现浇钢筋混凝土剪力墙结构设计实例探析【最新】

现浇钢筋混凝土剪力墙结构设计实例探析【最新】
现浇钢筋混凝土剪力墙结构设计实例探析【最新】

现浇钢筋混凝土剪力墙结构设计实例探析

【摘要】现浇钢筋混凝土结构目前已经广泛应用于高层建筑,对其进行优化设计具有现实意义。文章对结合实例,对现浇钢筋混凝土剪力墙结构的结构与抗震设计进行详细分析,并重点对钢骨混凝土节点的设计进行分析。

【关键词】钢筋混凝土;结构设计;抗震分析

引言

现浇钢筋混凝土组合结构是把型钢埋入钢筋混凝土中的一种独立结构形式。现浇钢筋混凝土组合结构是钢材和混凝土两种材料的组合,它充分发挥两种材料的优点,而克服了彼此的缺点,得到广泛的应用。文中工程位于上海浦业路东侧,地上由七栋十八层住宅及二栋二层配套公建组成,有一地下一层车库把5、6、7号房地下室联为一体。项目设计使用年限为50年,抗震设防烈度为7度,设计地震分组为第一组,地震设计基本地震加速度值为0.1g,场地类型为IV类(上海地区),场地特征周期0.9s。建筑物安全等级二级,地基基础安全等级为一级。建筑物抗震设防类别为丙类。18层住宅为现浇钢筋混凝土剪力墙结构体系,剪力墙抗震等级为三级,2层配套公建框架抗震等级为三级。

1项目结构分析

1)地下室楼盖采用现浇钢筋混凝土井字梁结构,楼板厚度:人防顶板200mm,地下一层顶板180mm,其他120mm。地上1层顶板采用钢筋混凝土主次梁结构体系,楼板厚度140mm,设备层到顶层楼盖采用现浇钢筋混凝土梁板结构体系,室内除分户墙处设置次梁外,基本不设次梁,楼板厚度在电梯井和有次梁的处为120mm;其他区域均为200mm。

2)主要材料

楼板钢筋采用热轧钢筋基本采用HRB400钢,d≤10时采用HPB 235钢,主结构梁、柱、墙钢钢筋采用HRB400钢。附属结构钢筋采用HRB 335钢。钢筋混凝土柱及剪力墙混凝土等级:C45—C60。钢筋混凝土梁及楼板混凝土等级为C35。

2计算模型

结构计算混凝土等级如表1所示。

3结构的抗震设计

进行模型分析时,采用了刚性板假定。地震信息:地震烈度为8.00度;场地类别为3类;设计地震分组为一组;特征周期为0.40s;框架的抗震等级为1级;剪力墙的抗震等级为1级;活荷质量折减系数取0.50;周期折减系数取0.90;结构的阻尼比为4.50%。计算时考虑了恒载、活载、风载、X向地震作用、Y向地震作用和竖向地震作用等工况,水平地震作用考虑了祸联振动的影响及双向地震作用的扭转效应。采用钢结构设计软件PKPM对塔1和塔2分别进行设计(图1)。

4结果分析

在结构设计中,一般关注结构的前3个周期。下面我们选择塔1和塔2的前3个周期进行分析,结构的自振周期分别如表2,表3所示。计算结果说明:

1)扭转为主的第1周期与平动为主的第1周期之比均小于0.9,满足规范要求。

2)结构计算时取了30个振型,X方向振型参与质量达到了96.5%,Y方向振型参与质量达到了96.15%,均大于90%,满足规范的要求[1-4]。

5层间位移

地震作用下最大位移如表4和表5所示。

从表4、表5可以看出,在单双向地震作用下,层移满足要求。

6弹性时程分析

该结构采用了Taft天然波(特征周期为0.45s)和Elcentro天然波(特征周期为0.40~0.50s)及一条人工波(特征周期为0.40s)进行时程分析,其中:Taft天然波记录时长均为40s,Elcentro天然波记录时长均为11.98s,人工波记录时长均为30s;楼层底部与规范规定的地震反应谱(特征周期为0.40s)比较结果如表6,表7所示。

从表6,表7可以看出,每条时程曲线计算所得的结构底部剪力均大于振型分解反应谱法求得的底部剪力的65%;三条时程曲线计算所得的结构底部剪力平均值均大于振型分解反应谱法求得的底部剪力的80%,满足规范要求。楼层底部弯矩如表8,表9所示。

从表8,表9可以看出:三条时程曲线计算所得的结构底部弯矩平均值均小于振型分解反应谱法求得的底部弯矩,可以按振型分解反应谱法计算的地振内力进行结构设计。

7与ETABS软件进行的结构计算比较

塔的结构周期、最大层间位移角、结构计算总质量比较结果如表10—表13所示。

从以上各表可以看出,ETABS结果与PKPM结果比较吻合。

8典型节点分析

在本工程中,有一类相对比较特殊的节点,钢骨柱与混凝土梁的连接。对于混凝土梁与钢骨柱的连接,通常有以下3种方法:

1)把混凝土梁中的钢筋进行穿筋处理,这样会削弱钢骨柱的截面。虽然经过孔洞的补强,理论上可以减小截面削弱的影响,但是实际效果需经过试验验证。

2)采用钢筋连接器进行处理,混凝土梁的所受的力通过连接器传递给柱子,经过实际的工程验证,该方法的传递效果较好。然而钢筋连接器对于施工的要求精度比较高,施工成本、连接器的成本相对比较大。这样无疑会增加造价。

3)本工程在柱子的翼缘(混凝土梁高范围内)上下各焊接了一个横的钢板,在竖向方向又焊接了一个竖钢板。然后钢筋混凝土梁的钢筋通过焊接在这上下两个钢板上进行力的传递。这种技术已经在某些工程中进行了应用,效果较好。与第二种方案相比,此种方案无论从成本还是施工精度上,都大大的节省了人力和物力。

9结语

在现浇钢筋混凝土组合结构领域内,无论是理论研究或是工程实践中,都已得到广泛应用。特别是在高层建筑和大跨桥梁方面的应用,发展十分迅速,要注意在实际工程中,综合考虑多方面的因素,对于一些比较复杂的节点形式,一定要本着满足结构受力的要求进行处理。

参考文献:

[1]GB 50011—2010 建筑抗震设计规范[S].

[2]GB 50007—2003 钢结构设计规范[S].

[3]GB 50009—2001 建筑结构荷载规范(2006版)[S].

[4]GB 50010—2010 混凝土结构设计规范[S].

