水蓄冷演示

水蓄冷方案(DOC)

第一章工程概况简述 1.工程概况及主要工程内容 工程概况:本项目位于广东省清远市清新区太平镇万邦鞋业办公大厦,总建筑面积约:15000m2,空调面积:10000m2,建筑总高15m,其中楼层主要为研发室,办公室、制模室、空调设备房等等。 本项目主要工程内容为:中央空调机房冷源系统,冷冻水管立管、每楼层预留水管到管井口、蓄水槽防水、保温及布水工程等。 2.设计概况 本次设计采用大温差水蓄冷中央空调系统,夏季设计日总尖峰冷负荷为875KW。 冷源配置:整体规划主机选用1台250RT螺杆机及1台114RT螺杆式,该设备为甲方提供.主机夜间水蓄冷,即夜间为蓄冷工况:供回水温度为 4.5℃/12.5℃,白天为空调工况:供回水温度为7℃/12℃,冷却水供回水温度为32℃/37℃。两台主机在夜间可同时蓄冷或单独蓄冷,把一个蓄冷水池蓄满为止. 本项目一个蓄冷水池的总容积 800m3,按容积利用率0.95计算,蓄冷水池的可利用容积大于760m3。 本项目蓄冷工况运行时,水池进/出水温度为 4.5/12.5 ℃;放冷工况运行时,水池进/出水温度为12.5/4.5 ℃,均采用8 ℃温差。 考虑到水池中冷热水间的热传导和斜温层等因素影响,蓄冷水池的完善度一般取0.90~0.95;考虑到保温层传热的影响,冷损失附加率一般取1.01~1.02。因此,本项目实际蓄冷量约为3200kWh(即915RT)。

第二章制冷系统技术方案 1.设计依据 本方案设计依据如下: 业主提供的设计资料 《采暖通风与空气调节设计规范》 (GB 50019-2003) 《蓄冷空调工程技术规程》 (JGJ 158-2008) 《通风与空调工程施工质量验收规范》(GB 50242002) 《采暖通风与空气调节设计规范》(GB 50019-2003) 《全国民用建筑工程设计技术措施——暖通空调?动力》(2003版) 《全国民用建筑工程设计技术措施——给水排水》(2003版) 《蓄冷空调工程实用新技术》方贵银教授编著 2.负荷计算 水蓄冷空调系统的负荷计算采用国家现行《采暖通风与空气调节规范》(GB50019-2003)的有关规定,求得蓄冷—放冷周期内逐时负荷和总负荷,并绘制出负荷曲线图,作为确定系统形式、运行策略和设备容量的依据。采用系数法对逐时冷负荷进行估算。其中设计日各时段冷负荷值如下表:一期设计日尖峰冷负荷为1156RT,采用逐时负荷系数法,设计日逐时冷负荷分布如下: 表设计日各时段负荷值情况

水蓄冷系统

水蓄冷系统自然分层储水池布水系统设计 一、工程概况 本工程位于四川省成都市的一套错峰运行热回收空调系统,蓄水池采用的是现浇钢筋混凝土水池,形状为方形。 二、蓄冷形式的选择 考虑经济适用性能以及建造施工难度,本蓄冷系统采用自然分层水蓄冷形式。 三、蓄冷池布水系统的设置 自然分层系统主要是利用冷热水密度的不同,使温度低的冷水向下运动,温度高的热水向上运动,从而实现冷热水的分层。从热力学原理我们可以知道,两个温度不同的物体放在一起它们之间会有热传递,我们的蓄冷池水层也一样,会在冷热水层中间形成一个温度过度层,我们叫它斜温层,这个斜温层一方面会把我们的冷水冷量传递给热水(由于传递速率不大,冷量流失不多),另一方面又能起到一个冷热区域隔离的作用,因此蓄冷效果的好坏直接受到斜温层的影响,斜温层越稳定,那么我们的冷热区域热量混合就越少,所以自然分层蓄水池的关键是在冷热水层间建立稳定的斜温层。 1、布水管路系统的形式选择 本工程的储水池为方形,根据国内外实际运行经验,选择H型布管形式更加有效,因此我方对本工程也采用H型的布管形式,如下图所示: 布水器分为上下两层,上部为热水的进出口,下部为冷水的进出口,为了防止有压水扰动斜温层,冷水布水器的出水孔设置在管道的下部,热水布水器的出水孔设置在管道的上部,出水孔的宽度一般控制在管道圆周的90°—120°范围内,如下图所示: 冷水出水孔热水出水口

