光学检测技术在生物分析中的应用

光学检测技术在生物分析中的应用
光学检测技术在生物分析中的应用

光学检测技术在生物分析中的应用

光学分析手段由于其响应速度快、干扰小、设计简单、易操作等优势被广泛应用于生命分析中。电致化学发光分析(ECL)及表面等离子体(SPR)暗场成像分析是光学检测中重要的检测手段。ECL无需激发光源,其光背景小、灵敏度较高、线性范围宽,并具有较好的重现性、可控性与选择性。

SPR暗场成像具有高通量、高灵敏度、免标记、高时空分辨率等优势。本论文主要着眼于研究基于ECL与SPR暗场成像两种光学手段用于生物化学检测方面的应用。主要内容如下:1、基于g-C3N4纳米纤维的电致化学发光技术用于水样中Pb2+的检测构建g-C3N4纳米纤维(CNNFs)与Ru(phen)32+电致化学发光共振能量转移作用(ECL-RET)用于Pb2+的高灵敏度检测。

通过简单的热水解法结合电解法合成具有较强ECL信号和较好稳定性的

g-C3N4纳米纤维(CNNFs)。同时在电极上吸附碳纳米管和金纳米颗粒,不仅可以增强材料的ECL信号,也能提高光信号的稳定性。在电极上修饰Pb2+适配体(cDNA)互补的DNA形成双链结构,由于Ru(phen)32+能够嵌入在双链结构中,并与电极表面的CNNFs发生ECL-RET作用,进而增强ECL。

当检测物Pb2+与电极上的cDNA形成四连体打开DNA的双链结构使得

Ru(phen)32+从双链中释放出来后,ECL-RET作用阻断,体系的ECL信号衰减。因此可以通过ECL的强度变化对水样中Pb2+进行定量分析。此外,在体系中加入Exo I对Pb2+的适配体进行剪切循环放大降低检测限,达到0.04pM。

这种简易的探针对于分析水样成分含量具有广泛的应用前景。2、SPR与暗场散射成像联用免标记的单分子microRNA杂交行为的研究通过自组装SPR与暗场散射成像联用,对金纳米颗粒进行实时的成像记录。在这个工作中,我们构建了

一个基于光驱动的纳米振子用于免标记单分子microRNA杂交行为动力学研究的探针。

我们在金膜表面修饰上纳米振子并与金球之间形成一定的间隙宽度,由于microRNA能够与金膜表面的互补DNA杂交形成刚性的双链结构,因而可以阻止金球的振动。同时,我们通过自组装SPR与散射成像联用实现了对间隙宽度变化的高灵敏实时监测。我们将microRNA解旋和杂交的状态与体系中纳米振子振幅联系起来。

并总结出microRNA的杂交速度与三维空间扩散有关,反应的温度和浓度对杂交和解旋的频率有着重要的影响。此成像体系对后期单分子检测和纳米力学的研究有着十分重要的意义。

生物医学光学探析

生物医学光学探析 1会议概况 工业激光和生物医学光学国际学术会议于1999年10月25~27日在华中科技大学学术交流中心举行。教授和干福熹院士担任大会主席,来自14个国家和地区的221位代表(境外代表46人)出席了会议。会议得到美国SPIE的支持,正式出版了会议论文集SPIE(工业激光论文集卜3862和SPIE(生物医学光学论文集关3863.前者共收录论文121篇,其中,国外作者论文13篇;后者共收录论文95篇,其中国外作者论文31篇。大会特邀了世界激光和生物医学光学领域的着名学者作主题报告,全体大会4个特邀报告,工业激光分会8个邀请报告,生物医学光学分会4个邀请报告,这些特邀报告和邀请报告学术水平高,均反映了当前国内外研究的前沿课题。 2工业激光研究的最新热点 在工业激光器领域,由于半导体激光器迅速发展,准连续器件已达到 4kw.因此,在许多应用领域均有采用半导体激光器代替传统的气体激光器及固体激光器的发展趋势。但是,由于半导体激光器目前光束质量较差,作为过渡的发展阶段是大量采用半导体激光器泵浦的固体激光器,其激光输出功率也已达到4kw 级,光束质量获得明显改善。因此,在世界市场上,1998年固体激光器的销售金额,首次超过了CO:激光器。据估计,近期激光技术的应用在高功率激光器方面仍然会以COZ激光器和固体激光器为主。在激光应用领域,除了高功率激光应用以外,国外已经在激光精密加工领域开展了深入的研究工作,如法国利用准分子激光超精密打孔、划线,精度非常高,孔径圆整、光滑,在陶瓷如S13N;,A12O3等方面的精密处理方面已有深人的研究。本次会议涉及到准分子激光应用的文章有15篇,涉及领域有激光淀积超导薄膜,金刚石薄膜、非晶金刚石薄膜等,激光制备光栅,激光制备纳米颗粒。我国大陆学者主要把准分子激光用于制备薄膜,台湾大学是用准分子激光制备光栅,法国学者用激光制备纳米颗粒。可见国外用准分子激光加工开展面比我国广泛。从本次会议看,国外今后重点发展研究领域和前沿课题包括:高功率半导体激光器,近五年内千瓦级器件将会实现实用化;半导体激光泵浦固体激光器,特别是盘片固体激光器近五年内也将会突破千瓦级;半导体激光泵浦全固体化紫外激光器已突破3W,如果能提高一个量级,将会逐步取代紫外气体激光器;利用准分子激光对电子元器件处理作了很深入的研究,在这些方面已成为激光超精密加工应用的重要发展方向。国内外在激光制备薄膜方面的研究始

