机电产品开发与创新 Development &Innovation of M achinery &E lectrical P roducts Vol.26,No.1Jan .,2013第26卷第1期2013年1月 93

基于BP神经网络和遗传算法的结构优化设计

收稿日期:2002-11-13;修订日期:2003-02-12 作者简介:郭海丁(1958-) 男 山东潍坊人 南京航空航天大学能源与动力学院副教授 博士 主要从事工程结构强度~断裂~疲 劳损伤及结构优化设计方法等研究. 第18卷第2期2003年4月 航空动力学报 Journal of Aerospace Power Vol.18No.2 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E Apr.2003 文章编号:1000-8055(2003)02-0216-05 基于BP 神经网络和遗传算法 的结构优化设计 郭海丁1 路志峰2 (1.南京航空航天大学能源与动力学院 江苏南京210016; 2.北京运载火箭技术研究院 北京100076) 摘要:现代航空发动机不断追求提高推重比 优化其零部件的结构设计日益重要 传统结构优化方法耗时多且不易掌握 针对这一问题 本文提出了将BP 神经网络和遗传算法相结合用于结构优化设计的方法 并编制了相应的计算程序 实现了一个含9个设计变量的发动机盘模型的结构优化计算 计算证明 与传统结构优化方法相比 此方法计算速度快~精度良好 关 键 词:航空~航天推进系统;结构优化;神经网络;遗传算法;航空发动机 中图分类号:V 231 文献标识码:A Structure Design Optimization Based on BP -Neural Networks and Genetic Algorithms GUO -ai -ding 1 LU Zhi -feng 2 (1.Nanjing University of Aeronautics and Astronautics Nanjing 210016 China ; 2.Beijing institute of Astronautics Beijing 100076 China ) Abstract :Owing to the increasing demand for raising the thrust -weight ratio of modern aero -engine it is very important to optimize the structures of the components .Traditional optimization methods of structure design are time -consuming and hard to be put into practice .So in this paper a new method of structure design optimization is induced to which both BP neural networks and genetic algorithms (in short :BPN -GA )are applied .A program which contains 9variables is designed for the structure optimization of a disk model with the BPN -GA method which proves that it has better calculating rate and precision than those with traditional optimization methods . Key words :aerospace propulsion ;structure optimization ;neural network ; genetic algorithms ;aero -engine 1 引言 在航空~航天等领域 结构优化设计技术正在得到越来越广泛的应用 结构优化设计逐步进入工程实用阶段!1"3# 但从工程应用角度来看 结构优化设计方法的推广仍存不少障碍 主要表现为: (1)优化中靠经验调整的参数较多 掌握困难;(2)优化计算效率较低 应用现有的结构优化算法进

MATLAB实验遗传算法与优化设计

实验六遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W、t分别是上电极的宽度和厚度,D是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 (1)

其中 为金属的表面电阻率,为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W、D、t,它们组成决策向量[W, D ,t] T,待优化函数 称为目标函数。 上述优化设计问题可以抽象为数学描述: (2) 其中 是决策向量,x1,…,xn为n个设计变量。这是一个单目标的数学规划问题:在一组针对决策变量的约束条件 下,使目标函数最小化(有时也可能是最大化,此时在目标函数 前添个负号即可)。满足约束条件的解X称为可行解,所有满足条件的X组成问题的可行解空间。 2. 遗传算法基本原理和基本操作 遗传算法(Genetic Algorithm, GA)是一种非常实用、高效、鲁棒性强的优化技术,广泛应用于工程技术的各个领域(如函数优化、机器学习、图像处理、生产调度等)。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化算法。按照达尔文的进化论,生物在进化过程中“物竞天择”,对自然环境适应度高的物种被保留下来,适应度差的物种而被淘汰。物种通过遗传将这些好的性状复制给下一代,同时也通过种间的交配(交叉)和变异不断产生新的物种以适应环境的变化。从总体水平上看,生物在进化过程中子代总要比其父代优良,因

遗传算法与优化问题

遗传算法与优化问题 (摘自:华东师范大学数学系;https://www.360docs.net/doc/976636113.html,/) 一、问题背景与实验目的 二、相关函数(命令)及简介 三、实验内容 四、自己动手 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算. 1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).

(1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: (2)遗传算法的步骤 遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation). 遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过