2、布水器的设计计算 由于蓄冷系统的冷热水温度相差不大,通常小于20℃,所以水的密度差不大,形成的斜温层不是很稳定,因此要求布水器出口的水流速度足够小,以免造成对斜温层的扰动破坏,那么我们就需要一个适当的Fr 数以及Re 数,来保证斜温层的稳定,根据国内外经验,要保证维持稳定的斜温层,Fr ≤2,Re=(240—280),具体的计算式及各参数的含义如下: Fr=[]2/)21(g /ρρρ-h L Q 其中Q 为进口最大流量,m 3/h ,g 为重力加速度,9.8m/s2,h 为最小进水口高度,m ρ1为进口水密度,Kg/m 3, ρ2为储水池内水密度,Kg/m 3,L 为布水器的有效长度,m 。 Re=q/v2 其中q 为布水器单位长度的流量,m 3/s;v 为进口水的运行粘度,㎡/s 。 根据我们的需求运行工况,把数据带入以上两式,就可以求出相应的布水管在水池的最小高度h ,以及布水管单位长度上的出水孔个数及出水孔的大小孔径。 3、布水器管径配置计算 根据主机的额定供水量控制水流速度在1.2m/s 查设计手册求出管径。 4、水泵及水—水板式换热器的选择 根据流量及流速控制扬程,进行水泵的选型,板换根据负荷量进行选择。 5、管网的布置根据现场实际情况根据建筑给排水施工图集综合考虑。

水蓄冷和冰蓄冷选型参考

水蓄冷和冰蓄冷选型参考 来源:本站原创时间:2010-6-12 点击数: 826 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2)Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水

水蓄冷方案汇总

第一章工程概况简述 1. 工程概况及主要工程内容 工程概况:本项目位于广东省清远市清新区太平镇万邦鞋业办公大厦, 总建筑面积约:15000m2空调面积:10000m2建筑总高15m其中楼层主要为研发室,办公室、制模室、空调设备房等等。 本项目主要工程内容为:中央空调机房冷源系统,冷冻水管立管、每楼层预留水管到管井口、蓄水槽防水、保温及布水工程等。 2. 设计概况 本次设计采用大温差水蓄冷中央空调系统,夏季设计日总尖峰冷负荷为 875KW。 冷源配置:整体规划主机选用1台250RT螺杆机及1台114RT螺杆式,该设备为甲方提供?主机夜间水蓄冷,即夜间为蓄冷工况:供回水温度为 4.5 C /12.5 C,白天为空调工况:供回水温度为7C/12 C,冷却水供回水温度为32C /37C。两台主机在夜间可同时蓄冷或单独蓄冷,把一个蓄冷水池蓄满为止. 本项目一个蓄冷水池的总容积800 m3,按容积利用率0.95计算,蓄冷水池的可利用容积大于760m3。 本项目蓄冷工况运行时,水池进/出水温度为4.5/12.5 C;放冷工况运行时,水池进/出水温度为12.5/4.5 C,均采用8 C温差。 考虑到水池中冷热水间的热传导和斜温层等因素影响,蓄冷水池的完善度一般取0.90?0.95 ;考虑到保温层传热的影响,冷损失附加率一般取1.01?1.02。因此,本项目实际蓄冷量约为3200kWh (即915RT)。

第二章制冷系统技术方案 1.设计依据 本方案设计依据如下: 业主提供的设计资料 《采暖通风与空气调节设计规范》(GB 50019-2003) 《蓄冷空调工程技术规程》(JGJ 158-2008) 《通风与空调工程施工质量验收规范》(GB 50242002) 《采暖通风与空气调节设计规范》(GB 50019-2003) 《全国民用建筑工程设计技术措施一一暖通空调?动力(>2003版) 《全国民用建筑工程设计技术措施一一给水排水》(2003版) 《蓄冷空调工程实用新技术》方贵银教授编著 2.负荷计算 水蓄冷空调系统的负荷计算采用国家现行《采暖通风与空气调节规范》(GB50019-2003的有关规定,求得蓄冷一放冷周期内逐时负荷和总负荷,并绘制出负荷曲线图,作为确定系统形式、运行策略和设备容量的依据。采用系数法对逐时冷负荷进行估算。其中设计日各时段冷负荷值如下表: 一期设计日尖峰冷负荷为1156RT采用逐时负荷系数法,设计日逐时冷负荷分布如下:

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

水蓄冷简介

1、水蓄冷空调原理 水蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时段使用蓄藏的低温冷冻水提供空调用冷。即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰电价时段空调主机尽量不开机,为电网“移峰填谷”而节约电费支出。 2、实施目的 通过实施水蓄冷空调工程,取得国家电力部门的相关优惠电价政策(见下表),在实际的“谷制峰用”中,节约大量的空调电费,降低贵公司的运行成本。 大工业用电峰谷电价表 从2005年6月1日抄见电量起执行