混凝土结构设计原理复习重点(非常好) 期末复习资料汇总

1.混凝土结构:以混凝土为主要材料制作的结构。包括: 素混凝土结构、钢筋混凝土结构、预应力混凝土结构。 钢筋混凝土结构优点:就地取材,节约钢材,耐久、耐火,可模性好,整体性好,刚度大,变形小。缺点:自重大,抗裂性差,性质较脆。 2.钢筋塑性性能:伸长率,冷弯性能。伸长率越 大,塑性越好。 3.规定以边长为150mm的立方体在(20+-3)度的温度 和相对湿度在90%以上的潮湿空气中养护28d,依照标准试验方法测得的具有95%保证率的抗压强度(以N/mm2计)作为混凝土的强度等级。 4.收缩:混凝土在空气中结硬时体积减小的现象。 膨胀:混凝土在水中或处于饱和和湿度情况下结硬时体积增大的现象。 水泥用量越多、水灰比越大,收缩越大。骨料的级配好、弹性模量大,收缩小。构件的体积与表面积比值大,收缩小。 5.钢筋混凝土结构的混凝土强度等级不应低于C20。采 用400MPa以上钢筋,不应低于C25。预应力混凝土结构,不宜低于C40,不应低于C30。承受重复荷载的,不应低于C30。 6.粘结力的影响因素:化学胶结力(钢筋与混凝土接触面 上的化学吸附作用力),摩擦力(混凝土收缩后将钢筋紧紧地握裹住而产生的力),机械咬合力(钢筋表面凹凸不平与混凝土产生的机械咬合作用而产生的力),钢筋端部的锚固力(一般是用在钢筋端部弯钩、弯折,在锚固区焊短钢筋、短角钢等方法来提供锚固力)。 7.结构的作用是指施加在结构上的集中力或分布力,以 及引起结构外加变形或约束变形的各种因素。按时间的变异分:永久作用,可变作用,偶然作用。8.结构抗力R是指整个结构或结构构件承受作用效应 (即内力和变形)的能力,如构件的承承载能力、刚度等。 9.设计使用年限:是指设计规定的结构或结构构件不需 进行大修即可按齐预定目的使用的时期,即结构在规定的条件下所达到呃使用年限。 10.轴心受拉(压)构件:纵向拉(压)力作用线与构件 截面形心线重合的构件。 轴心受力构件中配有纵向钢筋和箍筋,纵向钢筋的作用是承受轴向拉力或压力,箍筋的主要作用是固定纵向钢筋,使其在构件制作的过程中不发生变形和错位。 11.受弯构件的破坏特征:少筋破坏(当构件的配筋率低 于某一定值时,构件不但承载能力很低,而且只要其一开裂,裂缝便急速开展,裂缝截面处的拉力全部由钢筋承受,钢筋由于突然增大的应力而屈服,构件立即发生破坏),适筋破坏(当构件的配筋率不是太低也不是太高时,构件的破坏首先是由于受拉区纵向受力钢筋屈服,然后受压区混凝土呗压碎,钢筋和混凝土的强度都得到充分利用),超筋破坏(当构件的配筋率超过某一特定的值时,构件的破坏特征又发生质的变化构件的破坏是由于受压区的混凝土呗压碎而引起,受拉区纵向受力钢筋不屈服)。 12.基本假定:截面应变保持平面。不考虑混凝土的抗拉 强度。混凝土的受压的应力应变关系曲线按下列规定 取用。 13.双筋矩形截面适用情况:1.结构或构件承受某种交变 的作用,使截面上的弯矩改变方向。2.截面承受的弯矩设计值大于单筋截面所能承受的最大弯矩设计值,而截面尺寸的材料品种等由于某些原因又不能改变。 3.结构或构件的截面由于某种原因,在截面的受压区 预先已经布置了一定数量的受力钢筋。 14.T形截面受弯构件按受压区的高度不同分:第一类T 形截面,中和轴在翼缘内。第二类T形截面,中和轴在梁肋内。 15.剪切破坏的形态:斜拉破坏(整个破坏过程急速而突 然,破坏荷载与出现斜裂缝时的荷载相当接近,破坏前梁的变形很少,并且往往只有一条斜裂缝。破坏具有明显的脆性),剪压破坏(这种破坏有一定的预兆,破坏荷载较出现斜裂缝时的荷载过高。但与适筋梁的正截面破坏相比,减压破坏仍属于脆性破坏),斜压破坏(破坏荷载很高,但变形很小,亦属于脆性破坏)。 16.平衡扭转:若结构的扭矩是由荷载产生的,其扭矩课 根据平衡条件求得,与构件的抗扭刚度无关。 协调扭矩:另一类是超静定结构中由于变形的协调使截面产生的扭转。 17.偏心受压构件分为:单向偏心受压构件,双向偏心受 压构件。 当ξ<=ξb,受拉钢筋先屈服,然后混凝土压碎,肯定为受拉破坏—大偏心受压破坏,反之为小偏心受压破坏。 18.结构的可靠性:安全性(结构构件能承受在正常施工 和正常使用时可能出现的各种作用,以及在偶然事件发生时及大盛后,仍能保持必需的整体稳定性),适用性(在正常使用时,结构构件具有良好的工作性能,不出现过大的变形和过宽的裂缝),耐久性(在正常的维护下,结构构件具有足够的耐久性能,不发生锈蚀和风化现象)。 19.裂缝的控制等级分为三级::正常使用阶段严格要求 不出现裂缝的构件。正常使用阶段一般要求不出现裂缝的构件。正常使用阶段允许出现裂缝的构件。 混凝土结构设计基本原理复习重点 第 1 章绪论 1.钢筋与混凝土为什么能共同工作: (1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构 功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。(3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材 2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难 建筑结构的功能包括安全性、适用性和耐久性三个方面 作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用结构的极限状态:承载力极限状态和正常使用极限状态 结构的目标可靠度指标与结构的安全等级和破坏形式有关。 荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值 第2章钢筋与混凝土材料物理力学性能 一、混凝土

