冷梁空调系统的设计与应用

冷梁空调系统的设计与应用
冷梁空调系统的设计与应用

冷樑空调系统的设计与应用

冷梁(樑)是与干工况风机盘管机组相类似的一种诱导式末端装置,能提供完全混合的室内空气分布与舒适度、良好的室内空气品质与静音运转效果,是一项很有潜力的空调技术,符合国家节能减排的发展趋势。冷梁送风系统的工作原理:

冷梁送风系统在室内负荷热交换及热能传送方式上相当于一个气水并行系统。冷梁送风口(以下简称冷梁)是借由空间的热负荷(包括人体)和冷梁面板间的温差所产生“对流”以及“辐射”效应进行热交换,同时冷梁送出干冷空气也有助于人体皮肤表面的蒸发冷却,因此冷梁是一个结合冰水提供冷能控制温度和利用送风温差形成对流循环及水蒸气压力差所建立的空调送风系统。

冷梁是一种干盘管,其主体是一个翅片式冷水盘管,可让空气穿越翅片以达到冷却效果,左右有铝壳支撑,看起来就象是横梁一样。依据是否有室外空气供给,冷梁分为主动式冷梁和被动式冷梁两种形式。

主动式冷梁是指空气循环动力由外部强制送风供给,在冷梁内部形成空气诱导过程,利用强制对流造成空气与盘管间的传热的设备。主动式冷梁主要由外壳、喷嘴、一次空气连接管、换热器(即盘管)、面板等几部分构成。其夏季空气处理过程为:来自室外且经空调箱处理过的干冷一次空气以较高的速度经喷嘴喷出,进入到冷梁中,根据文丘里效应,当高速流动的气流通过阻挡物时,在阻挡物的背风面上方端口附近会形成负压,从而产生吸附作用,诱导室内低速的二次空气经过冷盘管。冷却后的空气和主气流混合形成速度足够大的混合空气,其温度低于房间温度。混合空气通过两个封闭的导流槽形成贴附射流,沿着吊顶流动,然后进入到房间中冷却室内空气。经过相同的循环,房间的热量被冷却盘管带走,从而起到了制冷

的作用。冬季换热器中流动的是热水,冷梁起到了制热的作用。其原理图见下图。

主动式冷梁体积小,结构紧凑,可显著节省建筑空间(尤其在高度方面),且每台冷梁自带送、回风口,使

吊顶整齐美观,简洁明快,末端在干工况下工作,新风分布均匀,明显提高了室内空气品质和热舒适性,设备本身无任何运转部件,室内噪声极低,使工作环境大大改善。另外,主动式冷梁的盘管下一般都配有凝水盘,一旦冷水温度低于露点温度产生结露,凝结水可由凝水盘收集。

被动式冷梁系统是一种集制冷换热功能于一体的空调系统,主要用于排走室内大部分显热负荷,同时还需要一个单独的一次空气系统进行通风和调节湿度。被动式冷梁主要由箱体、孔板面板和带法兰及铝制肋片的水盘管等部分构成,通常悬吊在天花板上方,通过自然对流来供冷。该冷梁系统集舒适、低噪音、节能和低维护的优点于一体。其原理图见下图。

被动式冷梁的优点和主动式冷梁近似,在冷梁盘管中使用较高温度的循环冷水,主机在较高的冷水温度下运行,可以提高能效比和降低能量损耗。同时,被动式冷梁系统的新风仅仅用来调节湿度,可以节约大量的集中处理机组的电能,进一步达到节能的效果。但是,由于被动式冷梁主要依靠自然对流来使气流通过盘管,单位制冷能力取决于盘管的换热能力,其性能比主动式冷梁要低。并且,当机体安装位置不合理时可能会使冷风直接吹到其下面的物体上,产生吹风感。两者主要区别如下:

冷梁送风系统的优缺点:

冷梁送风系统的优点:

(1)能力范围广,冷梁具有较高的冷却和加热能力。

(2)安装简易,冷梁设备能轻易地融合到各种材料的吊顶中去。

(3)低噪音,经过特殊处理的喷嘴在产生最大效应的同时保持了最小的噪音。

(4)无电机,节省能源。

(5)适应性,冷梁设备可以有不同的长度和宽度,这就使冷梁几乎适用于所有吊顶。

冷梁送风系统的缺点:

(1)初投资较高,失控时会产生冷凝水。

(2)外墙结构的设计应避免因气密性不良造成室外湿热的空气渗入与冷梁接触产生冷凝现象。

(3)因冷梁系统的盘管为干盘管,在室内潜热负荷比较大的场所有冷凝风险。

(4)对室内换气次数要求较高或室内污染源较多的地方的场所不宜使用冷梁系统。

冷梁送风系统的设计:

冷梁的空气处理冷梁系统的一次空气通常是新风,必要时可以使用部分回风,采用新回风混合可以节省能量。但采用回风后,风管系统会比较复杂,投资增加,使用回风的经济性并不明显,故工程中大多不设回风管。冷梁系统一般可采用高速送风,故机房尺寸和管道断面比全空气系统小(管道断面仅为全空气系统的

1/3),节约建筑空间,能保证每个空调区的新风需求,卫生情况好。冷梁系统的新回风混合的空气处理过程如下图:

首先室外新风与室内回风混合得到状态点Q,由混合点Q冷却到机器露点K;由送风温差Δt0沿室内等湿线得到送风状态点O,状态点K与O混合至点C,沿室内空气热湿比线到达室内状态点N。

冷梁的设计步骤:

(1)在焓湿图上过室内状态点N,再由送风温差Δt0确定送风状态点O。

(2)由新回风混合比例,得到混合后点Q,Q K为新回风混合后的处理过程,混合后的风须要承担的湿负荷为:

W=L m(d n-d k),d k为含湿量,d n为新回风混合后的空气质量,由上式得到d k,K点为L m与U=95%的交点。

(3)诱导比:由此可以确定C 点。

(4)室内余热量Q分别由q m1,q m2负担,故

其中一次空气处理箱处理冷

量:冷量内盘管处理冷量。

(5)根据一次空气量和诱导比及生产厂家提供的产品样本选择型号合适的冷梁,并根据冷梁的热效率对换热器的供冷量进行校核。

冷梁系统的控制:

从主动式冷梁的运行原理可知,要使冷梁内的表冷器温度高于该处的露点温度,可以通过调节进入冷梁的冷冻水温度及水量的方式来改变表冷器的温度。

通过调节进入冷梁表冷器的水温,使其高于室内露点温度,从而可以保证冷梁在干工况下运行。所以空调水系统采用2套独立的系统,且二者互为备用。其中一套为高温水系统,主要负责冷梁系统的冷冻水供应,其供/回水温度为16℃/19℃。另外一套为低温水系统(主要负责空气处理机组的冷冻水供应,其供/回水温

度为7℃/12℃。其原理如下图所示。

冷梁空调水系统

正常情况下,1,4,6,7号阀门开启,2,3,5号阀门关闭,高、低温水泵同时开启。若低温水机组发生故障,用高温水机组带低温水,则开启3和5号阀门,关闭1,2,4,6,7号阀门,低温水泵开启。若高温水机组发生故障, 用低温水机组带高温水,则2,6,7号阀门开启,1,3,4,5号阀门关闭,高温水泵和低温水泵同时开启。

正常情况下,高温水泵将16℃的高温冷冻水送入冷梁,在房间内吸收热量后,回水温度升高,通过回水管进入集水器。冷梁供水管安装有一个电动调节阀,由房间温控器控制电动调节阀的开启度,当房间温度高于设定值时,增大阀门开启度;低于设定值时,减小阀门开启度,以维持房间内温度恒定。诱导新风经过空气

处理器处理后通过冷梁送入房间,由于室内办公人数变化不大,须要的新风量基本恒定,所以送风机采用定频运行。

冷梁预防结露控制系统:

为了保证冷梁不产生结露,室内空气相对湿度一般控制在50%以下,同时也需安装结露预防控制系统,如下图所示:

进水温度感应器测出进入冷梁的冷却水的温度t1,温度控制器通过测出室内空气温度t2,湿度然后计算出露点温度,t1与t2在冷吊顶控制器内进行比较得出偏差e=t1-t2,当偏差e是负偏差时,则电动阀关闭,诱导空气停止冷却,室内温度升高,冷梁盘管处便不会结露。

冷梁送风系统与其他系统形式的结合:

在大型办公区域,可采用冷梁系统+风机盘管系统,

通过冷梁来消除建筑内区的冷、热负荷并为办公区域提供充足的新风,在外区利用落地式风机盘管来消除窗户等围护结构的得热。同时,还可以使排风经过全热式能量回收机组对新风进行预处理(夏季降温除湿、冬季增温加湿),处理后的新风再送入各层空调机房,由冷梁系统送入办公内区。

小结:由于冷梁系统的安装方便、节能、提供更舒适健康的室内空气品质等各种优点,越来越多的被推广应用起来。根据安装的环境确定冷梁安装的最佳位置,使气流组织更加符合人体的舒适要求。冷梁系统的一次风可以是全新风,也可以是新风与部分回风的混合风。

冷梁系统的节能效果明显,由于提高了冷冻水供水温度,相应地提高了冷水机组的制冷系数COP值。相关测试数据表明:当冷却水出水温度保持恒定时,水冷螺杆机组冷冻水出水温度每降低1℃,制冷量约下降5%,而制冷系数COP值将下降3%左右。

由于冷梁出风速度较小,空气循环相对较弱,导致室内的降温速度较慢,降温延时较长,所以须要提前开机运行。初投资较高,失控时会产生冷凝水,因此,

如何有效探测、避免和控制制冷状态下吊顶的结露问题以及一旦失控时如何处理冷凝水是影响冷梁发展的重要问题。冷梁系统是一个新的课题,需要在实践中不断的探讨和完善,处理好冷梁的不足之处,冷梁的发展前景将会越来越好。

水蓄冷、冰蓄冷空调系统浅析

水蓄冷、冰蓄冷空调系统浅析 发表时间:2019-03-21T15:47:56.907Z 来源:《防护工程》2018年第34期作者:丁岳峰 [导读] 在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 中冶华天南京工程技术有限公司江苏南京 210000 引言 蓄冷技术,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 正文 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2) Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水机与蓄冰槽。 二、水蓄冷 水蓄冷是利用3-7°C的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。 其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要。 三、冰蓄冷与水蓄冷的对比 水蓄冷系统不仅从节能而且从节省初投资方面都具有很大的优越性,它充分利用了建筑的消防水池,不再占用建筑面积,节省了机房面积,但我们不能因此而完全肯定水蓄冷,否定冰蓄冷,他们各用各自的适用范围,下面我们来分析一下:根据公式qc=Q/(N1+CfN2) Qs=N2Cfqc 我们可得出蓄冷比率: η=Qs/Q=(N2Cfqc)/Q=(N2Cfqc)/[(N1+CfN2)×(N2Cfqc)/Q] =1/[1+(N1/(CfN2)) 对于一般的办公建筑来说,N1、Cf、N2均为确定值,分别为8.5,8,0.7,则η=1(1+8.5/0.7×8)=39.7% 在这个比率下,制冷机与蓄冷槽容量配置为最佳,对冰蓄冷而言,因蓄冰槽可根据蓄冷量的大小来配置,不受任何限制,我们就可根据这一比率来确定蓄冷量,从而配置出相应的制冷机与蓄冰槽,但对水蓄冷而言,因为它利用的是消防水池,而建筑物消防水池的容积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下限制下,对于空调面积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接近于39.7%,则我们建议采用冰蓄冷系统,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接于39.7%,甚至高于39.7%,则我们应采用水蓄冷系统,同时,应与水系统的分区结合起来。 造价方面,同等蓄冷量的水蓄冷系统造价约为冰蓄冷的一半或更低。冰蓄冷需要的双工况制冷机组价格高,装机容量大,增加了配电装置的费用,且冰槽的价格高,使用有乙二醇数量多,价格贵,管路系统和控制系统均较复杂,因此总造价高。 蓄冷系统装机容量方面,水蓄冷的蒸发温度与常规空调相差不大,且可采取并联供冷等方式使装机容量减小。冰蓄冷工质的蒸发温度较低,制冷机组在蓄冰工况下的制冷能力系数Cf为0.6~0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况下低0.4~0.35。相同制冷量下,冰蓄冷的双工况制冷机组容量要大于常规空调工况机组。 移峰量上看在同等投入的情况下,水蓄冷系统一般设计为全削峰,节省电费大大多于冰蓄冷系统。冰蓄冷为降低造价,一般为1/2或1/3削峰,节省电费少于水蓄冷系统。