AOI自动光学检测仪维护保养手册—范文

AOI 自动光学检测仪维护保养手册—范文 一、使用安全注意事项为安全使用本设备请注意以下事项严格遵守: 1 .操作人员必须接受相关的安全和操作培训。 2 .供给电源必须符合设备铭牌指定的工作电压、电流及赫兹,地线必须接地。 3 .在插接电源电缆时注意插牢,防止接触不良或脱落。 4 .设备整体移动过程中注意不要使设备受到强烈震动和撞击。 5 .移动设备电脑,注意轻挪轻放,防止电脑内部板卡震动松懈。 6 .不能频繁开关设备主电源、电脑电源。 7 .软件在启动过程中,应避免用手接触PCB 夹具,防止夹伤手指。 8 .PCB 夹具固定适当,注意防止检测过程中PCB 脱落。 9 .若检测过程中发生紧急情况,请迅速按“ 急停” 按钮。待解除紧急情况后,复位“急停” 按钮后按提示操作。 1 0 .若发现设备检测运动异常,立即停止检测,在排除操作人员程序错误后,请直接与本公司或授权销售商联系。 1 1 .请注意设备工作环境,保养和及时维护。 二、设备正常工作环境 为了确保设备正常工作,保证检测的准确性和延长设备使用寿命,请注意提供设备正常工作所需要的工作环境。 1 . 设备放置位置已调整水平(1 米+/-0.0 2 米)。 2 . 周围温度5-40 度内,湿度在35-80 %范围内。 3 . 没有阳光直射,不会结露。 4 . 少粉尘,无飞溅液体喷出。 5 . 设备安装时应在前后留有足够的空间,以供操作、设备散热及维修等方便。

6 . 保持设备外观的清洁,不允许使用腐蚀性的溶剂擦拭表面。 7 . 设备在工作过程中不允许受到剧烈震动或撞击。 三、维护保养内容 1. 工具和保养消耗品:天那水,工业酒精,N46, 3 #,真空吸尘器,T形六角棒,刷子,无尘纸, 除锈剂 2. 用碎布清洁机器表面. 3. 用无尘布清洁机器内部 4. 检查及清洁各个传感器. 5. 检查并用无尘布清洁照相机. 6. 检查传送皮带有无破损松动及皮带滑轮有无松动,必要时更换. 7. 测试各项功能控制系统是否正常. 8. 清洁所有防尘盖,控制箱和冷却风扇灰尘,风扇过滤器. 擦拭干净所有盖板油污。 9. 检查轴承,螺丝等活动连线部分是否有松动现象,如有松动需紧固。 10. 校正机器参数和做备份。(参考操作手机) 11. 清洁、润滑传送轨道的导轨与丝杆。 四、维护保养目的: 为了能使机器更加稳定快速的运行, 提高产品品质与效率,并能延长机器使用寿命。 五、注意事项 1 . 使用环境 如:由于粉尘过多或其他垃圾会造成换气孔等堵塞,有腐蚀性物品接触产品表面,造成的故障。 由于移动中震动或撞击造成的故障。 2 . 保养机器时如有必要,一定要先关掉机器电源。 3 . 在保养时,当发现有部件即将损坏时应立即更换。 4 . 任何部件拆卸过必须做相应的校正。 5 . 做保养后须暖机20 分钟.

自动光学检测与自动X光检测

AXI/ICT组合测试是否会成为SMT测试的主流技术? 由于市场竞争日趋激烈,电子产品制造商对如何提高产品成品率和产量格外关注。而在SMT生产线中采用何种测试技术对以上两点的影响举足轻重。 目前线路板越来越复杂,传统的ICT测试受到了极大限制。随着线路板的密度不断增大,ICT测试必须不断增加测试接点数,这会有两个弊端:一、将导致测试编程和针床夹具的成本呈指数倍上升。开发测试程序和夹具通常需要几个星期的时间,更复杂的线路板则要一个多月。二、将导致ICT测试出错和重测次数的增多。对ICT构成挑战的还有不断减小的引脚距离。目前高引脚数的封装包括PGA、 QFP、 BGA等,它们的封装密度可达到每平方厘米有几百只引脚。这种引脚密度使测试探针难以插入,也无法增加专用测试焊盘。因此,ICT测试已不能满足未来线路板的测试要求,电子制造商们需要寻找新的测试手段。 自动光学检测系统(AOI)是近几年发展起来的以光学系统为主的检测系统。AOI系统的优点是测试速度快、缺陷捕捉率高。AOI不但可对焊接质量进行检验,还可对光板、焊膏印刷质量、贴片质量等进行检查。因此,采用AOI系统,不仅可以提高生产效率,也能提高产品质量。目前,已有越来越多的厂商采用了AOI系统。但AOI系统的缺点是不能检测电路错误,同时对不可见焊点及双面焊PCB的检测也无能为力。 自动化X射线检测技术(AXI)是目前最新型的测试技术。AXI技术自诞生以来发展迅速,已由2D检验法发展到目前的3D检验法。3D检验法采用分层技术,即将光束聚焦到任何一层并将相应图像投射到一高速旋转的接收面上,由于接收面高速旋转使位于焦点处的图像非常清晰,而其它层上的图像则被消除,故3D检验法可对线路板两面的焊点独立成像。3D检验法还可对那些不可见焊点如BGA等进行多层图像“切片”检测,即对BGA焊接连接处的顶部、中部和底部进行彻底检验。AXI技术对工艺缺陷的覆盖率很高,通常达97%,而工艺缺陷一般要占总缺陷的80%到90%。但AXI技术不能测试电路电气性能方面的缺陷和故障。将AXI检测技术和传统的ICT在线测试方法相结合,则可以取长补短,使SMT检测技术达到完美的结合。目前一种被称为“AwareTest”的技术使AXI系统和ICT系统可以“互相对话”,能消除两者之间的重复测试部分。通过减小ICT/AXI多余的测试覆盖面可减少70%的ICT接点数量,因而可加快ICT编程并降低ICT夹具和编程费用。 由于AXI/ICT组合测试具有较多的优点,在过去的两三年里,应用AXI/ICT组合测试线路板的情况出现了惊人的增长。很多公司如朗讯、思科和北电等都采用了AXI/ICT组合测试。但昂贵的价格是阻碍厂商采用AXI技术的一个主要因素。目前,AXI检测设备的价格是AOI纯光学检测系统的3到4倍。不过这种情况正在得到改善。AXI技术需要的数字相机的成本正在迅速降低,业界已开始从512×512像素AXI系统转向1024×1024甚至2048×2048像素系统。处理器和存储器芯片价格的降低,使AXI系统已开始采用PC上的处理器进行图形处理,大大增强了它的计算能力。 随着AXI系统成本的降低和性能的提高,AXI/ICT组合测试检测技术是否会取代目前的ICT检测技术,成为未来主流的检测技术?敬请发表高见! 王义美格电子设备制造有限公司 我认为不同的测试方法是各有千秋的,对于中国的电子制造商来说,由于各自的生产规模、产品种类的不同,因此不会有某一种测试方法特别适合于中国的厂家。下面是我了解的一些情况,拿出来供大家参考。