某建筑钢筋混凝土框架一剪力墙结构设计分析

某建筑钢筋混凝土框架一剪力墙结构设计分析 摘要:本文根据工程实例,从结构的布置、节点的设计等方面对其结构设计进行了详细分析并通过详细的计算验证,结合结构超限情况采取相应的加强措施,使结构具有良好的抗震性能。 关键字:超限高层建筑;结构设计:计算分析 Abstract: according to the engineering examples, from the structure arrangement and the design of the nodes of the structure design on detailed analysis and through the detailed calculation verification, combined with the circumstance of the corresponding structure crossing the strengthening measures, make the structure has better seismic performance. Key word: overrun highrise; Structure design, calculation and analysis 1 工程概况 某工程地上6层建筑面积为21332m 2,地下1层建筑面积7843m2 。采用钢筋混凝土框架-剪力墙结构。结构平面底部长约150m收至顶层50m,宽约50m,结构主体高度约32.25m,高宽比较小。 2结构设计分析 该建筑体形较长,且平面较不规则,建筑上部存在长悬臂和大跨度结构,若要通过设置抗震缝将建筑分割成规则的区块,布置上较为困难。故本建筑主要通过加强抗侧力构件的刚度,加强平面联系,减小结构的绝对和相对变形量,来保证结构具有较好的抗震性能。 2.1结构布置分析 本工程为高度约32.25m 的6层结构层的高层办公楼,在结构体系的选择上,一般可供的选择有混凝土框架结构、混凝土框架-剪力墙结构、钢框架-混凝土剪力墙结构和钢框架结构。 本工程体形复杂,上部存在大跨度和长悬臂结构,该部分结构宜采用钢结构,大跨度和长悬臂结构宜布置剪力墙作为可靠支座。该结构局部楼层楼板缺失,造成凹凸和楼面开大洞情况,在这种情况下,为了避免竖向刚度突变,加强结构抗侧刚度,在进行结构布置时,需对上下贯通的竖向结构予以加强。整个结构楼梯间平面位置均匀、竖向连续,宜利用楼梯间周边布置剪力墙作为主抗侧

第三节 钢筋混凝土剪力墙结构

第三节钢筋混凝土剪力墙结构 一、剪力墙结构的受力与震害特点 (一)受力特点 开洞剪力墙由墙肢和连梁两种构件组成,不开洞的剪力墙仅有墙肢。按墙面 开洞情况,剪力墙可分为四类: (1)整截面剪力墙,即不开洞或开洞面积不大于15%的墙(图5—32a); (2)整体小即剪力墙,即开洞面积大于15%,但仍较小的墙(图5—32b); (3)双肢及多肢剪力墙,即开口较大、洞口成列布置的剪力墙(图5-32c); (4)壁式框架,即洞口尺寸大,连梁线刚度大于或接近墙肢线刚度的墙(图 5-32d)。; 图5-32 剪力墙的类型 (o)整截面剪力墙;(^)整体小开口剪力墙;(c)双肢及多肢剪力墙;(d)壁式框架 在水平荷载作用下,整截面剪力墙如同一片整体的悬臂墙,在墙肢的整个高 度上,弯矩图既不突变,也无反弯点,剪力墙的变形以弯曲型为主(图5-32a); 整体小开口剪力墙的弯矩图在连梁处发生突变,但在整个墙肢高度上没有或仅仅 在个别楼层中出现反弯点,剪力墙的变形仍以弯曲型为主(图5-32b);双肢及多 肢剪力墙与整体小开口剪力墙相似(图5—32c);壁式框架柱的弯矩图在楼层处有 突变,且在大多数楼层出现反弯点,剪力墙的变形以剪切型为主(图5-32d)。 在竖向荷载作用下,连梁内将产生弯矩,而墙肢内主要产生轴力。当纵墙和横墙整体联结时,荷载可以相互扩散。因此,在楼板下一定距离以外,可认为竖 向荷载在纵、横墙内均匀分布。 在竖向荷载和水平荷载共同作用下,悬臂墙的墙肢为压、弯、剪构件,而开 洞剪力墙的墙肢可能是压、弯、剪构件,也可能是拉、弯、剪构件。

连梁及墙肢的特点都是宽而薄,这类构件对剪切变形敏感,容易出现斜裂 缝,容易出现脆性的剪切破坏。根据剪力墙高度H与剪力墙截面高度/l的比值, 剪力墙可分为高墙(H/A≥3)、中高墙(1.5≤H/A<3)和矮墙(H/A<1.5)。 三种墙典型的裂缝分布如图5—33。在抗震结构中应尽量避免采用矮墙,以保证 结构延性。 图5-33 剪力墙的裂缝分布 (d)高墙;(^)中高墙;(‘)矮墙 开洞剪力墙中,由于洞口应力集中,很容易在连梁端部形成垂直方向的弯曲 裂缝。当连梁跨高比较大时,梁以受弯为主,可能出现弯曲破坏。剪跨比较小的 高梁,除了端部很容易出现垂直的弯曲裂缝外,还很容易出现斜向的剪切裂缝。 当抗剪箍筋不足或剪应力过大时,可能很早就出现剪切破坏,使墙肢间丧失联 系,剪力墙承载能力降低。开口剪力墙的底层墙肢内力最大,容易在墙肢底部出 现裂缝及破坏。在水平力作用下受拉的墙肢往往轴压力较小,有时甚至出现拉 力,墙肢底部很容易出现水平裂缝。 (二)震害特点 钢筋混凝土剪力墙结构的抗震性能远比纯框架结构好,其主要震害是连梁和 墙肢底层的破坏。开洞的剪力墙中,由于洞口应力集中,连系梁端部极为敏感, 在约束弯矩作用下,很容易形成垂直方向的弯曲裂缝,另外,墙肢之间的连梁相 对刚度小,是剪力墙的变形集中处,故连梁很容易产生剪切破坏;开口剪力墙的 底层墙肢内力最大,容易在墙肢底部出现裂缝及破坏,表现为受压区混凝土大片 压碎剥落,钢筋压屈。 二、设计规定与构造措施 (一)混凝土强度等级及墙厚 为保证钢筋混凝土剪力墙的承载能力和变形能力,非抗震设计剪力墙的混凝 土强度等级不宜低于C20,抗震设计剪力墙的混凝土强度等级不应低于C20。 剪力墙的厚度不应太小,以保证墙体出平面的刚度和稳定性,以及浇筑混凝土的质量。非抗震设计和抗震等级为三、四级的钢筋混凝土剪力墙的截面厚度不 应小于楼层净高的l/z5,也不应小于140mm。抗震等级为一、二级的钢筋混凝 土剪力墙的截面厚度不应小于楼层净高的1/20,也不应小于160mm。剪力墙底

混凝土结构设计原理复习重点(非常好)