二、电力优惠政策 针对广东省目前电力供求紧张的形势,为充分运用电价政策引导电力用户移峰填谷,缓解电力供求矛盾,根据国家有关电价政策,结合我省实际,施行了分时段的电价,常规空调其电价为:高峰段1.0189元/度,平段0.6526元/度,谷段0.3368元/度。 3、水蓄冷中央空调的优点 采用蓄冷空调系统后,可以将原常规系统中设计运行8小时或10小时的制冷机组压缩容量35-45%,在电网后半夜低谷时间(低电价)开机,将冷量以冷冻水的方式蓄存起来,在电网高峰用电(高价电)时间内,制冷机组停机或者满足部分空调负荷,其余部分用蓄存的冷量来满足,从而达到"削峰填谷",均衡用电及降低电力设备容量的目的。水蓄冷空调具有以下优点: A、节省新装用户的空调系统初投资 (1)节省空调制冷系统投资

制冷系统(包括冷却塔等辅机)的容量按日平均负荷选择即可,无需再按冷耗峰值配制。用于宾馆、公寓,机电设施容量减少20-30%,用于办公楼、大厦及单班制企业,减少50-60%。所节省的基建投资及电力增容费,足以补偿蓄冷设施之所需并有较大结余。(湖北省中医 医院采取3台1300KW冷水机组满足住院4.3万平米的 面积,比原设计减少一台1300KW冷水机组 (2)节省电力投资 设备容量减少,所需输电和变电设备的容量也相应减少,电力报装费用及电力设备投资降低。 实现“小马拉大车”,在扩建面积不大的建筑中,可不增设主机,仅增设空调末段设备,即可保证新建建筑的空调功能和要求。 B、节省空调系统运行电费 (1)我国现已实行峰谷用电分时计费,高峰时段与下半夜电价比为3-5∶1(湖北峰谷差为3.75∶1,签定协议后,电力公司与用户方签署备忘录保证优惠电价和优先供电),谷制峰用,充分利用夜间低谷电,节省大量运行电费(湖北武汉市中商广场一年可节约空调运行费用70万元)。 C、节省空调系统运行电量 (1)夜间气温较低,制冷单耗随之下降6-8%

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

蓄冷技术

蓄冷技术 随着生活水平的日益提高,空气调节作为控制建筑室内环境质量的重要技术手段得到广泛的应用。但因为耗电量大,且基本处于用电负荷峰值期,这就为蓄冷技术的应用提供了一个重要的应用领域。 一、蓄冷技术的定义 蓄冷技术是一门关于低于环境温度热量的储存和应用技术,是制冷技术的补充和调节。低于环境温度的热量通常称作冷量。人们的生活和生产活动在许多时候要用到冷量,但是,有些场合缺乏制冷设备,有些时段不能使用制冷设备就需要借助蓄冷技术解决用冷需要。简言之,即冷量的贮存。 二、蓄冷的方法 有显热蓄冷和相变潜热蓄冷两大类。如在蓄冷空调中的水蓄冷空调是显热蓄冷,冰蓄冷空调和优态盐水合物(PCM)是相变潜热蓄冷。 三、冰蓄冷系统技术 冰蓄冷是指用水作为蓄冷介质,利用其相变潜热来贮存冷量。 冰蓄冷系统技术类型主要有冰盘管式、完全冻结式、冰球式、滑落式、优态盐式、冰晶式。 1.冰盘管式蓄冷系统 冰盘管式蓄冷系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关。这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。 2.完全冻结式蓄冷系统 该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进入蓄冰槽,流过塑料或金属盘管内,将管外的冰融化,乙二醇水溶液的温度下降,再被抽回到空调负荷端使用。这种蓄冰槽是内融冰式,盘管外可以均匀冻结和融冰,无冻坏的危险。这种方式的制冰率最高,可达IPF=90%以上(指槽中水90%以上冻结成冰)。生产这种蓄冰设备的厂家较多。 3.冰球式蓄冷系统 此种类型目前有多种形式,即冰球,冰板和蕊心褶囊冰球。冰球又分为园形冰球,表面有多处凹涡冰球和齿形冰球。 冰球式以法国CRISTOPIA为代表,蓄冰球外壳有高密度聚合烯烃材料制成,内注以具高凝固---融化潜热的蓄能溶液。其相变温度为0°C,分为直径77mm(S型)和95mm(C型)两种。以外径95mm冰球为例,其换热表面积为28.2ft2/RTH(0.75m2/KWH),每立方米空间可堆放1300个冰球;外径77mm冰球每立方米空间可堆放2550个冰球。冰球结构图见下左图。