自动光学检测仪

用在多层板的内外层或高密度双面板表面质量的检查。但是在其它方面的应用也比较多,特别是对高密度互连结构(HDI)微通孔和表面的检查。而且还应用在IC封装和装配中的印制板的检查。AOI很有效地应用诸多方面,为提高印制板的表面质量,发挥了重要的作用。 一.底片的检查 自动光学系统的设计是根据底片检查工艺特性,采用透射的模式即将需要检查的底片放置在玻璃桌台上,而不采用抽真空台面,而是通过玻璃桌面的下的光束透过玻璃进行对底片的扫描来检查底片相应位置上的缺陷。使用这种方法对底片进行表面质量的检查,为更加清晰的将印制板表面缺陷呈现出来,对该系统的放大装置作了很大的改进,达到了既是印制板表面的很小的缺陷都能检查出来。当在印制板生产过程中使用该系统时,就能将印制板面的5μm和5μm以下的缺陷检查出来,并且能够适当的区别错误的真假,就是采用高级的识别系统大大的减少故障缺陷的发生。 在反射模式将白色的纸放置在光具(底片)之下,介于光具透明和不透明范围之间,以提高其对比度。经过交替的变换达到或接近所使用的标准的AOI系统。这种方法不是通用的的,更多的倾向是由于微小的划伤,才会出现假的缺陷报告。另外,容易产生错误的是由于光具表面银粒子无光泽,再通过AOI的反射模式,特别是焦点不是在光具银乳胶膜上,就很容易出现假的读出。而表面无光泽的粒子致使真空度下降。这些粒子是甲基丙烯酸树脂,直径大约7微米,它能够使光发出散光。 如果AOI是开始并记录应该发现的缺陷,唯一的其缺陷的尺寸应比10微米要大,这样用它来检查就能解决所存在的质量问题,而且还有可能解决对精细导线(S/L=30/50微米)的检查。对于有阻抗要求的导线宽度公差控制不会比±5-10微米变化更大是可能的。而AOI的灵敏度不会记录这样的线宽变化。检查光具(即底片)通常应该在清洁的、黄光室内进行,不建议到AOI作业区进行检查,应此区域清洁度不够。因此,实际上AOI机不是检查内层或外层的光具膜的机器。. AOI实际上也可以检验玻璃底版的图像质量,即玻璃上镀铬膜。这些底版通常制作和检验是通过转包公司再送交PWB制造厂的。典型的要求就是底版上的缺陷的尺寸在5微米或更大些。许多使用玻璃底版的用户也使用检查玻璃的工具进行检查,以延长使用的寿命。但使用玻璃底版也很贵。 玻璃底版至少要曝光百次以上,最典型的次数为200-500次,就必须使用AOI对玻璃底版图像进行质量检查,还可以通过曝光试验,如底版的图像好就可以接着使用,或者进行修整。 二.覆盖有光敏抗蚀剂的板在进行显影前的潜像质量的检查 这一步最基本的想法就是在湿处理前,对板的图像与孔对准度进行检查,及早发现如有质量缺陷就很容

AOI自动光学检测

AOI的全称是Automatic Optic Inspection(自动光学检测),是基于光学原理来对焊接生产中遇到的常见缺陷进行检测的设备。AOI是近几年才兴起的一种新型测试技术,但发展迅速,目前很多厂家都推出了AOI测试设备。当自动检测时,机器通过摄像头自动扫描PCB,采集图像,测试的焊点与数据库中的合格的参数进行比较,经过图像处理,检查出PCB上缺陷,并通过显示器或自动标志把缺陷显示/标示出来,供维修人员修整。 编辑摘要 目录 1 什么是AOI 2 什么是AOI测试技术 3 AOI的主要目标 4 针对AOI检查的PCB优化设计 5 新一代自动光学检测技术(AOI):内嵌式检测技术 自动光学检查(AOI, Automated Optical Inspection) 一、定义 运用高速高精度视觉处理技术自动检测PCB板上各种不同帖装错误及焊接缺陷.PCB板的范围可从细间距高密 度板到低密度大尺寸板,并可提供在线检测方案,以提高生产效率,及焊接质量 . 通过使用AOI作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误,以实现良好的过程控制.早期发现缺陷将避免将坏板送到随后的装配阶段,AOI将减少修理成本将避免报废不可修理的电路板. 二、主要特点 1)高速检测系统 与PCB板帖装密度无关 2)快速便捷的编程系统 - 图形界面下进行 -运用帖装数据自动进行数据检测 -运用元件数据库进行检测数据的快速编辑 3)运用丰富的专用多功能检测算法和二元或灰度水 平光学成像处理技术进行检测 4)根据被检测元件位置的瞬间变化进行检测窗口的 自动化校正,达到高精度检测 5)通过用墨水直接标记于PCB板上或在操作显示器 上用图形错误表示来进行检测电的核对 三、AOI 检查与人工检查的比较 人工检查AOI检查 pcb<18*20及千个pad以下 人重要辅助检查 时间正常正常 持续性因人而异好 可靠性因人而异较好 准确性因人而异误点率高