混凝土结构设计基本原理复习重点(总结很好) 第 1 章绪论 1.钢筋与混凝土为什么能共同工作: (1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。 (3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材 2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难 建筑结构的功能包括安全性、适用性和耐久性三个方面 作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用 结构的极限状态:承载力极限状态和正常使用极限状态 结构的目标可靠度指标与结构的安全等级和破坏形式有关。 荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值 第2章钢筋与混凝土材料物理力学性能 一、混凝土 立方体抗压强度(f cu,k):用150mm×150mm×150mm的立方体试件作为标准试件,在温度为(20±3)℃,相对湿度在90%以上的潮湿空气中养护28d,按照标准试验方法加压到破坏,所测得的具有95%保证率的抗压强度。(f cu,k为确定混凝土强度等级的依据) 1.强度轴心抗压强度(f c):由150mm×150mm×300mm的棱柱体标准试件经标准养护后用标准试验方法测得的。(f ck=0.67 f cu,k) 轴心抗拉强度(f t):相当于f cu,k的1/8~1/17, f cu,k越大,这个比值越低。 复合应力下的强度:三向受压时,可以使轴心抗压强度与轴心受压变形能力都得到提高。 双向受力时,(双向受压:一向抗压强度随另一向压应力的增加而增加;双向受拉:混凝土的抗拉强度与单向受拉的基本一样; 一向受拉一向受压:混凝土的抗拉强度随另一向压应力的增加而降低,混凝土的抗压强度随另一向拉应力的增加而降低) 受力变形:(弹性模量:通过曲线上的原点O引切线,此切线的斜率即为弹性模量。反映材料抵2.变形抗弹性变形的能力) 体积变形(温度和干湿变化引起的):收缩和徐变等。 混凝土单轴向受压应力-应变曲线数学模型 1、美国E.Hognestad建议的模型 2、德国Rusch建议的模型 混凝土的弹性模量、变形模量和剪变模量 弹性模量 变形模量 切线模量 3、(1)徐变:混凝土的应力不变,应变随时间而增长的现象。 混凝土产生徐变的原因: 1、填充在结晶体间尚未水化的凝胶体具有粘性流动性质 2、混凝土内部的微裂缝在载荷长期作用下不断发展和增加的结果 线性徐变:当应力较小时,徐变变形与应力成正比;非线性徐变:当混凝土应力较大时,徐变变形与应力不成正比,徐变比应力增长更快。影响因素:应力越大,徐变越大;初始加载时混凝土的龄期愈小,徐变愈大;混凝土组成成分水灰比大、水泥用量大,徐变大;骨料愈坚硬、弹性模量高,徐变小;温度愈高、湿度愈低,徐变愈大;尺寸大小,尺寸大的构件,徐变减小。养护和使用条件 对结构的影响:受弯构件的长期挠度为短期挠度的两倍或更多;长细比较大的偏心受压构件,侧向挠度增大,承载力下降;由于徐变产生预应力损失。(不利)截面应力重分布或结构内力重分布,使构件截面应力分布或结构内力分布趋于均匀。(有利) (2)收缩:混凝土在空气中结硬时体积减小的现象,在水中体积膨胀。 影响因素:1、水泥的品种:水泥强度等级越高,则混凝土的收缩量越大; 2、水泥的用量:水泥越多,收缩越大;水灰比越大,收缩也越大; 3、骨料的性质:骨料的弹性模量大,则收缩小; 4、养护条件:在结硬过程中,周围的温、湿度越大,收缩越小; 5、混凝土制作方法:混凝土越密实,收缩越小; 6、使用环境:使用环境的温度、湿度大时,收缩小; 7、构件的体积与表面积比值:比值大时,收缩小。 对结构的影响:会使构件产生表面的或内部的收缩裂缝,会导致预应力混凝土的预应力损失等。 措施:加强养护,减少水灰比,减少水泥用量,采用弹性模量大的骨料,加强振捣等。 混凝土的疲劳是荷载重复作用下产生的。(200万次及其以上) 二、钢筋 光圆钢筋:HPB235 表面形状 带肋钢筋:HRB335、HRB400、RRB400 有明显屈服点的钢筋:四个阶段(弹性阶段、屈服阶段、强化阶段、破坏阶段),屈服强度力学性能是主要的强度指标。 (软钢)