冰蓄冷、水蓄冷方面总结

1 本资料由“江南雨”整理总结 共1页 冷蓄冷系统特点:1、电力移峰填谷、均衡电力负荷,社会效益显著;2、享受峰谷电价,与常规空调相比,运行费用大大降低,经济效益显著;3、降低电力设施投资(无电力增容费),冷机无需按峰值负荷造型,冷机容量和装设功率小于常规空调系统,一般可减少30%~50%,电力高压侧和低压侧容量减少,降低电力建设费用;4、充分利用设备,冰蓄冷空调制冷满负荷运行比例增大,提高冷机COP值和运行效率,冷机工作状态稳定,提高设备利用率并延长机组寿命;5、投资比较,冰蓄冷空调一次性投资比常规空调略高(仅机房部分,末端设备与常规空调系统相同),但若计入配电设施建设费等,有可能投资相当或增加不多,甚至可能投资降低。效率比较:夜间冷机制冷工况进行时,由于气温下降带来的得益可补偿由蒸发温度下降所带来的损失。 全负荷蓄冰空调系统运行电费最省,但由于设备的使用效率低(主机高峰期不运行),所需的主机和储冰器的容量较大,与主机配套的冷却塔和电力设备也大,一次投资费用最多。因此全负荷蓄冰空调在实际工程中较少采用。 部分负荷蓄冰空调在日间电力高峰期,由储冰器和制冷主机联合供冷,设备的使用效率高,相对于全负荷蓄冰模式,主机和储冰器的容量最多可减少至近一半,可实现最少的初投资和最短的投资回收期。但该模式的运行电费比全负荷蓄冰模式高。 新建项目的投资比较:水蓄冷空调增加了水蓄冷槽、蓄冷放冷泵,但减少了主机系统的配置容量,因此初投资与常规空调系统基本相当,甚至低于常规空调系统。冷蓄冷空调由于需增加双工况主机、冰蓄冷设备、乙二醇溶液、乙二醇泵、低温板换等设备,因此初投资明显高出常规空调系统。 系统效率比较:水蓄冷空调系统在蓄冷时比常规系统出水温度低3℃左右,主机的COP值降低有限,考虑到整个系统节能性(如蓄冷时夜间气温比较低,冷却效率高)水蓄冷系统基本不增加耗电量,多数系统甚至可节省电量,真正做到节钱又节能。冷蓄冷空调系统在制冰时,其乙二醇溶液温度需降至‐6℃左右,比常规空调系统温度降低了13℃左右,因此冰蓄冷空调比常规空调的COP值下降了30%~35%。另外,乙二醇溶液的换热性能比水要差。 实用性比较:水蓄冷空调采用常规冷机即可,因此水蓄冷空调既适合新建项目又适合改造项目。冰蓄冷空调需要采用双工况主机、冰蓄冷设备、乙二醇溶液、乙二醇泵、低温板换等设备,因此冰蓄冷难以适用于改造项目,只能用于新建项目。 运行及维护费用:水蓄冷不存在相变,操作简单,易于维护,其运行成本和维护成本低。冰蓄冷系统蓄冷及放冷过程中都有相变过程,操作复杂,运行费用高,维护繁琐。一般来讲同等蓄冷量的冰蓄冷系统的维护费用是水蓄冷系统的2~3倍。 蓄冷系统的制冷机容量不仅与尖峰负荷有关,也与整个设计日逐时负荷分布有关,其值可能小于尖峰负荷,也可能大于尖峰负荷。因此,冰蓄冷的制冷机容量可能大于也可能小于常规系统的制冷机容量。

(42)冰蓄冷、水蓄冷方面总结

1 本资料由“江南雨”整理总结共1页 冷蓄冷系统特点:1、电力移峰填谷、均衡电力负荷,社会效益显著;2、享受峰谷电价,与常规空调相比,运行费用大大降低,经济效益显著;3、降低电力设施投资(无电力增容费),冷机无需按峰值负荷造型,冷机容量和装设功率小于常规空调系统,一般可减少30%~50%,电力高压侧和低压侧容量减少,降低电力建设费用;4、充分利用设备,冰蓄冷空调制冷满负荷运行比例增大,提高冷机COP值和运行效率,冷机工作状态稳定,提高设备利用率并延长机组寿命;5、投资比较,冰蓄冷空调一次性投资比常规空调略高(仅机房部分,末端设备与常规空调系统相同),但若计入配电设施建设费等,有可能投资相当或增加不多,甚至可能投资降低。效率比较:夜间冷机制冷工况进行时,由于气温下降带来的得益可补偿由蒸发温度下降所带来的损失。 全负荷蓄冰空调系统运行电费最省,但由于设备的使用效率低(主机高峰期不运行),所需的主机和储冰器的容量较大,与主机配套的冷却塔和电力设备也大,一次投资费用最多。因此全负荷蓄冰空调在实际工程中较少采用。 部分负荷蓄冰空调在日间电力高峰期,由储冰器和制冷主机联合供冷,设备的使用效率高,相对于全负荷蓄冰模式,主机和储冰器的容量最多可减少至近一半,可实现最少的初投资和最短的投资回收期。但该模式的运行电费比全负荷蓄冰模式高。 新建项目的投资比较:水蓄冷空调增加了水蓄冷槽、蓄冷放冷泵,但减少了主机系统的配置容量,因此初投资与常规空调系统基本相当,甚至低于常规空调系统。冷蓄冷空调由于需增加双工况主机、冰蓄冷设备、乙二醇溶液、乙二醇泵、低温板换等设备,因此初投资明显高出常规空调系统。 系统效率比较:水蓄冷空调系统在蓄冷时比常规系统出水温度低3℃左右,主机的COP值降低有限,考虑到整个系统节能性(如蓄冷时夜间气温比较低,冷却效率高)水蓄冷系统基本不增加耗电量,多数系统甚至可节省电量,真正做到节钱又节能。冷蓄冷空调系统在制冰时,其乙二醇溶液温度需降至-6℃左右,比常规空调系统温度降低了13℃左右,因此冰蓄冷空调比常规空调的COP值下降了30%~35%。另外,乙二醇溶液的换热性能比水要差。 实用性比较:水蓄冷空调采用常规冷机即可,因此水蓄冷空调既适合新建项目又适合改造项目。冰蓄冷空调需要采用双工况主机、冰蓄冷设备、乙二醇溶液、乙二醇泵、低温板换等设备,因此冰蓄冷难以适用于改造项目,只能用于新建项目。 运行及维护费用:水蓄冷不存在相变,操作简单,易于维护,其运行成本和维护成本低。冰蓄冷系统蓄冷及放冷过程中都有相变过程,操作复杂,运行费用高,维护繁琐。一般来讲同等蓄冷量的冰蓄冷系统的维护费用是水蓄冷系统的2~3倍。 蓄冷系统的制冷机容量不仅与尖峰负荷有关,也与整个设计日逐时负荷分布有关,其值可能小于尖峰负荷,也可能大于尖峰负荷。因此,冰蓄冷的制冷机容量可能大于也可能小于常规系统的制冷机容量。