AOI光学检测仪的原理

由于对AOI光学检测仪的原理不是很理解,有哪位高手帮忙翻译一下以下的原理与简介?在这里先说声谢谢了! 悬赏分:20 |提问时间:2008-12-2 10:42 |提问者:hamigua200708 人认识物体是通过光线反射回来的量进行判断,反射量多为亮,反射量少为暗。AOI与人判断原理相同。AOI通过人工光源LED灯光代替自然光,光学透镜和CCD代替人眼,把从光源反射回来的量与已经编好程的标准进行比较、分析和判断。目前最常用的图像识别算法为灰度相关算法,通过计算归一化的灰度相关(normalized greyscale correlation)来量化检测图像和标准图像之间的相似程度。灰度相关的取值介于“0”和“1000”之间,“1000”代表图像完全相同,“0”代表图像完全不同,一般通过设定一个临界相关值(如650)来判断检测图像是否发生变化。相关值大于或等于临界相关值的为正常图像(元件或焊点正常),而小于临界相关值的为异常图像(元件或焊点异常)本社导入的AOI设备采用归一化的彩色相关算法(normalized color correlation),以RGB三基色的阶调度进行计算相似度。 AOI简介 ( 1)强大的检测功能 Otek 自动光学检测仪采用自主开发的归一化的彩色相关算法(normalized color correlation) 来代替一般使用的灰度相关算法。由于彩色相关算法充分利用彩色图像中的红绿兰(RGB)三基色的全部信息,所以比灰度相关算法具有更高的识别准确性和稳定性。彩色相关算法所利用的信息量比灰度相关算法多2倍,所以彩色相关的运算速度也减慢2倍,但是通过采用专门为多媒体应用所开发的专门运算指令集(MMX)技术使得Otek自动光学检测仪可以在同样或者更短的时间内搜索更多的图像信息。该设备依靠特殊的光源设置,可以使焊点在少锡和多锡时的图像与正常情况时图像的明暗程度发生明显变化,从而可以检测出焊锡错误。Otek的焊锡检测算法具有检测准确度高、误检低的特点。 推荐答案 1 引言 在激烈的市场竞争中,电子产品制造厂商必须确保产品的质量,为了保证产品的质量,在产品制造过程中对各个生产环节半成品或成品进行质量监测尤为重要,随着表面组装技术(SMT)中使用的印制电路板线路图形精细化、SMD元件微型化及SMT组件高密度组装、快速组装的发展趋势,采用目检或人工光学检测的方式检测已不能适应,自动光学检测(AOI)技术作为质量检测的技术手段已是大势所趋。 2 AOI工作原理 SMT中应用AOI技术的形式多种多样,但其基本原理是相同的(如图1所示),即用光学手段获取被测物图形,一般通过一传感器(摄像机)获得检测物的照明图像并数字化,然后以某种方法进行比较、分析、检验和判断,相当于将人工目视检测自动化、智能化。 2.1 分析算法

光电检测技术知识点

1、光电效应应按部位不同分为内光电效应和外光电效应,内光电效应包括(光电导)和(光生伏特效应)。 2、真空光电器件是一种基于(外光电)效应的器件,它包括(光电管)和(光电倍增管)。结构特点是有一个真空管,其他元件都放在真空管中 3、光电导器件是基于半导体材料的(光电导)效应制成的,最典型的光电导器件是(光敏电阻)。 4、硅光电二极管在反偏置条件下的工作模式为(光电导),在零偏置条件下的工作模式为(光生伏特模式)。 5、变象管是一种能把各种(不可见)辐射图像转换成为可见光图像的真空光电成像器件。 6、固体成像器件(CCD)主要有两大类,一类是电荷耦合器件(CCD),另一类是(SSPD)。CCD电荷转移通道主要有:一是SCCD(表面沟道电荷耦合器件)是电荷包存储在半导体与绝缘体之间的界面,并沿界面传输;二是BCCD称为体内沟道或埋沟道电荷耦合器件,电荷包存储在离半导体表面一定深度的体内,并沿着半导体内一定方向传输 7、光电技术室(光子技术)和(电子技术)相结合而形成的一门技术。 8、场致发光有(粉末、薄膜和结型三种形态。 9、常用的光电阴极有正电子亲合势光电阴极(PEA)和负电子亲合势光电阴极(NEA),正电子亲和势材料光电阴极有哪些(Ag-O-Cs,单碱锑化物,多碱锑化物)。 10、根据衬底材料的不同,硅光电二极管可分为(2DU)型和(2CU)型两种。 11、像增强器是一种能把微弱图像增强到可以使人眼直接观察的真空光电成像器件,因此也称为(微光管)。 12、光导纤维简称光纤,光纤有(纤芯)、(包层)及(外套)组成。 13、光源按光波在时间,空间上的相位特征可分为(相干)和(非相干)光源。 14、光纤的色散有材料色散、(波导色散)和(多模色散)。 15、光纤面板按传像性能分为(普通OFP)、(变放大率的锥形OFP)和(传递倒像的扭像器)。 16、光纤的数值孔径表达式为,它是光纤的一个基本参数、它反映了光纤的(集光)能力,决定了能被传播的光束的半孔径角 17、真空光电器件是基于(外光电)效应的光电探测器,他的结构特点是有一个(真空管),其他元件都置于(真空管)。