Matlab环境下的遗传算法程序设计及优化问题求解

本栏目责任编辑:谢媛媛 开发研究与设计技术 遗传算法(GA)是借鉴生物界自然选择和群体进化机制而形成的一种全局寻优算法,其本质上是一种基于概率的随机搜索算法。与其它的优化算法相比较,遗传算法具有以下优点:(1)通用性;(2)并行性;(3)简单性和可操作性;(4)稳定性和全局性。 1遗传算法概述 在遗传算法中,首先将空间问题中的决策变量通过一定的编码表示成遗传空间的一个个体,它是一个基因型串结构数据;然后将目标函数转换成适应度值,用来评价每个个体的优劣,并将其作为遗传操作的依据。遗传操作包括三个算子:选择、重组和变异。选择是从当前群体中选择适应值高的个体以生成交配池的过程,交配池是当前代与下一代之间的中间群体。选择算子的作用是用来提高群体的平均适应度值。重组算子的作用是将原有的优良基因遗传给下一代个体,并生成包含更复杂基因的新个体,它先从交配池中的个体随机配对,然后将两两配对的个体按一定方式相互交换部分基因。变异算子是对个体的某一个或几位按某一较小的概率进行反转其二进制字符,模拟自然界的基因突变现象。 遗传算法的基本程序实现流程如下: (1)先确定待优化的参数大致范围,然后对搜索空间进行编码;(2)随机产生包含各个个体的初始种群; (3)将种群中各个个体解码成对应的参数值,用解码后的参数求代价函数和适应度函数,运用适应度函数评估检测各个个体适应度; (4)对收敛条件进行判断,如果已经找到最佳个体,则停止,否则继续进行遗传操作; (5)进行选择操作,让适应度大的个体在种群中占有较大的比例,一些适应度较小的个体将会被淘汰; (6)随机交叉,两个个体按一定的交叉概率进行交叉操作,并产生两个新的子个体; (7)按照一定的变异概率变异,使个体的某个或某些位的性质发生改变; (8)重复步骤(3)至(7),直至参数收敛达到预定的指标。使用遗传算法需要确定的运行参数有:编码串长度、交叉和变异概率、种群规模。编码串长度由问题的所要求的精度来决定。交叉概率控制着交叉操作的频率,交叉操作是遗传算法中产生新 个体的主要方法,所以交叉概率通常应取较大值,但如果交叉概率太大的话又可能反过来会破坏群体的优良模式,一般取0.4- 0.99。变异概率也是影响新个体产生的一个因素,如果变异概率 太小,则产生新个体较少;如果变异概率太大,则又会使遗传算法变成随机搜索,为保证个体变异后与其父体不会产生太大的差异,通常取变异概率为0.0001-0.1以保证种群发展的稳定性。种群规模太大时,计算量会很大,使遗传算法的运行效率降低,种群规模太小时,可以提高遗传算法的运行速度,但却种群的多样性却降低了,有可能找不出最优解,通常取种群数目20-100。从理论上讲,不存在一组适用于所有问题的最佳参数值,随着问题参数的变化,有效问参数的差异往往是十分显著的。 2用Matlab语言来实现遗传算法 Matlab是一个高性能的计算软件,配备有功能强大的数学函 数支持库,适用范围大,编程效率高,语句简单,功能齐备,是世界上顶级的计算与仿真程序软件。利用Matlab来编写遗传算法程序简单而且易于操作。 2.1编码 编码就是把一个问题的可行解从其解空间转换到遗传算法能够处理的搜索空间的转化方法,编码形式决定了重组算子的操作。遗传算法是对编码后的个体作选择与交叉运算,然后通过这些反复运算达到优化目标。遗传算法首要的问题是通过编码将决策变量表示成串结构数据。我们常用的是二进制编码,即用二进制数构成的符号串来表示每个个体。通常根据搜索精度(sca_var)、决策变量上界(range(2))的和下界(range(1))来确定各个二进制字符串的长度(bit_n), 搜索精度为sca_var=(range(2)-range(1))./ (2^bit_n—1),然后再随机产生一个的初始种群(be_gen),其规模为popusize。下面用encoding函数来实现编码和产生初始的种群: function[be_gen,bit_n]=encoding(sca_var,range(1),range(2),popusize) bit_n=ceil(log2((range(2)-range(1))./sca_var));be_gen=randint(popusize,sum(bit_n));2.2译码 决策变量经过编码之后,各个个体构成的种群be_gen要通过解码才能转换成原问题空间的决策变量构成的种群vgen,这样才 收稿日期:2006-01-05 作者简介:梁科(1981-),硕士研究生,研究方向:智能计算与优化方法;夏定纯(1963-),教授,研究方向:人工智能,计算机在线检测。 Matlab 环境下的遗传算法程序设计及优化问题求解 梁科,夏定纯 (武汉科技学院计算机科学学院,湖北武汉430073) 摘要:本文介绍了遗传算法的流程及几个算子,给出了在matlab语言环境下实现编码、译码、选择、重组和变异各算子的编程方法,最后用一个实例来说明遗传算法在寻找全局最优解中的应用。 关键词:遗传算法;matlab;程序设计中图分类号:TP312 文献标识码:A 文章编号:1009-3044(2007)04-11049-03 GeneticAlgorithmProgrammingByMatlabAndOptimizingProblemSolving LIANGKe,XIADing-chun (DepartmentofComputerscience,WuhanUniversityofScience&Engineering,Wuhan430073,China) Abstract:Theseveralfactorsofgeneticalgorithmhavebeenpresentedinthispaper,andtheprogrammingofencoding、decoding、choice、crossoverandmutationofmatlabhavebeengiven,finally,afunctionoptimizingproblemhasbeenpresentedtodemonstratedtheapplicationaboutglobaloptimizingofgeneticalgorithm. Keywords:GA;matlab;programming 1049

相关文档
最新文档