高层框架剪力墙结构设计实例探析

高层框架剪力墙结构设计实例探析 发表时间:2016-03-07T11:54:20.603Z 来源:《工程建设标准化》2015年10供稿作者:金国祥 [导读] 中国中建设计集团有限公司(辽宁分公司)高层框架剪力墙结构是高层建筑楼房中一个重要的组成部分。 (中国中建设计集团有限公司(辽宁分公司),辽宁,沈阳) 【摘要】随着住房数量的需求的不断增加,以及受到土地资源紧缺现象的控制,当前城市楼层建设主要表现为高层楼房的建设施工。而高层框架剪力墙结构是高层建筑楼房中一个重要的组成部分。笔者结合当前一些比较成功的高层框架剪力墙结构设计案例,对高层框架剪力墙的施工要求和注意事项等进行了深入的分析和研究,希望能够给有关的设计人员必要的参考和借鉴。 【关键词】结构设计;框架剪力墙;结构布置;计算分析 前言 剪力墙结构是目前高层建筑施工中普遍应用的一种建筑形式,该结构设计科学,建筑施工难度小,具有一定的稳固性,安全可靠,目前应用范围越来越广。笔者进行了大量的资料研究和案例分析,总结出剪力墙结构设计的几点主要注意事项,下面进行简单的分析和介绍: 1.框架剪力墙结构布置 (1)双向抗侧力体系和刚性连接。框架—剪力墙结构中,剪力墙是主要的抗侧力构件。结构在两个主轴方向均应市置剪力墙,并应设计为纵、横双向刚接框架体系,尽可能使两个方向抗侧力刚度接近,除个别节点外,不应采用铰接。如果仅在一个主轴方向布置剪力墙,会造成两个主轴方向的抗侧刚度悬殊,无剪力墙的一个方向刚度不足且带有纯框架的性质,与有剪力墙的另一方向不协调,也容易造成结构整体扭转。主体结构构件间的连接刚性,目的是为了保证整体结构的几何不变和刚度的发挥;同时,较多的赘余约束对始构在大震下的稳定性是有利的。 (2)框架—剪力墙结构是通过刚性楼、屋盖的连接,将地震作用传递到剪力墙,保证结构在地震作用下的整体工作的。所以,从理论上来说,剪力墙与剪力墙之间的距离不应该过大,需要严格控制在安全系数之内,否则,两者中间的重力没有承载的媒介,可能会发生坍塌事故。一些施工单位为了节约经济成本,降低施工量,往往会在设计的基础上擅自扩大剪力墙之间的间隔,这些都是违规操作,必须杜绝。 (3)楼板开洞处理。通常来说,如果设计和施工实际情况允许,尽量不进行楼板开洞,但是在实际的施工过程中,存在一些无法避免的客观因素,此时必须进行楼板开洞处理。一旦遇到这类问题,其核心原则就是,尽量缩小开洞的数量和开洞的面积。即使,在设计之初对于重力和承重能力都进行了科学的计算和预测,但是一旦进行了楼板开洞处理,实际的承重情况可能会发生改变,因此施工人员应该提高警惕。 2.结构计算分析要点 框架剪力墙结构的计算应考虑框架与剪力墙两种不同结构的不同受力特点,按两者变形协调工作特点进行结构分析。即使是很规则的结构,也不应将结构切榀,简单地按二维平面结构(平面框架和壁式框架)进行计算。不应将楼层剪力按某种比例在框架与剪力墙之间分配。框架剪力墙结构是复杂的三维空间受力体系,计算分析时应根据结构实际情况,选取较能反映结构中各构件的实际受力状况的力学模型。对于平面和立面布置简单规则的框架—剪力墙结构,宜采用空间分析模型,可采用平面框架空间协同模型,对布置复杂的框架—剪力墙结构,应采用空间分析模型。另外,对于框架—剪力墙结构由于填充墙数量较框架结构少,而比剪力墙结构多,因此其周期折减系数应选取介于两者之间。结合工程实践经验,对于一般情况下当填充墙较多时,周期折减系数可取0.7-0.8,填充墙较少时,周期折减系数可取0.8-0.9。 此外,当今楼房的建设施工过于追求外表形式的新颖,五花八门的楼房外形,给框架剪力墙的结构设计带来了一定的难度。例如,一些建筑在设计之初,出于某种特殊的需求,可能会减少框架柱的数量,此时单根框架柱的承重压力随之增加,这样显然是不合理的,存在较大的安全隐患。对于这一问题,国家相关的管理部门高度重视,并在法律文件中做出了明确的规定:即当某楼层段柱根数减少时,则以该段为调整单元,取该段最底一层的地震剪力为其该段的底部总剪力;该段内各层框架承担的地震总剪力中的最大值为该段的Vfmax。3.高层框架剪力墙实际施工案例分析 某市为了适应市场需求,在城郊附近施工建设了一栋办公楼。地下设有停车场等共三层。地面高度为18层,总计22层。地面建筑结构由左右两个呈扇形的区域构成。该建筑施工总占地面积约为12万平方米。根据本建筑结构的基本属性,以及对相应地质条件等因素的勘察,设计人员采用剪力墙作为其主体框架。综合分析其建筑形式和材料结构,本建筑办公楼的抗震等级为8级,安全等级为2级。由于办公楼内部要求使用高度不低于2.9米,所以施工建设的难度相对来说比较大,综合考量到楼层的建筑结构以及剪力墙的应用,通过不断的调整和反复的测试,目前高建筑办公楼基本上可以达到以下几个要求:(1)根据建筑物的自振周期、位移及地震效应判断结构方案的合理性;(2)得出各构件的内力以及配筋,以判断构件截面的合理性;(3)根据结构内力分析判定结构受力的德弱部位,并在设计中采取加强措施。 受到办公楼内部使用空间的限制和制约,原本应该设计在楼层中间的剪力墙核心筒,需要按照实际情况进行位置的偏移。同时,由于本栋楼的特殊需求,在其他位置不允许继续设计框架剪力墙,这就给施工建设带来了一定的难度。由于操作起来难度系数大,同时安全系数受到了影响,因此设计施工单位经过与投资方的研究分析,最终决定略微增加剪力墙的数量。在此基础上,稍微增加了剪力墙的厚度,以提高剪力墙的承重能力。可见,在实际的施工过程中,由于不同建筑结构具有各自的独特性,因此剪力墙的实际设计都是存在差异性的,但是这种差异性需要建立在安全性之上。 本工程结构整体计算采用中国建筑科学研究院编制的多层及高层建筑结构三维分析与设计软件SATWE,计算时考虑扭转藕联的影响。考虑模拟施工分层加载,振型数取18个,采用侧刚分析方法。计算结果表明,本结构整体刚度在X方向较好,Y方向稍差。两幢楼剪力墙在X方向承担了总倾覆力矩的80%以上,Y方向承担了60%以上;西楼在地震作用下Y方向顶点位移绝对值偏大,最大层间位移接近规范限

现浇桥梁施工方案_现浇砼结构模板安装、拆除施工方案

现浇桥梁施工方案_现浇砼结构模板安装、拆除 施工方案 某建筑工程现浇砼结构模板安装、拆除施工方 案一、工程概况:该工程位于****,建筑面积4726平方米,框架结构,共五层,建筑高度23.7米,设计使用年限50年,耐火等级二级,抗震设防烈度六度。 二、一般规定: 1、保证工程结构和构件各部分形状尺寸和相互位置的正确。 2、具有足够的承载能力、刚度和稳定性,能可靠的承受新浇筑混凝土的自重和侧压力,以及在施工过程中产生的荷载。 3、构造简单,装拆方便,并便于钢筋的绑扎、安装和砼的浇筑、养护等要求。 4、模板接缝严密,不得漏浆。 5、模板与砼的接触面应涂刷隔离剂。对油质类等影响结构或妨碍装饰工程施工的隔离剂不宜采用。严禁隔离剂玷污钢筋与砼接搓处。 三、模板安装:模板支撑采用A3直径48mm的钢管,支撑系统两端应设置剪刀撑。立杆长度不够时钢管采取搭接方

式,搭接长度不得小于1米,在距搭接上下口15cm 位置用扣件进行连接,同时在上部钢管的下口用扣件进行顶撑。在土质情况比较差的位置剪刀撑相应加密,使上部荷载传至有较好地基支撑的位置。 (1)柱模柱模采用15厚竹胶板,纵楞 50*100@250木枋,横楞采用φ48钢管箍@600,采用 φ12@500(水平方向)对拉螺杆紧固。 (2)梁模梁底模采用15mm厚竹胶板,下垫50×100 木方沿梁长布置的搁栅,搁栅铺于钢管脚手架上。?梁侧模采用15mm厚竹胶板,钉横向50×100木龙骨,用纵向木档加固,加对拉螺栓紧固,梁底加钢管顶撑加固,间距700— 900mm。 次梁模板的安装在主梁模板安装并校正后进行。主梁跨度超过4m时,在梁模的跨中按梁跨的2‰度起拱。 700mm高以下的梁,由于荷载较小不设置对拉螺杆,底模下垫平行于梁的50*100木方@250,搁在@700的钢管横楞上,横楞用扣件连接在纵向水平杆上,水平杆与支模架立杆相连;侧模外设50*100的纵楞@250。 700mm以上,1米以下梁最大为500*800,梁离地面3.6米,模板为15厚木模板。底模下垫平行于梁的50*100木方@150,搁在@800的钢管支架上,支架上设一道拉杆;侧模外

钢筋混凝土结构设计范本

同济大学浙江学院
2008- 2008-2009 第二学期 《混凝土结构设计》课程设计
专业 班级 学号 姓名
土木工程
教师签名:
批阅日期:

目录
一.工程概况及设计资料 工程概况及设计资料 二.现浇钢筋混凝土主次梁单向板楼盖及柱设计 现浇钢筋混凝土主次梁单向板楼盖及柱设计 三.现浇钢筋混凝土双向板楼盖结构设计 现浇钢筋混凝土双向板楼盖结构设计 四.混合结构建筑物墙体设计 五.现浇钢筋混凝土板式楼梯设计 现浇钢筋混凝土板式楼梯设计 钢筋混凝土板 六.混合结构建筑物墙下条形基础与柱下单独基础