AOI自动光学检测设备程序编写

前言 AOI全名称为全自动光学检测设备,他的主要作用是代替人工查找PCB的各种外观缺陷,能够起到高效、准确、省时、节约成本等作用。神州视觉科技阿立得品牌AOI是国内首家从事AOI研发、生产、销售及售后服务为一体的综合性AOI制造产家,产品已遍及全国各个省市自治区,远销欧美、日本、中AOI全名称为全自动光学检测设备东以及澳大利亚, 神州视觉科技阿立得品牌AOI的基本原理是:在光学原理的基础上,采用统计建模原理,通过图像比对,排除OK图样,剔选出错误图片。从而达到检测错误的能力。我们在镜头图下所看到的图像就是通过光学原理呈现出来的特征,红光是从上往下照,所以表面光滑能够垂直反射光线的铜铂就显示红色,蓝色从侧面照,反射焊点的光,所以蓝色为焊点图像,绿光为补偿光。当我们选取一些特征点做标准后,就需要对这些标准进行分析他的像素分布以及变化规律,这就用到了统计学原理,通过对大量的OK图片加以统计,对图片中三种光亮度以及分布范围分析,建立起一套数据库信息模型,每一个标准框都是一个模型,通过这个模型来比对待测图像,如果待测图片与标准图差异很大,大于设定的允许误差范围值,电脑则自动剔出为NG。如此达到检测错误的能力。只要程序统计够全面,设定的允许误差范围值合理,检出率高误判率低不难实现,关键在于编程人员对程序的控制能力。 程序编写一共有六个步骤:1、新建程序2、程序面设置3、MARK设置4、程序编写5、学习调试6、检测。在这六个步骤当中,前三个步骤是用来确定PCB板基本信息。第一个步骤是给程序取个名称,第二个步骤是确定PCB的大小。第三个步骤是选特征性点做标致。前三个步骤很简单,对于一般熟练的编程员来说,这三个步骤三分钟之内可以完成。相对而言,第四步程序编写与第五步学习调试是整个编程过程中的难点与重点,这两步骤要多练习才能达到熟练。尽可能一步到位,尽量避免重复操作和无效操作,提高编程效率。在此要说明的是编程主要可分为两种方法,手动编程和CAD数据编程,这两种方法都需要对PCB板上所有的元器件进行标准注册,手动编程是一个一个将PCB板上的元件注册或者链接标准,灵活度不高,做完程序后还要对程序进行仔细检查,是否存在漏掉的元件未注册,相对而言CAD数据画框就具备无需耽心有未注册的元件,除非手贴件,而非贴片机贴上去,他只需要根据元件料号将对应的元件注册即可,更具编程的傻瓜式。但是CAD数据编程在做程序前要取CAD数据,在做程序的过程中还需要将所画出的元件框删除,效率被降低,手动编程则没这些麻烦。在此建议,如果PCB板上的元件在50个以下建议使用手动编程,50个元件以上就可以考虑CAD数据了。另外一个,调试方面,调试程的方法很多,我们必须找准一个合适本公司PCB板质量的一种方式来编程,调试的方法可从速度以及效果上分为:1、要求快速达到检测。此方法选全部学习和限量100来完成,能够学习五六块板即可达到检测,但是这就要求PCB板品质本身很好,错误很少,学习的时候没学习错误。2、要求程序稳定。误判一直保持在同一水平,检出率稳定。此方法适用于大部分的PCB产品,对产品本身要求不高,只要求程序在测试过程中能够稳定,不容易发生误判一下猛增。此方法就是本教程所重点介绍的方法。3、要求检出率高,误判低。这种方法采用的是一直错误暂停的模式进行学习调试,需要大量的时间对程序中的标准进行一个一个学习修改,需要调试的PCB板也用得很多,这种方法主要针对于错误大量而且极不稳定,PCB质量很差才使用这种方法,但是他的优点在于,每一个点都是经过人工确认后学习,大量派生标准核对,一旦学习足够,程序相当稳定,检出率非常高。 在程序编写中,我们会面对很多不同种类的电子原器件,有很多原器件可能你从来没有碰到过,有时不知如何下手,在AOI可以总结为四种框,丝印框、短路框、本体框、焊点

光电检测技术介绍

?(一)检测 一、检测是通过一定的物理方式,分辨出被测参数量病归属到某一范围带,以此来 判别被测参数是否合格或参数量是否存在。测量时将被测的未知量与同性质的标准量进行比较,确定被测量队标准量的倍数,并通过数字表示出这个倍数的过程。 在自动化和检测领域,检测的任务不仅是对成品或半成品的检验和测量,而且为了检查、监督和控制某个生产过程或运动对象使之处于人们选定的最佳状况,需要随时检测和测量各种参量的大小和变化等情况。这种对生产过程和运动对象实时检测和测量的技术又称为工程检测技术。 测量有两种方式:即直接测量和间接测量 直接测量是对被测量进行测量时,对以表读数不经任何运算,直接的出被测量的数值,如:用温度计测量温度,用万用表测量电压 间接测量是测量几个与被测量有关的物理量,通过函数关系是计算出被测量的数值。 如:功率P与电压V和电流I有关,即P=VI,通过测量到的电压和电流,计算出功率。 直接测量简单、方便,在实际中使用较多;但在无法采用直接测量方式、直接测量不方便或直接测量误差大等情况下,可采用间接测量方式。 光电传感器与敏感器的概念 传感器的作用是将非电量转换为与之有确定对应关系得电量输出,它本质上是非电量系统与电量系统之间的接口。在检测和控制过程中,传感器是必不可少的转换器件。 从能量角度出发,可将传感器划分为两种类型:一类是能量控制型传感器,也称有源传感器;另一类是能量转换传感器,也称无源传感器。能量控制型传感器是指传感器将被测量的变换转换成电参数(如电阻、电容)的变化,传感器需外加激励电源,才可将被测量参数的变化转换成电压、电流的变化。而能量转换型传感器可直接将被测量的变化转换成电压、电流的变化,不需外加激励源。 在很多情况下,所需要测量的非电量并不是传感器所能转换的那种非电量,这就需要在传感器前面加一个能够把被测非电量转换为该传感器能够接收和转换的非电量的装置或器件。这种能够被测非电量转换为可用电量的元器件或装置成为敏感器。例如用电阻应变片测量电压时,就需要将应变片粘贴到售压力的弹性原件上,弹性原件将压力转换为应变力,应变片再将应变力转换为电阻的变化。这里应变片便是传感器,而弹性原件便是敏感器。敏感器和传感器随然都可对被测非电量进行转换,但敏感器是把被测量转换为可用非电量,而传感器是把被测非电量转换为电量。 二、光电传感器是基于光电效应,将光信号转换为电信号的一种传感器,广泛应用 于自动控制、宇航和广播电视等各个领域。 光电传感器主要噢有光电二极管、光电晶体管、光敏电阻Cds、光电耦合器、继承光电传感器、光电池和图像传感器等。主要种类表如下图所示。实际应用时,要选择适宜的传感器才能达到预期的效果。大致的选用原则是:高速的光电检测电路、宽范围照度的照度计、超高速的激光传感器宜选用光电二极管;几千赫兹的简单脉冲光电传感器、