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

水蓄冷系统

水蓄冷系统自然分层储水池布水系统设计 一、工程概况 本工程位于四川省成都市的一套错峰运行热回收空调系统,蓄水池采用的是现浇钢筋混凝土水池,形状为方形。 二、蓄冷形式的选择 考虑经济适用性能以及建造施工难度,本蓄冷系统采用自然分层水蓄冷形式。 三、蓄冷池布水系统的设置 自然分层系统主要是利用冷热水密度的不同,使温度低的冷水向下运动,温度高的热水向上运动,从而实现冷热水的分层。从热力学原理我们可以知道,两个温度不同的物体放在一起它们之间会有热传递,我们的蓄冷池水层也一样,会在冷热水层中间形成一个温度过度层,我们叫它斜温层,这个斜温层一方面会把我们的冷水冷量传递给热水(由于传递速率不大,冷量流失不多),另一方面又能起到一个冷热区域隔离的作用,因此蓄冷效果的好坏直接受到斜温层的影响,斜温层越稳定,那么我们的冷热区域热量混合就越少,所以自然分层蓄水池的关键是在冷热水层间建立稳定的斜温层。 1、布水管路系统的形式选择 本工程的储水池为方形,根据国内外实际运行经验,选择H型布管形式更加有效,因此我方对本工程也采用H型的布管形式,如下图所示: 布水器分为上下两层,上部为热水的进出口,下部为冷水的进出口,为了防止有压水扰动斜温层,冷水布水器的出水孔设置在管道的下部,热水布水器的出水孔设置在管道的上部,出水孔的宽度一般控制在管道圆周的90°—120°范围内,如下图所示: 冷水出水孔热水出水口

2、布水器的设计计算 由于蓄冷系统的冷热水温度相差不大,通常小于20℃,所以水的密度差不大,形成的斜温层不是很稳定,因此要求布水器出口的水流速度足够小,以免造成对斜温层的扰动破坏,那么我们就需要一个适当的Fr 数以及Re 数,来保证斜温层的稳定,根据国内外经验,要保证维持稳定的斜温层,Fr ≤2,Re=(240—280),具体的计算式及各参数的含义如下: Fr=[]2/)21(g /ρρρ-h L Q 其中Q 为进口最大流量,m 3/h ,g 为重力加速度,9.8m/s2,h 为最小进水口高度,m ρ1为进口水密度,Kg/m 3, ρ2为储水池内水密度,Kg/m 3,L 为布水器的有效长度,m 。 Re=q/v2 其中q 为布水器单位长度的流量,m 3/s;v 为进口水的运行粘度,㎡/s 。 根据我们的需求运行工况,把数据带入以上两式,就可以求出相应的布水管在水池的最小高度h ,以及布水管单位长度上的出水孔个数及出水孔的大小孔径。 3、布水器管径配置计算 根据主机的额定供水量控制水流速度在1.2m/s 查设计手册求出管径。 4、水泵及水—水板式换热器的选择 根据流量及流速控制扬程,进行水泵的选型,板换根据负荷量进行选择。 5、管网的布置根据现场实际情况根据建筑给排水施工图集综合考虑。

冷梁空调系统应用探讨

冷梁空调系统应用探讨 天津市天友建筑设计股份有限公司刘冰 0 引言 冷梁系统起源欧洲并且有20多年的使用历史,并且最近几年在美国也得到了广泛的使用,但在中国应用案例不多。但随着温湿度独立控制系统的推广冷梁系统应用也会随之增多。 冷梁系统从原理上讲就是一种无风机干盘管末端,是以对流传热为主导的末端。盘管只承担部分室内显热负荷,不承担潜热负荷,运行时无冷凝水,避免细菌滋生,并且末端无风机,能够非常安静的运行,从而提高房间的环境品质。 1 冷梁的工作原理[1] 从工作原理上冷梁分为主动式冷梁和被动式冷梁,。 1.1主动式冷梁 经处理的一次风(1)(一般为新风)进入冷梁经喷嘴(4)高速喷出后利用诱导原理诱导室内空气(2)经过回风百叶(5),经盘管(6)后在喷嘴(4)出口处的空腔内混合,混合后的空气(3)送人室内,完成一次空气处理过程。其中夏季一次风(1)承担新风负荷及室内潜热负荷及部分室内显热负荷。余下的室内显热负荷由盘管(6)承担;冬季一次风(1)承担新风显热热负荷及加湿负荷,盘管(6)承担室内热负荷。 图1 主动式冷梁工作原理图图2 被动式冷梁工作原理图 1.2被动式冷梁 被动式冷梁的基本原理是根据空气密度差形成的自然对流进行的空气循环,热空气(1)由于密度小一般聚集在房间的顶部,当热空气接触到盘管(2)后被冷却,由于冷空气的密度大下沉至工作区域从而达到降低室内环境温度的作用。夏季被动式冷梁起到的作用与主动式冷梁是一样的,即只承担部分室内显热负荷,其余负荷全部由一次风承担,但被动式冷梁没用供热的功能所以在需要动机供热的地区被动式冷梁需要与其它末端设备共同作用才能完成夏季供冷冬季供热;比如与地板采用联合作用就是个不错的选择。 2冷梁系统的优缺点[2][3] 2.1冷梁系统的优点 冷梁设备集成了送回风口安装快速,相对于全空气系统(包括定风量和变风量)风管较小节省安装空间,设备不含风机等运动部件,且无过滤网,除偶尔清扫一下换热盘管外终身无需其他维护。运行噪声水平低,被动式冷梁完全没有噪声。采用高温水供冷,提高制冷机COP,节省能源消耗。 2.2冷梁系统的缺点