《钢筋混凝土结构》课 程 设 计 计 算 书 钢筋混凝土结构》 ( 2009-7) )
一.工程概况及设计资料 工程概况及设计资料
1.1 结构形式
采用混合结构,楼屋盖为钢筋混凝土单向板主次梁,竖向承重结构为内框架,基础为钢筋 混凝土柱下独立基础和墙下条形基础。楼梯为现浇钢筋混凝土板式楼梯。
1.2
水文地质
地基土层自上而下为:人工填土,层厚 0.6~1.0m;褐黄色粘土,层厚 4.0~4.5m,fa=80kN/m2, γ=19 kN/m3;灰色淤泥质粉土,层厚 20~22m, fa=70 kN/m2, γ=18 kN/m3;暗绿色粘质粉土,未穿, fa=160kN/m2,γ=20kN/m3。 地下水位在自然地表以下 0.8 m,水质对结构无侵蚀作用。 基础持力层为褐黄色粘土层。
1.3
设计荷载
基本风压及基本雪压按上海地区采用。 常用建筑材料和构件自重参照荷载规范确定。 屋面使用荷载按不上人屋面设计。 楼面使用荷载值根据荷载规范确定(本设计按 4.6 表规定取值)。
1.4
楼屋面做法
屋面: 细砂面层, 二布三油 PVC 防水层, 40 厚 C20 细石混凝土找平层 (双向配筋 ?4@200) , 最薄处 60 厚挤塑板保温层,,油膏胶泥一度隔气层,现浇钢筋混凝土屋面板,板下 20 厚纸筋灰粉底。 楼面:30 厚水泥砂浆面层,现浇钢筋混凝土梁板,板底梁面 20 厚纸筋灰粉面。
1.5
材料
混凝土:基础用 C20,上部结构用 C25。 墙体:±0.000 以下采用 MU10 标准砖,M5 水泥砂浆;±0.000 以上采用 MU10 多孔砖,M5 混合 砂浆。
1.6
平面尺寸与使用荷载
数据序号 51
荷载数据 (kN/m) 6
柱网尺寸 ( m 2 ) 4×6 - 2 × 6

剪力墙结构设计计算要点和实例

剪力墙计算 第5章剪力墙结构设计 本章主要内容: 5.1概述 结构布置 剪力墙的分类 剪力墙的分析方法 5.2整体剪力墙和整体小开口剪力墙的计算 整体剪力墙的计算 整体小开口剪力墙的计算 5.3联肢剪力墙的计算 双肢剪力墙的计算 多肢墙的计算 5.4壁式框架的计算 计算简图 内力计算 位移的计算 5.5剪力墙结构的分类 按整体参数分类 按剪力墙墙肢惯性矩的比值 剪力墙类别的判定 5.6剪力墙截面的设计 墙肢正截面抗弯承载力 墙肢斜截面抗剪承载力 施工缝的抗滑移验算 5.7剪力墙轴压比限制及边缘构建配筋要求 5.8短肢剪力墙的设计要求 5.9剪力墙设计构造要求 5.10连梁截面设计及配筋构造 连梁的配筋计算 连梁的配筋构造 5.1概述 一、概述 1、利用建筑物的墙体作为竖向承重和抵抗侧力的结构,称为剪力墙结构体系。墙体同时也作为维护及房间分隔构件。 2、剪力墙的间距受楼板构件跨度的限制,一般为3~8m。因而剪力墙结构适用于要求小房间的住宅、旅馆等建筑,此时可省去大量砌筑填充墙的工序及材料,如果采用滑升模板及大模板等先进的施工方法,施工速度很快。 3、剪力墙沿竖向应贯通建筑物全高,墙厚在高度方向可以逐步减少,但要注意

避免突然减少很多。剪力墙厚度不应小于楼层高度的1/25及160mm。 4、现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平力作用下侧向变形很小。墙体截面面积大,承载力要求也比较容易满足,剪力墙的抗震性能也较好。因此,它适宜于建造高层建筑,在10~50层范围内都适用,目前我国10~30 层的高层公寓式住宅大多采用这种体系。 5、剪力墙结构的缺点和局限性也是很明显的,主要是剪力墙间距太小,平面布置不灵活,不适应于建造公共建筑,结构自重较大。 6、为了减轻自重和充分利用剪力墙的承载力和刚度,剪力墙的间距要尽可能做大些,如做成6m左右。 7、剪力墙上常因开门开窗、穿越管线而需要开有洞口,这时应尽量使洞口上下对齐、布置规则,洞与洞之间、洞到墙边的距离不能太小。 8、因为地震对建筑物的作用方向是任意的,因此,在建筑物的从纵横两个方向都应布置剪力墙,且各榀剪力墙应尽量拉通对直。 9、在竖向,剪力墙应伸至基础,直至地下室底板,避免在竖向出现结构刚度突变。但有时,这一点往往与建筑要求相矛盾。例如在沿街布置的高层建筑中,一般要求在建筑物的底层或底部若干层布置商店,这就要求在建筑物底部取消部分隔墙以形成大空间,这时也可将部分剪力墙落地、部分剪力墙在底部改为框架,即成为框支剪力墙结构,也称为底部大空间剪力墙结构。 10、当把墙的底层做成框架柱时,称为框支剪力墙,底层柱的刚度小,形成上下刚度突变,在地震作用下底层柱会产生很大的内力和塑性变形,致使结构破坏。因此,在地震区不允许单独采用这种框支剪力墙结构。 11、剪力墙的开洞:在剪力墙上往往需要开门窗或设备所需的孔洞,当洞口沿竖向成列布置时,根据洞口的分布和大小的不同,在结构上就有实体剪力墙、整体小开口剪力墙、联肢剪力墙、壁式框架等。

现浇结构模板安装

表B.0.7 现浇结构模板安装报审、报验表 工程名称:杨春湖畔项目一期园林景观工程编号: 致:铁四院(湖北)工程监理咨询有限公司(项目监理机构) 我方已完成室外环形路现浇结构模板安装工作,经自检合格,请予以审查或验收。 附件:□隐蔽工程质量检验资料 □检验批质量检验资料 □分项工程质量检验资料 □施工试验室证明资料 □其他 施工项目经理部(盖章) 项目经理或项目技术负责人(签字) 年月日审查或验收意见: 项目监理机构(盖章) 专业监理工程师(签字) 年月日注:本表一式二份,项目监理机构、施工单位各一份。