生物组织光学性质的测量原理与技术

第16卷第4期 1997年12月 中 国 生 物 医 学 工 程 学 报 CH I N ESE JOU RNAL O F B I OM ED I CAL EN G I N EER I N G V o l.16N o.4 D ecem ber1997 生物组织光学性质的测量原理与技术3 谢树森 李 晖 (福建师范大学物理学系,福州350007) Ch ia T eck Chee (Schoo l of Science,N anyang T echno logical U niversity,Singapo re1025)本文讨论了组织光学性质参数的测量原理和技术,提出了一种新的测量和计算方法,采用联合测定组织体表面漫反射率和体内光能流率分布,并利用漫射理论和M onte Carlo模型的部分结论,可求出组织的光穿透深度,吸收系数和有效散射系数,以4种猪组织为例,研究了哺乳动物组织的光学性质,这一原理和技术可适用于人体组织光学性质的测量。 关键词: 组织光学;吸收;散射;漫射;M onte Carlo;漫反射率;光能流率 分类号: R197.39;R318.6 0 前 言 激光医学的进展,尤其是光动力学疗法(PD T)在临床上的深入应用,需要精确了解在一定光照条件下人体组织内的光能分布,以便安排最佳的光治疗方案。其中最关键的问题可归结为如何确定组织体的光学性质基本参数,即吸收系数Λa,散射系数Λs和散射位相函数S(Η)或平均散射余弦g。一旦已知这些光与组织的相互作用参数,在给定的光照方式和边界条件下,光能流率5(r)或其它参量如全反射率R,全透过率T等分布可由有关的数学模型唯一地确定[1,2]。 本文所提出的新方法系采用联合测定组织体表面漫反射率和组织体内部的光能流率分布,并利用漫射理论和M on te Carlo模型的部分结论,可求出组织的光学性质基本参数。 1 组织光学性质参数测量的理论基础 作为电磁波的光在组织中传播行为属于光与组织相互作用问题,在不考虑吸收的情况下,理论上由麦克斯韦方程组及组织体的电磁性质Ε,Λ或折射率,加上边界条件唯一地确定:即在所给定的条件下求解麦克斯韦方程,以得到电矢量在空间中和时间上的分布。其中必然出现一般光学中所有的各种现象,诸如干涉、衍射、反射和偏振等纯粹的物理光学问题。当组织存在光吸收时,应当考虑组织中原子分子的能级结构性质。换言之,此时应采用半经典理论,最严格的处理应使用全量子理论,不难想到,仅由于生物组织折射率的不均匀性,我们就无望获得麦氏方程的数值解,更不用说解析解了。 其实,可以把光在组织体中的传播进而有光能分布的物理实在,用一种粒子的传输过程来 国家自然科学基金和国家教委回国留学人员资助项目 1995年11月27日收稿,1996年4月29日修回

AOI自动光学检测仪维护保养规程

AOI自动光学检测仪维护保养规程 一、维护保养目的: 此文件建立了AOI 设备的预防性维护保养程序.通过执行此文件,能使机器更加稳定的运行,降低停机时间,提高产品品质,并能延长机器使用寿命。 二、维护保养内容 工具和保养消耗品:真空吸尘器,T形六角棒,刷子,酒精,无尘纸,除锈剂, 1.日维护保养 操作员必须做好以下几项: 1.1用碎布清洁机器表面. 1.2检查气压值是否在5bar以上,当低于5bar时,请通知相关人员。 2.周维护保养: 维保责任人必须做好以下几项: 2.1检查及清洁各个传感器 2.2用无尘布清洁机器内部 2.3检查并用无尘布清洁照相机检查传送皮带有无破损及皮带滑轮有无松动必要时更换。 2.4测试各项功能控制系统是否正常 3.月维护保养

维护保养责任人必须作好以下机器部件的清洁、维护 3.1清洁所有防尘盖控制箱和冷却风扇灰尘,擦拭干净所有盖板油污。 3.2清洁空气过滤器芯,调整压缩空气压力为5+0.1bar 3.3检查活动部位轴的连线是否松动,如有松动请进行紧固 3.4检查皮带松紧度 3.5检查并校正(如有必要)传送皮带 3.6清洁机器风扇过滤器 3.7清洁X/Y轴导轨并加一薄层10#油膜。 4.年度维护保养 维护保养责任人除作好设备的周、月维护保养外,还须作好以下几项 内容 4.1检查调整机器水平 4.2检查机器所有螺丝是否松动,如有紧固该部件。 4.3校正机器参数和做备份。(必须参考说明书) 4.4清洁、润滑PCB传送轨道的导轨、丝杆 三、注意事项: 注意环保,不同垃圾扔进相应垃圾筒。 当机器进行"清洁"和"注油"时一定要先关掉机器电源。在保养时,当发现有部件即将损坏时应立即更换。任何部件拆卸过必须做相应的校正。做保养后须暖机20分钟.不同部件用油必须正确。