冰蓄冷设计

东华大学环境学院冰蓄冷设计 姓名:何燕娜 班级:建筑1202 学号: 121430205 2014年12月

1.1 项目概述 本项目为浙江某办公楼建设项目的双工况冰蓄冷系统应用。 1.2 冰蓄冷系统在本项目中的应用 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 本文就对冰蓄冷系统设计进行详细阐述,并和传统的风冷系统进行初投资和运行成本的综合比较。 1.3 冰蓄冷系统的工作模式 冰蓄冷系统的工作模式是指系统在充冷还是供冷,供冷时蓄冷装置及制冷机组是各自单独工作还是共同工作。蓄冷系统需要在几种规定的方式下运行,以满足供冷负荷的要求,常用的工作模式有如下几种: (1)机组制冰模式

在此种工作模式下,通过浓度为25%的乙二醇溶液的循环,在蓄冰装置中制冰。此间,制冷机的工作状况受到监控,当离开制冷机的乙二醇溶液达到最低出口温度时制冷机关闭。此种工作模式的示意图如图1-2所示。 图1-2 机组制冰工作模式示意图 (2)制冰同时供冷模式 当制冰期间存在冷负荷时,用于制冷的一部分低温乙二醇溶液被分送至冷负荷以满足供冷需要,乙二醇溶液分送量取决于空调水回路的设定温度。一般情况下,这部分的供冷负荷不宜过大,因为这部分冷负荷的制冷量是制冷机组在制冰工况下运行提供的。蓄冷时供冷在能耗及制冷机组容量上是不经济合理的,因此,只要此冷负荷有合适的制冷机组可选用,就应设置基载制冷机组专供这部分冷负荷,该工作模式示意图如图1-3所示。 图1-3 制冰同时供冷模式示意图 (3)单制冷机供冷模式: 在此种工作模式下,制冷机满足空调全部冷负荷需求。出口处的乙二醇溶液不再经过蓄冰装置,而直接流至负荷端设定温度有机组维持。该工作模式示意图如图1-4所示。

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

冷梁空调系统简介汇总

冷梁空调系统
主动型冷梁空调系统 巴科尔主动型冷梁系统是一种集制冷、供热和通风功能为一体的空调系统,它能够提供良好的室内气候 环境及单独区域的控制。一次风主要用来对消除室内湿负荷,同时也可以供热、供冷和保证新风;末端 换热盘管用来进行室内热/冷负荷的处理。图 1 为主动型冷梁空调系统示意图。冷梁系统集高舒适度、低 噪音、节能和低维护的优点于一体。主要包括标准主动型冷梁、多功能组合式冷梁、玄关吊顶式安装的 水平诱导单元、地板式诱导单元等几种型式,以满足不同建筑美观及功能的需求。 图 2 为主动型冷梁末端工作原理图。从中央空气处理机组(AHU)送到主动型冷梁末端的空气被称之 为一次风。一次风以恒定风量和相对较低的静压条件被送至冷梁末端。一次风通过末端单元内的一排喷 嘴(可调节)送入混合腔体内,通过喷嘴的高速气流在混合腔内产生负压区域,从而诱导室内空气经过 换热盘管后与一次风混合,然后经出风口送入房间内。
图 1 主动型冷梁空调系统示意图
图 2 主动型冷梁末端工作原理图
系统能得到实实在在的能源节约,因为在换热盘管中使用相对较高温度的冷水,这可以在初投资和 冷水主机的运行成本上得到很大的节约。同时它能保证末端换热盘管在干工况下工作,避免出现和其它 系统一样因为冷凝水而带来的维护和卫生方面的问题,譬如风机盘管系统的冷凝水问题。输送的风量大 大减少从而节省了风机能量,因为该系统不依靠空气来弥补显热负荷,这可以使得一次风的需求量可以 减少到仅用来进行通风、湿度控制和诱导室内回风气流。因为它节能的特点,这个系统在欧洲变得越来 越普及。 同时还因为它气流需求量很低, 所以能使用 100%的新风作为一次送风来源, 可以提高空气品质, 因此该系统很适合用于医院或者医疗场所等需要减少空气流通而交叉感染的场所。 巴科尔有全系列的主动型冷梁, 它们的名义标准宽度为 300mm 和 600mm, 长度为 1200~3000mm, 能与市场大多数的吊顶天花配置互相匹配。巴科尔的冷梁使用特殊喷嘴组合技术来使得每个冷梁的制冷 能力可以单独改变。

水蓄冷简介

1、水蓄冷空调原理 水蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时段使用蓄藏的低温冷冻水提供空调用冷。即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰电价时段空调主机尽量不开机,为电网“移峰填谷”而节约电费支出。 2、实施目的 通过实施水蓄冷空调工程,取得国家电力部门的相关优惠电价政策(见下表),在实际的“谷制峰用”中,节约大量的空调电费,降低贵公司的运行成本。 大工业用电峰谷电价表 从2005年6月1日抄见电量起执行

二、电力优惠政策 针对广东省目前电力供求紧张的形势,为充分运用电价政策引导电力用户移峰填谷,缓解电力供求矛盾,根据国家有关电价政策,结合我省实际,施行了分时段的电价,常规空调其电价为:高峰段1.0189元/度,平段0.6526元/度,谷段0.3368元/度。 3、水蓄冷中央空调的优点 采用蓄冷空调系统后,可以将原常规系统中设计运行8小时或10小时的制冷机组压缩容量35-45%,在电网后半夜低谷时间(低电价)开机,将冷量以冷冻水的方式蓄存起来,在电网高峰用电(高价电)时间内,制冷机组停机或者满足部分空调负荷,其余部分用蓄存的冷量来满足,从而达到"削峰填谷",均衡用电及降低电力设备容量的目的。水蓄冷空调具有以下优点: A、节省新装用户的空调系统初投资 (1)节省空调制冷系统投资