水蓄冷中央空调技术方案.doc

深圳市信义玻璃厂中央空调系统 技 术 经 济 分 析 深圳市安朗节能有限公司 2010年9月

目录 一、空调系统的特点 (2) 1.水蓄冷空调系统特点 (2) 2.常规电制冷冷水机组系统特点 (3) 3.风冷热泵系统特点 (3) 二、项目概况及经济技术条件 (5) 1.项目概况 (5) 2.电力政策 (5) 三、项目空调系统初期投资分析 (6) 1.常规电制冷+风冷热泵系统 (6) 2.水蓄冷系统初投资 (6) 四、项目空调系统机房运行费用分析 (7) 1.运行策略分析 (7) 2.运行费用计算 (8) 五、经济性分析 (9)

目前,本工程中央空调系统采用的是较为普遍的常规电制冷机组与风冷模块机供冷,虽然该系统十分简单,容易操作,但从其运行情况来看,却存在不节能,运行费用高,效果不好等缺点,现在根据甲方要求,对该系统进行改造,从而达到解决以上问题的目的,根据深圳市的电价政策等措施,推荐采用水蓄冷中央空调系统。 一、空调系统的特点 1.水蓄冷空调系统特点 水蓄冷空调是利用夜间低谷荷电力制冷储存在蓄能装置中,白天将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点: a.利用蓄能技术移峰填谷,平衡电网负荷,提高电厂发电设备的利用率, 降低电厂电网的运行成本,节约电厂、电网的基础建设投入。 b.减少冷水机组容量,降低主机一次性投资;总用电负荷少,减少配电 容量与配电设施费。利用峰谷荷电价差,大大减少空调年运行费。c.使用灵活,过渡季节、节假日或者下班后部分办公室使用空调可由蓄 冷槽提供,无需开主机,节能效果明显。具有应急功能,提高空调系统的可靠性。 d.启动时间短,只需15-20分钟即可达到所需温度,而常规系统则需1 小时左右。 e.可实现大温差低温送风变风量空调系统,缩小送水(风)管的管径,

水蓄冷空调系统简介

目录 1、水蓄冷空调系统简介 1.1 水蓄冷空调系统原理 1.2 实施目的 1.3 水蓄冷空调系统特点 1.4 系统设计原则 1.5 蓄冷模式选择 1.6 中旅温泉珠海有限公司实施水蓄冷系统空调好处 2、水蓄冷空调设计方案 2.1 基本情况 2.2 建设蓄冷系统可行性 2.3制冷站主要设备配置 2.4 水蓄冷中央空调系统主要增加设备 2.5 蓄冷水池 2.6 设计计算依据 2.7 水蓄冷系统经济性分析 3、电费节约计算方法 4、合作模式 5、蓄冷水池 4.1 蓄冷设备 4.2 水池保温 6、水蓄冷控制系统 5.1 控制目的 5.2 控制功能