第七章 指纹检验技术

第七章指纹检验技术 第一节指纹的概念、特点和作用 一、指纹的概念 指纹是指手指前端一节正面皮肤上的乳突线花纹及手指上的屈肌褶纹和皱纹等皮肤纹线。 乳突线——真皮乳头层反映在表皮为线条,称为乳突线,或脊线。 小犁沟——即两条乳突线之间的沟槽。 二、指纹的特点 1.人各不同,指指相异; 2.终生基本不变; 3.布满汗液,触物留痕; 4.纹线整齐,可以分类。 三、指纹的作用 1.为分析案情提供帮助; 2.完成人身同一认定; 3.排除嫌疑; 4.为并案侦查提供依据; 5.人身识别。 第二节指纹的结构、类型和特征体系 一、指纹的结构 (一)乳突线的一般形态 1.直形线:纹线由一端呈基本平直形态流向另一方向,不折不回。 2.弓形线:纹线由一方流向另一方呈弓形,不返回。 3.箕形线:纹线由一方流向另一方,弯曲折回原方向。 4.波浪线:纹线起伏弯曲呈波浪状,由一端流向另一端。 5.环形线:纹线呈闭口类圆环状。 6.螺形线:纹线一端自中心部分围绕自身由内向外旋转,其方向有顺时针和逆时针

之分。 7.曲形线:纹线弯曲呈“S”和“Z”状。 (二)乳突线的纹线系统 相同形态和流向的纹线在指纹中整齐的排列在一起,称为纹线系统。 手指乳突花纹根据其部位的不同,分为三个纹线系统: 1.中心系统:居于花纹的中心部位,也称内部花纹系统,由箕形、环形、螺形、曲形或混合(杂形)的纹线组成。 2.外围系统:从上部和左右两侧包绕着内部纹线,由弓形线组成。 3.根基系统:分布在内部纹线的基底部位,由弧度较小波浪线或不大平坦的直纹线组成。 (三)指纹的三角 三个系统的纹线汇合于一起时,构成三角状,定名为三角。其数量有一个、两个甚至两个以上的。 二、指纹的分类 指纹的基本类型分为:弓型纹、箕型纹、斗型纹和杂型纹四大类。 (一)弓型纹 弓型纹没有中心花纹系统,只有外围线系统和根基线系统,由上部弓形线下部波浪线、横直线层叠而成。 弓型纹可以分为弧形纹和帐形纹。 弓型纹在我国人口中所占比例约为2.5%,帐形纹更为少见。 弓型纹指位出现率是:拇> 食 > 中 > 小、环。 (二)箕型纹 箕型纹由三大纹线系统组成,中心花纹系统有一根以上完整而不折不断的箕形线。它一般有一个三角。 箕型纹指位出现率是:小> 中 > 食 > 拇 > 环。 箕型纹的分类(按箕头朝向分类):箕型纹有正箕和反箕之分。 1.正箕:箕头朝向拇指方向。 2.反箕:箕头朝向小指方向。 箕型纹在我国人口中所占比例约为47.5%,正箕出现率为45%,反箕出现率为2.5%。 (三)斗型纹 中心花纹系统由一根以上的环形线、螺形线、曲形线组成,其上部和两侧外围由较多的弓形线包绕,下部由一些波浪线和横直线组合而成。三个系统的纹线多在两侧汇合构成左右两个三角。 斗型纹根据其中心纹线形态的不同,又可分为:环形斗、螺形斗、绞形斗、双箕斗、曲形斗和囊形斗。 1.环形斗:中心花纹系统由一条以上的环形线构成。 2.螺形斗:中心花纹系统由一条螺形线组成。 螺形斗的分类:螺形斗有左螺和右螺之分。 (1)左螺:指印上看,顺时针转。(手上看,逆时针转)——多见于左手。 (2)右螺:指印上看,逆时针转。(手上看,顺时针转)——多见于右手。 3.绞形斗:中心花纹系统由两条以上的螺形线相互盘绕而成。 4.曲形斗:中心花纹系统由一条曲形线组成。 5.双箕斗:中心花纹系统由两条以上的曲形线组成。 6.囊形斗:花纹中心有一条以上闭口箕形线,其中心内部至少有一条弧形线,其弧凸面与箕枝闭口夹角形成一个内三角,且不与来自三角的纹线相接触。 斗型纹指位出现率是:环> 拇 > 食 > 中 > 小。 斗型纹各类型出现率是:螺形斗、环形斗> 绞形斗 > 双箕斗 > 囊形斗 > 曲形斗。