制冷系统(包括冷却塔等辅机)的容量按日平均负荷选择即可,无需再按冷耗峰值配制。用于宾馆、公寓,机电设施容量减少20-30%,用于办公楼、大厦及单班制企业,减少50-60%。所节省的基建投资及电力增容费,足以补偿蓄冷设施之所需并有较大结余。(湖北省中医 医院采取3台1300KW冷水机组满足住院4.3万平米的 面积,比原设计减少一台1300KW冷水机组 (2)节省电力投资 设备容量减少,所需输电和变电设备的容量也相应减少,电力报装费用及电力设备投资降低。 实现“小马拉大车”,在扩建面积不大的建筑中,可不增设主机,仅增设空调末段设备,即可保证新建建筑的空调功能和要求。 B、节省空调系统运行电费 (1)我国现已实行峰谷用电分时计费,高峰时段与下半夜电价比为3-5∶1(湖北峰谷差为3.75∶1,签定协议后,电力公司与用户方签署备忘录保证优惠电价和优先供电),谷制峰用,充分利用夜间低谷电,节省大量运行电费(湖北武汉市中商广场一年可节约空调运行费用70万元)。 C、节省空调系统运行电量 (1)夜间气温较低,制冷单耗随之下降6-8%

主动式冷梁技术在环保建筑中的应用.doc

主动式冷梁技术在绿色建筑中的应用 摘要:随着房地产市场的飞速发展,舒适、节能环保及可持续发展已成为建筑业发展的趋势,绿色建筑是将可持续发展的理念引入建筑领域,最大限度地节约资源、保护环境和减少污染,为人们提供健康舒适的空间。笔者通过自己设计的项目中的一些理念,分析了地源热泵结合主动式冷梁技术在绿色建筑中的应用的优越性。 关键词:地源热泵;主动式冷梁;绿色建筑;节能环保 1工程概况 本建筑位于上海市张江,地下二层、地上五层。建筑高度19.4m,建筑面积12879m2。地下二层为汽车库及设备房;地下一层为餐厅、会议室等;地上层为办公、展厅、会议厅等,建筑为办公建筑。 2空调系统设计 室内主要设计参数如下: 夏季:温度26℃,相对湿度60%。冬季:温度20℃,相对湿度60%,新风量30m3/h.p。 经负荷计算得空调总冷负荷516kW,冷负荷指标为68W/m2,总热负荷302kW,热负荷指标为39.8W/m2,考虑上海气候特点,结合绿色建筑对于空调系统节能环保的要求,冷热源采用冷暖型地源热泵系统,主机置于负二层制冷机房,负一层采用风机盘管加新风,其他房间末端采用主动式冷梁加独立新风,选用二台地源热泵主机,单机额定制冷/制热量为263.2/267.2kW。送/回水温度夏季为7/12℃,冬季为40/45℃,冬夏热不平衡,冬夏季负荷相差214kW,地源埋管按冬季设计,

地源热泵机组采用热回收型,夏季多余热量用来制取生活热水。末端设置主动式冷梁,房间冷负荷指标为40W/m2,新风采用独立新风系统,新风机组采用热回收型,新风承担室内湿负荷,处理到设计送风点。夏季水经板换成16/19℃,冬季经板换后进出/水温度为32/29℃。空调系统示意图及空气处理状态过程见图1和图2。 3地源热泵系统 地源热泵系统是可再生能源。它利用地下浅层地热资源,通过输入少量的高品位能源,实现低温位热能向高温位转移。根据项目的岩土热响应试验以及动态模拟计算全年8760小时的逐时冷热负荷,该项目适合采用地源热泵系统。土壤热平衡一直是地源热泵系统需要解决的难题,夏季热泵机组对土壤的热释放量大于冬季的取热量,故本工程地源热泵机组采用热回收型机组,夏季利用机组的冷凝废热提供免费的生活热水,又使冬夏季的热平衡得以实现,一举两得。本项目采用100m双U地源井(夏季放热量约60W/延米,冬季取热量约50W/延米)100口,地源井平均间距大于5m,管径De25。根据总平面图,项目区域满足地源井打井要求并保证全年地源部分热平衡,地源热泵系统最好与供暖供水温度低,制冷供水温度高的末端配套使用,故末端考虑采用冷梁系统。 4主动式冷梁系统 冷梁系统是依靠盘管内的水与的空气通过对流辐射而形成气流循环达到空气调节的目的,冷梁系统分为主动式冷梁和被动式冷梁,主动式冷梁主要利用强制对流来造成空气与盘管间的传热,可以制冷、供热和通风。夏季被处理的气流进入冷梁,然后通过喷嘴进入到冷梁下端,当气流通过阻挡物时,阻挡物的背风

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

空调冷负荷法、冷指标(1)

空调房间、空调系统和制冷系统冷负荷的确定 1 空调房间的冷负荷 《规范》规定:空调房间的夏季冷负荷,因按各项逐时冷负荷的最大值确定,即: 1. 分项计算各项得热引起的冷负荷的逐时值,一般取7︰00~20︰00,计算结果宜列表表示。 2. 将同一时刻的各项冷负荷的逐时值列表汇总,逐时相加,取其最大值作为该空调房间的冷负荷。 2 空调系统的冷负荷 1. 空调系统的冷负荷=空调房间的冷负荷+新风冷负荷+风道风机温升及风量渗漏引起的附加冷负荷+其它进入空调系统的热量所形成的冷负荷+某些空调系统因为采用了冷热量抵消的调节手段而得到的热量。 2. 当一个空调系统负担多个空调房间时,空调房间的冷负荷应按下列情况分别确定: (1)当空调系统末端装置不能随负荷变法而手动或自动控制时,应采用同时使

用的所用房间最大冷负荷的累加值。 (2)当空调系统末端装置能随负荷变法而手动或自动控制时,应将同时使用的所用房间各计算时刻的冷负荷逐时列表累加,取其最大值作为该空调系统空调房间的冷负荷。 3 制冷系统的冷负荷 QR=∑QA*Kτ*KF*Kη 式中:QR——制冷系统的冷负荷。 QR——空调系统的冷负荷 ∑QA——制冷系统所负担的各空调系统冷负荷的累加值。 Kτ——同时使用系数,它反映了制冷系统所负担的各空调系统的同时使用率,视建筑物的使用性质、功能、规模、等级及经营管理等因素而定。取值在0.6~1.0之间。 KF——冷负荷附加系数,它反映了制冷系统、制冷装置及冷水系统的冷量损失,视系统的规模、设备类型、管道长短而定。用冷水间接冷却空气的系