1、水蓄冷空调系统简介 1.1水蓄冷空调原理 水蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时段使用蓄藏的低温冷冻水提供空调用冷。即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰电价时段空调主机尽量不开机,为电网“移峰填谷”而节约电费支出。 1.2 实施目的 通过实施水蓄冷空调工程,取得国家电力部门的相关优惠电价政策,在实际的“谷制峰用”中,节约大量的空调电费,降低工厂的生产成本;也为节能环保做出了一定的贡献。 1.3 水蓄冷空调系统特点 水蓄冷空调代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点: a.减少冷水机组容量,总用电负荷少,减少变压器配电容量与配电设施费。 b.利用峰谷荷电价差,大大减少空调年运行费。 c.使用灵活,节假日部分办公楼使用的空调可由蓄冷水槽直接提供,节能效果明显。 d.可以为较小的负荷(如只使用个别办公室)蓄冷水槽放冷定量供冷,而无需开主机。 e.具有应急功能,提高空调系统的可靠性。 f.上班前启动时间短,只需10—15分钟即可达到所需温度,常规系统约需1小时。 1.4系统设计原则 经济 水蓄冷系统设计须综合考虑影响初期投资及运行成本的各种因素,详尽研究系统的电费、峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,在降低初期投资的同时节约更多的运行电费,转移更多的高峰用电量。 本项目原空调系统部分已投入运行,设计时需考虑不增加空调主机能满足新增建筑的供冷需求,节约设备投入,实现“小马拉大车”。

水蓄冷节能方案

水蓄冷改造方案

目录 目录 1项目概述 (1) 2项目背景 (2) 3设计依据 (2) 4设计原则 (4) 5能耗基准 (5) 5.1 电价 (5) 5.2 制冷站能耗 (5) 6项目技术方案 (6) 6.1 系统原理 (6) 6.2 设计参数 (8) 6.3 蓄冷水池 (9) 6.4 控制系统 (9) 6.5 安装工程 (11) 6.6 主要设备清单 (12) 8项目工期 (13) 9节能效益分析 (14) 10项目总结 (16)

1项目概述 项目名称:水蓄冷节能项目。 项目地点: 项目内容:对大厦原400m3消防水池进行改造,以作空调蓄冷之用。并增加必要的设备和切换阀门,将其接入到大厦原制冷站的工艺系 统中。增加自动化运行管理系统,以实现自动化运行。 技术特征:水蓄冷与原空调系统不直接连接,系统安全可靠;水蓄冷空调系统的蓄冷水池与原冷水机组可并联运行,进一步提高空调的 可调节能力;自动化运行,将显著提高大厦制冷站的运行效率, 大大节约运行费用。 项目工期:20天。 合作模式:合同能源管理模式。 经济效益:年降低运行成本25.5万元。

2项目背景 建筑总面积为50000 m2。 A座B座 建筑面积m2 2500025000 总层数 1818 地上层数 1616 地下层数2 2 标准层面积m2 14351435 大厦的A座和B座共用一套空调系统。制冷站主机、辅机设备使用时间长, 设备老化,系统运行效率低。 空调系统每年5月7日开机运行,至9月30日停机。每天提供空调的时 间为早上7:00至晚上19:00。 3设计依据 本水蓄冷改造系统方案设计依据包括: 针对项目现场情况,我们参照和严格执行国家相关规范如下: ●《采暖通风与空气调节设计规范》(GB50019-2003) ●《建筑给水排水设计规范》(GB50015-2003) ●《公共建筑节能设计标准》(GB50189—2005) ●《容积式和离心式冷水(热泵)机组性能试验方法》(GB/T 10870-2001) ●《建筑电气工程施工质量验收规范》(GB50303-2002) ●《民用建筑电气设计规范》(JGJ/T16-92) ●《工业企业通信设计规范》(GBJ42-81) ●《电气装置安装工程施工及验收规范》(CBJ232—92)

水蓄冷空调

中央空调水蓄冷系统的原理图 一、水蓄冷系统的原理 1、空调谁蓄冷的构成和原理流程图 水蓄冷的主要组成部分:制冷机组、蓄冷水池(蓄冷罐)、板式换热器、供冷水泵、蓄冷水泵、放冷水泵、冷却塔和冷却水泵。与常规制冷系统相比,水蓄冷系统比常规系统多蓄冷水池(蓄冷罐)、板式换热器、蓄冷水泵和放冷水泵等设备。 2、大温差水蓄冷典型系统的原理 系统的基本组成如图所示(可以部分地下或者全地下结构)。空调投入运转时,阀K热、K冷开启,K旁关闭。供冷泵的启停及其出口阀开度由楼宇的需冷量而定,冷水机和充冷泵的开停则由电价的时段划分而定,二者互不干扰。 2.1、充冷工况:电力低价时段,冷水机满载运转,其输出水量G1大於楼宇所需的冷冻水量