现浇结构模板安装工程检验批质量验收记录表 编号:单位(子单位)工程名称杨春湖畔项目一期园林景观工程 分部(子分部)工程名称园建分部—环形路验收部位环形路 施工单位湖北万景景观工程有限公司项目经理李海礁 施工执行标准名称及编号混凝土结构工程施工质量验收规范(GB50204-2002) 施工质量验收规范的规定施工单位检查评定记录监理(建设)单位验收记录 主控项目1 模板支撑、立柱位置和垫板第4.2.1条/ 2 避免隔离剂沾污第4.2.2条 全数检查,模板隔离剂未沾污钢筋和混凝 土接槎处 一般项目1 模板安装的一般要求第4.2.3条现场检查,符合规范要求 2 用作模板地坪、胎膜质量第4.2.4条现场检查,符合规范要求 3 模板起拱高度第4.2.5条/ 4 预 埋 件. 预 留 孔 允 许 偏 差 预埋钢板中心线位置(mm) 3mm 预埋管.预留孔中心线位 置(mm) 3mm 插筋 中心线位置(mm) 5mm 外露长度(mm) +10,0mm 预埋 螺栓 中心线位置(mm) 2mm 外露长度(mm) +10,0mm 预留 洞 中心线位置(mm) 10mm 2 1 3 4 2 3 2 1 1 5 尺寸(mm) +10,0mm 2 3 6 5 4 3 2 5 7 5 5 模 板 安 装 允 许 偏 差 轴线位置(mm) 5mm 2 0 -1 -2 0 2 -1 -6 -2 -2 底模上表面标高(mm) ±5mm 截面内部 尺寸(mm) 基础±10mm 柱.墙.梁+4,-5mm 层高垂直 度(mm) 不大于5m 6mm 大于5m 8mm 相邻两板表面高低差(mm) 2mm 0 1 1 1 0 2 0 2 3 1 表面平整度(mm) 5mm 3 4 4 2 0 2 3 4 0 2 施工单位检查评定结果专业工长(施工员) 施工班组长 经检查,主控项目、一般项目均符合设计要求和《混凝土结构工程施工质量验收规范》(GB50204-2002)的规定,评定合格。 项目专业质量检查员: 年月日 监理(建设)单位验收结论专业监理工程师: (建设单位项目专业技术负责人): 年月日

钢筋混凝土框架 剪力墙结构施工组织设计方案

施工组织设计(钢结构部分) 1. 钢结构工程概况 1.1 工程概况 1.1.1 工程概况与特点 xxa于XX园内,规划用地面积20650吊,占地12000 m i,总建筑面积21882 m i (含风雨跑道1590斥)。建筑物高度为28.2m,地下一层(局部设地下夹层),地上三层。东西宽107.17m, 南北长190.12m。建筑物东西两侧分别有二个露天风雨跑道。 该工程为钢筋混凝土框架-剪力墙结构,屋面支撑体系:钢屋盖由二榀东西向的双曲面圆弧拱架和十榀南北向的马鞍形管桁架式钢屋架组成,十榀钢屋架吊挂于二榀主拱架下。看台周边半径38.2m 圆周上分别布置有圆形钢筋混凝土柱,混凝土柱之间设有钢筋混凝土圆弧梁,钢屋架支撑在钢筋混凝土圆弧梁上,标高随屋面马鞍形位置不同而变化,钢屋架由连系桁架LXHJ1F5联成一体。钢屋架从钢筋混凝土圈梁支撑点向外逐渐向高悬挑,最后由外环桁架梁联成一体,高挑部分构件为工字钢I22a 。屋架上设置钢檩条,铺设双层保温金属压形板。主拱架外露,屋面整体造形呈马鞍形,外露钢拱架苍劲有力,波浪形银灰色屋面飘逸,轻巧,两者完美结合,集中体现了更高更快更强的体育精神和奋发向上的现代风格。 详见图1.1 钢结构平面图;(图略) 图1-2 结构纵剖面;(图略)图1-3 结构横剖面;(图略) 1.1.2 结构形式 主拱架为双向圆弧拱,跨度为85.4m,拱脚最低处标咼5.2m、拱顶最咼处标咼28.2m,断面形状为平行四边形,上下弦杆①406X 20,腹杆①245X 12,①203X10,弦杆+腹杆节点为管+管相贯节点。吊杆为三角形断面,立杆与主拱架下弦杆相贯焊接,屋架悬挂于吊杆下,悬挂处吊杆与拱架下弦相贯连接采用铸钢节点,悬挂支座管为①351 X 16,节点形式为 管+板插入节点。 二榀主拱架由6榀横向支撑桁架相连,中间支撑桁架为梯形,上下弦杆①351 X 16,腹杆为①245X 12,①203X 10。外侧支撑桁架为三角形,上下弦杆①351 X 16,腹杆为①203X 10。十榀屋架南北向布置,悬挂于吊杆支座下,上弦杆①203X 12,下弦杆①245X 14,腹杆为① 133X6.5。WJ什5布置图见平面图,屋架呈中央高,向两侧趋于中部低,端部高的态势。连系桁架LXHJ1H5将十榀屋架联成一体,均为单片桁架,上下弦杆①133X 6.5,腹杆为①83 X 6。外环桁架BHJ1?6为三角形,上下弦杆①133X 6.5,腹杆为①83X 6。 悬挑工字钢为I22a ,檐口周圈用槽钢[22 相连。屋架上弦平面支撑(直、斜)均采用① 133X 8 钢管。屋面檩条采用[220X 75X 2.5 冷弯薄壁形钢。 钢结构构件表表1-1 (表略)钢结构主要构件明细表,见表1-2(表略) 1.1.3 节点形式 1)主拱支座:万向球形支座; 2)主拱上下弦杆+腹杆:“管-管” 相贯焊接节点; 3)主拱悬挂屋架处:铸钢节点; 4)吊杆支座:“管-板”插入焊接节点; 5)主拱横向支撑桁架、连系桁架LXHJ1?5、外环桁架BHJ1?BHJ6屋架平面支撑均采用“管-管” 相贯焊接节点。

钢筋混凝土剪力墙结构施工质量控制措施

钢筋混凝土剪力墙结构施工质量控制措施 摘要:文章介绍了建筑的钢筋混凝土剪力墙的分类及优缺点,并以混凝土施工的质量控制流程为主线,结合施工实例,对混凝土施工中的材料选取、施工控制要素进行了分析,供广大施工人员参考。关键词:混凝土剪力墙;施工质量;施工材料;施工建筑 中图分类号:tu974 文献标识码:a 文章编号:1009-2374(2012)22-0092-031 概述 目前,我国的高层及超高层建筑的数量越来越多,而剪力墙结构在高层建筑中得到了较为广泛的应用。建筑的结构墙体分为两类:一是承重墙,它主要承受来自建筑自重的竖向力,一般由砌体或钢筯混凝土现浇制成;二是剪力墙,剪力墙是用来承受风荷载、地震作用力等水平作用力的墙,因此又称其为抗风墙或抗震墙。现代建筑为了保证剪力墙的强度,较为广泛地采用了高强混凝土作为结构材料。高强度混凝土剪力墙具有强度高、用料省的优点,但施工质量不易控制,因此,在施工时应采取一定的措施保证高强混凝土剪力墙的施工质量。 2 剪力墙结构的分类及优点 剪力墙的种类很多,主要有三种不同的分类方法。根据所采用的结构材料,可分为配筋砌块剪力墙、钢筋砼现浇剪力墙等。按剪力墙的洞口的大小以及数量可分为整体式剪力墙、框架剪力墙和开有不规则洞口的剪力墙等。根据墙体的受力性能的不同,可以将其分