统,取值为1.10~1.15;直接蒸发式表冷器系统,取值为1.05~1.10。 Kη——效率降低系数,它反映了设备运行一段时间后出力及传热效率的降低。其值一般可取1.05~1.10,或者采用设备厂家提供的数据。如果厂家给出的设备制冷量已经考虑了出力及传热效率降低的影响,则应取为1.00。 4 空调工程冷负荷概算法 4.1 综合指标 1. 综合指标=中央空调冷源设备的安装容量/整栋建筑物的空调面积单位:W/㎡ 2. 综合指标是用来粗略估算制冷系统的冷负荷,即冷水机组的安装容量。4.2 分类指标 1. 分类指标=空调热湿处理设备的装机容量/空调设备所承担的各空调房间的空调面积之和单位:W/㎡

(建筑工程设计)冰蓄冷工程设计经验总结

冰蓄冷工程设计经验总结 1.蓄冰槽容量不宜过大,会使蓄冰槽因自重变形,必须增加槽的壁厚以及进行加固,还会给制作安装和运输带来困难,同时也增加了费用。在蓄冰槽的扩散管的排布上,会因扩散管的排布过密而浪费大量的空间,还会影响冻冰及融冰的效果。 2.冷冻站通常位于大厦的地下部分,而地下部分又往往是停车库、站房、办公集中的部位;使用面积非常紧张、造价昂贵;在蓄冰槽的设置及排布上应尽量使用可利用的空间位置。 3.乙二醇溶液100%的价格大约是7100元/吨,价格昂贵。在系统中,如果因为检修或系统渗漏会造成很大的不必要的经济损失,同时对环境造成污染。在施工中,管道及设备用设立牢固的支、吊架,同时系统应进行严格的严密性试验。如果有可能在乙二醇溶液充注前进行水溶液的试运转,观察整个系统的运转情况;及自控系统的测点及电动阀门的动作配合。 4.蓄冰槽在安装过程中,槽与下面的支撑必须进行隔冷处理,以免局部形成冷桥,槽的本体必须进行绝热保温设计以减少冷损失。乙二醇溶液在蓄冰过程中通常在-2.19℃/- 5.56℃范围内,与周围环境的温差大;如果隔热效果不好,在平时的运行中会造成非常大的浪费。所以蓄冰槽的本体的保温厚度应大于标准工况的冷冻水的保温厚度,保温层应严密尽量减少冷损失。 5.蓄冰槽无论是立槽还是卧槽在设计中必须考虑载冷剂(即25%的乙二醇溶液)的分配均匀性。在槽的入口和出口设均流管。本工程采用了DN200扩散管,均流管供、回各一根,在系统冻冰及融冰过程中流向相反。将载冷溶液均匀有效地传给槽内蓄冰球。 6.在蓄冰槽的设计中还考虑人孔以便填充球,在填充蓄冰球时,对高于2M的卧槽或立槽,应预先在槽中充入1/3槽的水以减少填球时的冲击使球均匀地填充(由于冰球的密度比水小,冰球浮于水面有利于冰球的扩散);同时水不宜过多,不利于冰球填满整个冰槽(造成冰槽底部无冰球);槽的底部设卸球孔,也可作排污用。 7.在冰蓄冷系统流程中系统与用户的联接方式有直接连接(即整个系统全部充满乙二醇溶液)和间接连接(即乙二醇溶液系统仅限于一定范围内,通过板式换热器与二次水进行热交换)。本工程在设计中采用了间接连接,乙二醇溶液仅限于在制冷机房内循环;外部空调水系统仍是水系统。这种做法有两个好处: A、乙二醇溶液仅限于制冷机房用,用量少; B、减少在大楼内部存在因检修和维护造成乙二醇溶液泄漏的问题。 C、尤其是高层建筑能起到隔断高层建筑冷水系统静压以保护空调制冷主机;提高蓄冰系统安全系数,减少乙二醇溶液泄漏概率;减少设备及阀部件承压稀疏的作用。其代价仅仅是增加了一台热交换器。 8.本工程采用了部分蓄冰的控制策略而且是制冷机优先,这样制冷主机的容量可以大大减少,同时也减少了电力增容费,在负荷较低时尽量利用所蓄的冰。 9.在系统设计中还应考虑到:乙二醇溶液受球内介质相变时的影响而体积膨胀,在系统中他的相变膨胀量是2%~9%。为此系统应设置膨胀水箱,而且还设置了溶液补给箱作为膨胀水箱外的溢流箱。在系统亏液或浓度降低时进行补液。 设置溶液补给箱有以下作用:

水蓄冷中央空调技术方案.doc

深圳市信义玻璃厂中央空调系统 技 术 经 济 分 析 深圳市安朗节能有限公司 2010年9月

目录 一、空调系统的特点 (2) 1.水蓄冷空调系统特点 (2) 2.常规电制冷冷水机组系统特点 (3) 3.风冷热泵系统特点 (3) 二、项目概况及经济技术条件 (5) 1.项目概况 (5) 2.电力政策 (5) 三、项目空调系统初期投资分析 (6) 1.常规电制冷+风冷热泵系统 (6) 2.水蓄冷系统初投资 (6) 四、项目空调系统机房运行费用分析 (7) 1.运行策略分析 (7) 2.运行费用计算 (8) 五、经济性分析 (9)

目前,本工程中央空调系统采用的是较为普遍的常规电制冷机组与风冷模块机供冷,虽然该系统十分简单,容易操作,但从其运行情况来看,却存在不节能,运行费用高,效果不好等缺点,现在根据甲方要求,对该系统进行改造,从而达到解决以上问题的目的,根据深圳市的电价政策等措施,推荐采用水蓄冷中央空调系统。 一、空调系统的特点 1.水蓄冷空调系统特点 水蓄冷空调是利用夜间低谷荷电力制冷储存在蓄能装置中,白天将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点: a.利用蓄能技术移峰填谷,平衡电网负荷,提高电厂发电设备的利用率, 降低电厂电网的运行成本,节约电厂、电网的基础建设投入。 b.减少冷水机组容量,降低主机一次性投资;总用电负荷少,减少配电 容量与配电设施费。利用峰谷荷电价差,大大减少空调年运行费。c.使用灵活,过渡季节、节假日或者下班后部分办公室使用空调可由蓄 冷槽提供,无需开主机,节能效果明显。具有应急功能,提高空调系统的可靠性。 d.启动时间短,只需15-20分钟即可达到所需温度,而常规系统则需1 小时左右。 e.可实现大温差低温送风变风量空调系统,缩小送水(风)管的管径,