在体生物光学成像技术的研究进展

第34卷第12期自动化学报Vol.34,No.12 2008年12月ACTA AUTOMATICA SINICA December,2008 在体生物光学成像技术的研究进展 李慧1,2戴汝为2 摘要在体生物发光成像和在体荧光成像是近年来新兴的在体生物光学成像技术,能够无损实时动态监测被标记细胞在活体小动物体内的活动及反应,在肿瘤检测、基因表达、蛋白质分子检测、药物受体定位、药物筛选和药物疗效评价等方面具有很大的应用潜力.本文详细介绍了在体生物发光成像和在体荧光成像的特点、系统及应用,比较了它们的异同,综述了在体生物光学成像技术的基本原理和应用领域,讨论了将其应用于临床的进一步发展方向. 关键词在体生物光学成像,生物发光成像,荧光成像 中图分类号R319 Development of In Vivo Optical Imaging LI Hui1,2DAI Ru-Wei2 Abstract With the emergence of in vivo optical imaging,bioluminescence imaging and?uorescence imaging can be used to non-invasively monitor the activities and responses of cells marked with optical signals in real time,which are considered to be promising tools for tumor detection,gene expression pro?ling,protein molecular detection,drug receptor localization,drug screening,and therapeutic evaluation.In this paper,the features,imaging systems,and applications of in vivo bioluminescence imaging and in vivo?uorescence imaging have been introduced and compared in detail.The basic theories,application?elds,and development of in vivo optical imaging in future are reviewed. Key words In vivo optical imaging,bioluminescence imaging(BLI),?uorescence imaging(FI) 随着荧光标记技术和光学成像技术的发展,在体生物光学成像(In vivo optical imaging)已经发展为一项崭新的分子、基因表达的分析检测技术,在生命科学、医学研究及药物研发等领域得到广泛应用,主要分为在体生物发光成像(Biolumi-nescence imaging,BLI)和在体荧光成像(Fluores-cence imaging)两种成像方式[1?2].在体生物发光成像采用荧光素酶(Luciferase)基因标记细胞或DNA,在体荧光成像则采用荧光报告基团,如绿色荧光蛋白(Green?uorescent protein,GFP)、红色荧光蛋白(Red?uorescent protein,RFP)等进行标记[3].利用灵敏的光学检测仪器,如电荷耦合摄像机(Charge coupled device camera,CCD camera),观测活体动物体内疾病的发生发展、肿瘤的生长及 收稿日期2007-08-08收修改稿日期2007-11-19 Received August8,2007;in revised form November19,2007国家自然科学基金(30500131),北京市优秀人才资助项目(20061D0501600216),中国博士后科学基金(20070410146)和中国科学院王宽诚博士后工作奖励基金资助 Supported by National Natural Science Foundation of China (30500131),Research Fund for Beijing Distinguished Specialists (20061D0501600216),Chinese Postdoctoral Science Foundation (20070410146),and Chinese Academy of Sciences K.C.Wong Postdoctoral Fellowships 1.首都师范大学教育技术系北京100048 2.中国科学院自动化研究所复杂系统与智能科学重点实验室北京100190 1.Department of Education Technology,Capital Normal Uni-versity,Beijing100048 2.Key Laboratory of Complex Sys-tems and Intelligence Science,Institute of Automation,Chinese Academy of Sciences,Beijing100190 DOI:10.3724/SP.J.1004.2008.01449转移、基因的表达及反应等生物学过程,从而监测活体生物体内的细胞活动和基因行为[4?8]. 相对于其他成像技术,如核磁共振成像(Mag-netic resonance imaging,MRI)、计算机层析成像(Computed tomography,CT)、超声成像(Ultra-sonic imaging)、正电子发射断层成像(Positron emission tomography,PET)、单光子发射断层成像(Single photon emission computed tomography, SPECT)等,在体生物光学成像具有巨大的优越性,堪称是分子基因检测领域的革命性技术.它具有如下优点:较高的时间/空间分辨率;在肿瘤和良性/正常疾患之间有高的软组织对比度;成像对比度直接与生物分子相关,适于重要疾病的基因表达、生理过程的在体成像;获得信息丰富、适于多参数复合测量;价格适中等.尽管其测量范围与测量深度有限,但适用于小动物的整体在体成像和在体基因表达成像.表1和表2(见下页)分别给出了几种主要成像技术的应用场合及参数比较[5,9],可以看出,基于分子光学标记的在体生物光学成像技术已经在活体动物体内基因表达规律方面展示了较大优势.近年来,随着生物光学成像设备的研制以及转基因动物的研究,国外发达国家已经将在体生物光学成像技术广泛应用于肿瘤免疫及治疗、基因治疗、药物研发等领域并取得了许多成果[4?8]. 本文分别介绍了在体生物发光成像和在体荧光成像的特点、系统及主要应用,比较二者在分子探

PCB自动光学检测技术共4页

PCB自动光学检测技术 一、PCB检测技术发展历程 在PCB的生产工艺流程中,蚀刻是重要环节之一,即用化学药剂腐蚀掉设计线路以外多余的铜。该工艺流程中,药剂量、温度、流速和腐蚀时间等因素直接影响生产的质量,控制不好将会产生诸如短路、开路、线宽缺损、残留铜和针孔等缺陷。 PCB通常用目视、电测试和AOI方法检测。 20世纪70年代以前,PCB检测主要依靠人眼加放大镜,检测速度慢,漏检率高,同时,还会导致检验人员视力下降,影响人体健康。 电测试的原理是根据PCB线路图的计算机数据设计一副针床夹具和相应的网点测试程序。测试时,探针压在PCB表面的待测点,然后通电测试每个网点的通断,并报告存在的短路和断路缺陷。其局限在于○1只能检测短路和断路两种缺陷,缺口、针孔和残留铜等其他缺陷都无法检测。○2针床夹具的成本过高,小批量生产不合适。 电测试受到PCB向高密度、小型化方向发展的限制。随着线路板的密度不断增大,电测试需不断增加测试接点数,导致测试编程和针床夹具成本上升,开发测试程序和夹具通常需要数星期乃至一个多月时间,同时将导致电测试出错和重测次数增多。对电测试构成挑战的还有不断减少的引脚距离。因此,电测试已不能满足未来线路板的测试要求。 二、PCB自动光学测试技术 (2)自动光学检测的工作原理 AOI是检测PCB表面图形品质(如表面缺陷、断路和短路)的设备,

用于生产过程中半成品品质检测,是高精密单层印制板,尤其是多层印制板加工的关键技术。测试系统集光学、精密机械、识别诊断算法和计算机技术于一体,功能或激光自动扫描PCB,采集图像后送与计算机处理,再与数据库中的标准数据比较,查出PCB上缺陷,用显示器或自动标识系统显示或标识缺陷,供维修人员修理。 2.PCB自动光学检测图像处理技术 (3)图像采集 获取图像是AOI的关键,所获取图像的质量好坏直接影响最终的检测效果。从使用的图像采集器件来看,目前AOI分为两类,一类是使用高精度线扫描CCD成像;另一类是利用激光作为光源,用光电倍增管(PMT)作为光电转换器件来获取图像。 图像的处理是将光电器件(CCD或PMT)输出的有关PCB信息的电信号转换为计算机可识别的二进制信号。首先进行模/数转换,将模拟信号转换为灰阶数字信号,利用PCB基材和铜的灰阶值不同的特性,形成二维灰度图像,然后利用阈值法,将大于指定阈值的像素转换成黑(铜)像素,等于或小于指定阈值的像素转换成白(基材)像素。阈值根据材质来选取,一般在灰阶数值的60~110之间,最后得到关于PCB信息的二值(0,1)图像。 (2)图像处理技术 (A)图像特征提取 对转换后的二值图像进行分析并与标准图像比较以发现PCB上存在的缺陷。常用的分析方法有两种。其中矢量分析法是一种图形位置搜索技术,

相关文档
最新文档