G2,余量G3=G1-G2自贮柜“冷端”输入经均流布水环槽注入贮柜底部。柜内冷冻水与回水的交界面上升,升达上布水环槽上缘,充冷过程终结。 2.2、放冷工况:楼宇所需冷冻水量G2大於冷水机出水量G1时,G3=G1-G2<0,自贮柜底部输出的冷冻水经供冷泵馈至楼宇,在换热升温后经K热返回贮柜上布水环槽。贮柜内,冷冻水与回水的界面下降。 3、水蓄冷空调的适用场合 水蓄冷空调由于在夜间需要开动制冷机组进行蓄冷,因此它最适合在夜间没有供冷要求或仅需部分供冷的场所。适合采用水蓄冷技术的具体场合与冰蓄冷空调相同。 与冰蓄冷技术相比,水蓄冷技术显著节省了投资总额,而且不但适用于新建项目,也适合应用于改造项目。对原有系统在无需进行任何改动的情况下,只需在原系统中添加水蓄冷设备所需的管路即可,对原有系统没有任何影响。 4、如何选择水蓄冷或冰蓄冷方式改造? 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 4.1、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰方式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 4.1.1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下, 选择制冷机的最佳平衡计算公式应为: Qc=Q/(N1+C f*N2) Qs= N2* C f *Qc, 式中 Q:以空调工况为基点时的制冷机制冷量(kw), Qs:蓄冰槽容量(KWH); N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)N. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一

水蓄冷技术的优势分析

水蓄冷技术的优势分析 内容摘要:随着社会的发展,能源越来越紧缺,而建筑的能耗占能源消耗的很大一部分,我国近些年来一直倡导建筑节能,水蓄冷技术作为新发展的一项技术也被广泛应用。本文主要根据工程实际情况,介绍水蓄冷技术和它的一些优势。 abstract: with the development of the society, energyincrease and building energy consumption accounts for a large part of the energy consumption. in recent years, china has been advocating the building energy efficiency, water storage technology as a new development of a technology is aslo widely used. this article is mainly based on the actual situation of the project to introduce the water storage technology and some of its advantages. 关键词:节能水蓄冷削峰填谷节省 中图分类号:tv743文献标识码: a 文章编号: 一、水蓄冷技术发展的必要性 环境污染和能源危机已成为当今社会的两大难题,如何合理的利用能源为人类创造现代生活已经成为当今社会的共识。在人类共同警视的时期,蓄能空调应运而生。随着社会的发展电力工业作为国民经济的基础产业,以取得了长足的发展。但是,电力的增长仍然满足不了国民经济的快速发展和人民生活用电的急剧增长的需要,全国缺电情况仍未得到根本的改变。目前电力供应紧张表现在

水蓄冷空调设计手册

水蓄冷空调设计手册 1.水蓄冷空调系统的形式 根据空调系统冷负荷的情况和用户所在地区的分时电价,将水蓄冷分成三种形式。 1.1 完全蓄冷 将全天的空调冷负荷完全转移到电力低谷时段。完全蓄冷的日运行示意图见图1,从图中可以看出,全天空调时段所需要的冷量均由蓄冷系统供给。这种蓄冷运行模式运行费用最省。 这种水蓄冷方式适宜于仅有白天冷负荷的空调系统。 图1 完全蓄冷运行图 时间 1.2 完全削峰蓄冷 将高峰时段的空调冷负荷完全转移到电力低谷时段。完全削峰蓄冷的日运行图见图2,从图中可以看出,全天高峰时段空调所需要的冷量均由蓄冷系统供给(图中 8.00~11.00,18.00~21.00为高峰用电时间)。 这种水蓄冷方式适宜于仅有白天冷负荷的空调系统。

万kcal/h 123456789101112131415161718192021222324 时间 图2 完全削峰蓄冷运行图 1.3 部分负荷蓄冷 将全天空调的冷负荷部分转移到电力低谷时段。部分负荷蓄冷的日运行示意图见图3,从图中可以看出,夜间用电低谷时段储存冷量,补充高峰时段空调所需要的冷量。 这种水蓄冷形式可根据空调制冷系统制冷能力与可能建设蓄冷水池的大小,在运行过程中可执行完全削峰加填平、完全削峰与局部削峰等运行模式。 完全削峰蓄冷是部分削峰的一个特例,它比较特殊,因为这种蓄冷形式的单位能量的运行费用最便宜。

万kcal/h 1357911131517192123 时间 图3 部分蓄冷运行图 通常蓄冷系统是采用完全蓄冷还是部分蓄冷可根据建筑物设计日空调负荷分布曲线图来确定。原则上说,对于设计日尖峰负荷远大于平均负荷,则系统宜采用全部蓄冷;反之,对于设计日尖峰负荷与平均负荷相差不大,制冷能力又较大,且全天运行时,宜采用部分蓄冷(削峰蓄冷)。全部蓄冷式系统的投资较高,占地面积较大,一般不太采用;但由于完全蓄冷的经济效益与社会效益最好,完全蓄冷的形式在条件允许的场合,还是应该提倡采用的。而部分蓄冷式系统的初期投资与常规空调系统相差不大(制冷设备减少,增加蓄冷设备,二者相差不多),运行费用大幅度下降,这种水蓄冷形式同样是应该推广采用的。 2. 水蓄冷空调系统设计 2.1水蓄冷空调系统设计的一般原则 2.1.1 水蓄冷空调系统设计的组成 蓄冷空调系统一般由制冷设备、蓄冷水池、辅助设备、设备之间的管道连接以及控制系统组成。蓄冷空调系统形式多种多样,无论采用哪一种形式,其最终的目的是为用户提供一个舒适的环境。蓄冷空调系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全、可靠、耐用和节能的系统的目的。 2.1.2 水蓄冷空调的基本运行模式