冰蓄冷空调系统

冰蓄冷空调系统 一.简介 夏季,普遍使用的空调系统已成为建筑物高峰用电的大户,由于电力用户的用电性质不同,各类用户最大负荷出现的时间不同,这样负荷的累加就形成了用电的高峰和低谷负荷,高峰负荷的大小决定了电网必须投入的发电设备容量(包括发电机组和输配电设备等的容量),如果各类用户最大负荷出现的时间过分集中,为了满足高峰期用户电力需求,电力部门一方面必须建设新电站增加电网容量,一方面必须提高电网的调峰能力,适应用户的负荷变化,用户方面也需采取节电和调荷措施,否则,只能通过拉闸限电的方法减轻电站运行压力。 昼夜蓄冷调荷技术就是针对这种局面提出并得以运用的。它是让制冷机组在夜间电力负荷低谷时运行,并将产生的冷量储存起来,在次日需要时再将冷量释放出来满足用冷负荷,以实现用户侧冷复合用电的移峰调谷,达到均衡电网负荷的目的。 简单地说,蓄冷调荷技术有以下三方面的社会效益: 1)通过移峰调谷,达到均衡电网负荷的目的。减少国家对新增电站和电网的投资,同时减少调峰调荷的工作,避免限电拉闸。 2)稳定电厂机组负荷水平,改善机组运行效率。 3)减少CO2和烟尘排放量,从而保护环境,减轻温室效应(火力发电机组负荷率低 时,CO2和烟尘排放量大)。 4)对用户来说,利用夜间电价低廉时段制冰,在电价高峰时段使用,能大大减少

空调 系统运行费用。 对用户的作用: 1)减少制冷机容量,提高制冷系统运行的可靠性。 2)减少水泵,冷却塔的装机容量 3)减少配电容量,从而减少部分投资 4)减少运行费用 5)可采用低温送风系统,提高工作空间的环境质量 6)可作紧急冷源使用 7)将计算机控制结合进蓄冰系统中,实现运行模式的优化 冰蓄冷中央空调已逐渐成为移峰填谷,均衡电网用电,提高电网经济运行水平的有力手段,它代表了集中空调设计的发展方向。 二.蓄冷技术的分类: 1 水蓄冷 水蓄冷是利用水的显热()进行蓄冷,即夜间制出2-5度的低温水供白 天使用,供回水温差一般8度。 2 冰蓄冷 冰蓄冷是利用冰的熔解热(335KJ/KG)进行蓄冷,由于水的熔解热远大于水的显热,故蓄冰槽容积远小于蓄水槽容积。 常用冰蓄冷系统有: 1)冰盘管式(外融冰方式) 冰直接冻结在蒸发盘管上,融冰是使空调回水通过冰与冰之间形成自然通道,与

干盘管和主动式冷梁系统的探讨及应用

干盘管和主动式冷梁系统的探讨及应用 苏州工业园区设计研究院有限责任公司 张勇 摘要 介绍了干工况风机盘管系统的工作原理,举例计算了干工况风机盘管系统的空气处理过程,分析了干工况风机盘管系统的控制过程,并介绍了干工况风机盘管的一种先进的应用形式―主动式冷梁。 关键词 干工况风机盘管 露点温度 主动式冷梁 1.干工况盘管系统的产生及早期应用 “干工况风机盘管”(以下简称干盘管)一般是指风机盘管表冷器表面的温度高于所处理空气的露点温度,在盘管表面无冷凝水析出,是一个干工况过程。干盘管只承担室内显热负荷,不承担潜热和湿负荷,故在早期的一些电子厂房和药厂的净化系统中,由于其显热负荷很大,湿负荷很小或几乎没有,引入了干盘管系统,既节省了空调机房又避免了冷凝水问题。 2.干盘管系统的特点 (1) 风机盘管运行时无冷凝水,不会形成细菌滋生及冷凝水的二次污染,提高了卫生效果。 (2)干盘管系统节能效果明显。由于提高了供水温度,相应提高了冷水机组的性能系数(COP 值)。约克公司的测试数据表明:当冷却水出口温度保持恒定时,水冷螺杆式机组出水温度每降低1℃,制冷量将下降5%,而COP值将下降3%左右。另外,在电子厂和药厂的洁净系统中,送风量是很大的,同使用空气处理机组(AHU)比较,使用风机盘管系统的耗电量会明显减小。 由于干盘管的以上两个特点,目前的空调系统设计中,在湿负荷较小的场所(如一些高档办公楼和宾馆等)已经开始逐步采用干盘管系统。 3.干盘管系统的空气处理过程 干盘管系统的空气处理过程分为干式风机盘管的空气处理过程和新风的处理过程。 下面以苏州地区某工程中的办公室空调系统为例,房间面积为100m2,人数为10人,新风量为300m3/h,房间要求:t n=25℃,φn=60%,房间内显热负荷为5kW,除了人员外,房间内无其它湿负荷,冷冻机的供/回水温度为12/20℃,n为室内点,W为室外点,O为干盘管送风点,K为新风送风点。见图一。(苏州地区室外空气计算干球温度为t w=34.1℃,湿球温度t ws=28.2℃,焓i w=90.54kJ/kg,含湿量d w=21.89g/kg,空气密度ρ=1.2kg/m3。)

空调知识学堂 冷负荷计算和主机选型

空调知识学堂冷负荷计算和主机选型本文中,让我们来共同了解一下冷负荷计算和主机选型常识: 空调冷负荷包括:围护结构传入室内热量、人体散热、灯光照明发热、电热设备散热、新风带入热量以及其他因素引起的冷负荷增加。各部分的冷负荷可通过有关公式计算出来,但是在实际中,有时没有详细的计算资料,冷负荷的获得也可根据常见场所单位面积冷负荷指标估算得到。 计算公式: Q总= Q人体热+ Q传入热+ Q灯光热+ Q设备热+ Q新风热+ Q 其他 水管选型: 冷冻水管的设计。根据冷冻水流量G、水流速v可计算出水管的管径。 计算公式:水管内直径D=2(G/π×v)1/2 v:冷冻水流速,推荐流速1-2.4m/s 冷凝水管大小可根据冷量确定 Q≤7KW时,DN=20mm

Q=7.1-17.6KW时,DN=25mm Q=17.7-100KW时,DN=32mm Q=101-176KW时,DN=40mm 其中:DN——表水管直径 主机选型: 主机的选型直接关系到整个工程的投资及运行费用、噪音、承重及放置等一系列问题。 根据未端总冷量再加上总冷量的15%冷量损失,即总冷量Q主机=(1+0.15)Q未端。主机选27KW总冷量,但住宅还要考虑使用率,不在同一时刻使用等。比方说白天主要用于餐厅,起居室、书房,而晚上用于书房、卧室及主卧室,经核算白天的总热负荷相对较大,选主机能满足白天全负荷的冷量就必能满足晚上的冷量,即总冷量为 17KW,选用LSQ17HD一台。 冷负荷计算和主机选型知识就为您讲解到这里,如果您有任何疑问,或者您对中央空调安装、施工方面的内容感到陌生,并有兴趣了解与之相关的其他内容。

水蓄冷空调系统简介

目录 1、水蓄冷空调系统简介 1.1 水蓄冷空调系统原理 1.2 实施目的 1.3 水蓄冷空调系统特点 1.4 系统设计原则 1.5 蓄冷模式选择 1.6 中旅温泉珠海有限公司实施水蓄冷系统空调好处 2、水蓄冷空调设计方案 2.1 基本情况 2.2 建设蓄冷系统可行性 2.3制冷站主要设备配置 2.4 水蓄冷中央空调系统主要增加设备 2.5 蓄冷水池 2.6 设计计算依据 2.7 水蓄冷系统经济性分析 3、电费节约计算方法 4、合作模式 5、蓄冷水池 4.1 蓄冷设备 4.2 水池保温 6、水蓄冷控制系统 5.1 控制目的 5.2 控制功能

1、水蓄冷空调系统简介 1.1水蓄冷空调原理 水蓄冷技术是将夜间电网多余的谷段电力与水的显热相结合来蓄冷,并在白天用电高峰时段使用蓄藏的低温冷冻水提供空调用冷。即空调主机晚上谷段电价制冷通过蓄冷槽蓄冷,高峰电价时段空调主机尽量不开机,为电网“移峰填谷”而节约电费支出。 1.2 实施目的 通过实施水蓄冷空调工程,取得国家电力部门的相关优惠电价政策,在实际的“谷制峰用”中,节约大量的空调电费,降低工厂的生产成本;也为节能环保做出了一定的贡献。 1.3 水蓄冷空调系统特点 水蓄冷空调代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点: a.减少冷水机组容量,总用电负荷少,减少变压器配电容量与配电设施费。 b.利用峰谷荷电价差,大大减少空调年运行费。 c.使用灵活,节假日部分办公楼使用的空调可由蓄冷水槽直接提供,节能效果明显。 d.可以为较小的负荷(如只使用个别办公室)蓄冷水槽放冷定量供冷,而无需开主机。 e.具有应急功能,提高空调系统的可靠性。 f.上班前启动时间短,只需10—15分钟即可达到所需温度,常规系统约需1小时。 1.4系统设计原则 经济 水蓄冷系统设计须综合考虑影响初期投资及运行成本的各种因素,详尽研究系统的电费、峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,在降低初期投资的同时节约更多的运行电费,转移更多的高峰用电量。 本项目原空调系统部分已投入运行,设计时需考虑不增加空调主机能满足新增建筑的供冷需求,节约设备投入,实现“小马拉大车”。

水蓄冷空调

中央空调水蓄冷系统的原理图 一、水蓄冷系统的原理 1、空调谁蓄冷的构成和原理流程图 水蓄冷的主要组成部分:制冷机组、蓄冷水池(蓄冷罐)、板式换热器、供冷水泵、蓄冷水泵、放冷水泵、冷却塔和冷却水泵。与常规制冷系统相比,水蓄冷系统比常规系统多蓄冷水池(蓄冷罐)、板式换热器、蓄冷水泵和放冷水泵等设备。 2、大温差水蓄冷典型系统的原理 系统的基本组成如图所示(可以部分地下或者全地下结构)。空调投入运转时,阀K热、K冷开启,K旁关闭。供冷泵的启停及其出口阀开度由楼宇的需冷量而定,冷水机和充冷泵的开停则由电价的时段划分而定,二者互不干扰。 2.1、充冷工况:电力低价时段,冷水机满载运转,其输出水量G1大於楼宇所需的冷冻水量

G2,余量G3=G1-G2自贮柜“冷端”输入经均流布水环槽注入贮柜底部。柜内冷冻水与回水的交界面上升,升达上布水环槽上缘,充冷过程终结。 2.2、放冷工况:楼宇所需冷冻水量G2大於冷水机出水量G1时,G3=G1-G2<0,自贮柜底部输出的冷冻水经供冷泵馈至楼宇,在换热升温后经K热返回贮柜上布水环槽。贮柜内,冷冻水与回水的界面下降。 3、水蓄冷空调的适用场合 水蓄冷空调由于在夜间需要开动制冷机组进行蓄冷,因此它最适合在夜间没有供冷要求或仅需部分供冷的场所。适合采用水蓄冷技术的具体场合与冰蓄冷空调相同。 与冰蓄冷技术相比,水蓄冷技术显著节省了投资总额,而且不但适用于新建项目,也适合应用于改造项目。对原有系统在无需进行任何改动的情况下,只需在原系统中添加水蓄冷设备所需的管路即可,对原有系统没有任何影响。 4、如何选择水蓄冷或冰蓄冷方式改造? 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 4.1、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰方式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 4.1.1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下, 选择制冷机的最佳平衡计算公式应为: Qc=Q/(N1+C f*N2) Qs= N2* C f *Qc, 式中 Q:以空调工况为基点时的制冷机制冷量(kw), Qs:蓄冰槽容量(KWH); N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)N. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一

相关文档
最新文档