水蓄冷技术

水蓄冷、蓄热知识总结 一、所属行业:空调 二、技术名称:水蓄冷技术 三、适用范围: 具有分时电价地区的医院、宾馆、商场、办公楼、住宅小区、工矿企业等空调系统和工艺用冷领域 四、技术内容: 1.技术原理 水蓄冷中央空调系统是用水为介质,将夜间电网多余的谷段电力(低电价时)与水的显热相结合来蓄冷,以低温冷冻水形式储存冷量,并在用电高峰时段(高电价时)使用储存的低温冷冻水来作为冷源的空调系统 2.关键技术 蓄冷水箱的结构形式应能防止所蓄冷水和回流热水的混合,提高蓄冷水箱的蓄冷效率,增加蓄村冷水可用能量,因此如何降低冷温水界面间斜温层的厚度是技术的关键。 3.工艺流程

五、主要技术指标: 斜温层厚度控制在0.9米内,水箱完善度达95%以上 六、技术应用现状: 国内已经建成的水蓄冷空调项目超过50个,广西、北京、湖北等地的项目较多,其中由XX承建的ZZ的水蓄冷空调项目已被列为XX省研究级示范工程。 七、典型用户: XX精密陶瓷有限公司(电子行业),用于空调制冷。改造前,两台制冷量100万kcal/h冷水机组白天12小时适时供冷,改造后,增加一台容积960立方的蓄冷槽,投资额85万元,夜间电力低谷期8小时开动两台冷水机组对蓄冷罐充冷,白天12小时以蓄冷罐对外供冷,冷水机组不运行。运行效果:1、企业空调节电:12%;2、日运行费用节省:5608kWh×0.75元/kWh - 4908×0.3元= 2734元/天; 3、年运行费用节省: 42万元。投资回收期二年。 XX药业,用于区域供冷。改造前空调总建筑面积30000平米,设计日最大冷负荷3208kW,扩建后空调总建筑面积45000平米,设计日最大冷负荷5197kW,增设1800立方蓄冷水槽,不增加冷水机组。运行效果:水蓄冷改扩建与常规空调扩建比较,年运行费用节约34万元,投资增加43万元,不到二年即可回收多余投资。 八、推广前景和节能潜力: 中国政府部门实行了电力供应峰谷不同电价政策,采用需求侧管理(DSM)的水蓄冷技术来达到削峰填谷,是缓解电力建设和新增用电矛盾的有效的解决途径之一。各地区也出台了各项有关促进蓄冷空调工程发展的政策,推动了蓄冷空调技术的发展和应用。水蓄冷技术不但适用于新建项目,也适合应用于改造项目。可以使用常规冷水机组,适用于常规供冷系统的扩容和改造。并且能够实现蓄冷和蓄热的双重用途。 我国水蓄冷空调工程载冷体工作温差由原来的5℃提高到10℃,甚至更大,使蓄冷密度由原来的5.8KW/M3(5,000大卡/ M3)提高到11.6KW/M3 (10,000大卡/ M3)或更大,由此使蓄冷水槽的容积大大减少,工程造价降低、传热损耗乃至载冷体输送功耗也随之减小,当蓄冷量大于7000kW.h(603万kcal),或蓄冷容积大于760m3时,在各种蓄冷方式中水蓄冷最为经济,尤其在建筑物附近有空地可建蓄冷水罐(槽)或已有的消防水池可利用时,更有其推广使用的价值。夜间气温降低,制冷效率随之可提高6-8%,系统满负荷运转时间大幅度增加,从而使空调系统的总节电率达10%-22%。

冰蓄冷的优缺点

冰蓄冷空调系统主要优点:(1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧张; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室内相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损; (11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 与普通空调相比所具有的优势: (1)节省电费。 (2)节省电力设备费用与用电困扰。 (3)蓄冷空调效率高,具有节能效果。 (4)节省冷水设备费用。 (5)节省空调箱倒设备费用。 (6)除湿效果良好。 (7)断电时利用一般功率发电机仍可保持室内空调运行。 (8)可快速达到冷却效果。 (9)节省空调及电力设备的保养成本。 (10)降低噪乱冷水流量与循环风上减少,即水泵与空调机组运转振动及噪音降低。 (11)使用寿命长。 与普通空调相比所具有的缺点: (1)对于冰蓄冷系统,其运行效率将降低。 (2)增加了蓄冷设备费用及其占用的空间。 (3)增加水管和风管的保温费用。 (4)冰蓄冷空调系统的制冷主机性能系数(COP)要下降。(筑龙建筑) 冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄

相关文档
最新文档