为壁式框架、独立墙体、连肢剪力墙、整体小开口剪力墙和整截面剪力墙等。 随着新材料、新技术及新工艺在建筑施工上的应用,人们对现代建筑的空间要求也越来越高,而在板梁结构建筑中,梁体外露是无法避免的,若以吊顶方式遮蔽,则会大大减少层高净空,给人以压抑和不舒适感。剪力墙配合楼板的结构体系则能很好地解决这一弊病,增大层间的净空。除了空间上的优势外,剪力墙结构还具有结构上的优点:剪力墙结构具有很好的承载能力,除了承载竖向荷载之外,还可以承载横向作用力,增加了建筑的整体性,可以提高建筑的建造高度,同时也保证了良好的抗震性能。 剪力墙也有自身的不足之处,如建筑自重大,对上部结构和下部基础的设计要求较为严格。同时,剪力墙作为建筑的结构体,其平面布置需一定的间距和形式,并不能完全按照建筑的功能使用进行平面布置,因此其建筑灵活性稍差一些,不太适用于大开间的公共建筑等。 3 剪力墙施工质量工艺流程 现浇混凝土剪力墙的施工流程与其他混凝土构件的施工流程类似,都由放线、支模、浇灌混凝土、振捣、养护、拆模等几方面组成,但根据现浇砼剪力墙自身的特点,又有不同于一般施工流程的做法,下面对其施工时的质量工艺流程作简要介绍: (1)放线:利用仪器放出模板的连线和控制线。

钢筋混凝土结构设计要点

浅述钢筋混凝土结构抗震延性设计摘要:抗震设计是结构总体设计的重要部分,是结构选型优化的重要依据。本文阐述了钢筋混凝土结构的部分抗震设计要点,重点探讨了增加结构局部延性的设计构造措施。 关键词:抗震;延性;构造 一、结构抗震延性设计概述及要点 结构延性是指钢筋混凝土构件和结构在屈服开始到达最大承载力或者承载能力还没有明显下降期间的塑性变形能力。提高延性可以增加结构抗震潜力,增强结构抗倒塌能力。抗震结构的延性计算复杂,一般实际工程不会具体计算,但是会通过一些加强措施保证结构的延性。 抗震延性设计要点主要包括:保证结构体系受力明确,地震作用传递途径合理;结构布置时应尽量避免部分结构或构件破坏而导致整个结构丧失抗震能力或对使用荷载的承载能力;结构应具备必要的抗震承载力(如抗剪、压、扭能力)、良好的变形能力(如塑性)和消耗地震能量的能力(具有好的延性及阻尼);对于结构的薄弱部位应采取有效的措施予以加强;具有多道抗震防线;结构平面上两个主轴方向的动力特性宜相近具有合理的刚度和强度分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑形变形集中。 抗震结构的各类构件之间应具有可靠的连接。抗震结构的支撑系统应能保证地震时结构稳定。非结构构件(维护墙、隔墙、填充墙等)要采取合理的抗震构造措施。 二、增加钢筋混凝土结构延性的设计措施 (一)梁柱框架截面设计 在地震作用下,梁端塑性铰区混凝土保护层容易剥落,故梁截面宽度过小则截面损失比例较大,所以一般框架梁宽度不宜小于200mm;同时为了提高节点剪力、避免梁侧向失稳及确定梁塑性铰区发展范围,分别要求梁宽不宜小于柱宽的1/2、梁的高宽比不宜大于4、梁的跨高比不宜小于4,以确保框架梁中箍筋对混凝土的有效约束。为保证框架柱有足够的延性,框架柱的截面尺寸在两个主轴方向刚度相差不宜太大,长宽比不宜大于3;应避免过早出现斜裂缝导致剪切破坏,剪跨比宜大于2;柱截面的宽度和高度,四级或不超过2层时不

ABAQUS中的钢筋混凝土剪力墙建模

ABAQUS中的钢筋混凝土剪力墙建模 曲哲 2006-5-29 一、试验标定 选用ABAQUS中的塑性损伤混凝土本构模型,分离式钢筋建模,建立平面应力模型模拟钢筋混凝土剪力墙的单调受力行为。李宏男(2004)本可以提供比较理想的基准试验。然而计算发现,该文中试验记录的初始刚度普遍偏小,仅为弹性分析结果的1/5~1/8,原因不明,故此处不予采用。左晓宝(2001)研究了小剪跨比开缝墙的低周滞回性能,其中有一片整体墙作为对照试件,本文仅以这片墙为基准标定有限元模型。 图1:剪力墙尺寸与配筋 该试件尺寸及配筋如图1所示。墙全高750mm,宽800mm,厚75mm,墙内布有间距φ6@100的分布钢筋,墙两端设有暗柱。混凝土立方体抗压强度为54.9MPa,钢筋均为一级光圆筋。 (a)墙体分区及网格(b)钢筋网 图2:ABAQUS中的有限元模型 剪力墙采用平面应力八节点全积分单元,墙上下两端各加设100mm高的弹性梁。钢筋采用两节点梁单元,通过Embed方式内嵌于墙体内。模型网格及外观如图2所示。墙下弹性梁底面嵌固。分析中,先在墙顶施加160kN均布轴压力,再在墙上方弹性梁的左端缓缓施加位移荷载。 ABAQUS中损伤模型各参数取值如表1、图3所示。未说明的参数均使用ABAQUS默认值。

表1:有限元模型材料属性 混凝土 钢筋 材料非线性模型 Damaged Plasticity Plasticity 初始弹性模量(GPa ) 38.1 210 泊松比 0.2 0.3 膨胀角(deg ) 50 初始屈服应力(MPa ) 13 235 峰值压应力(MPa ) 44 峰值压应变(με) 2000 峰值拉应力(MPa ) 3.65 注:其中混凝土弹性模量为文献中提供的试验值,其余均为估计值。 (a )压应力-塑性应变曲线 (b )拉应力-非弹性应变曲线 (c )受拉损伤指标-开裂应变曲线 图3:混凝土塑性硬化及损伤参数 ABAQUS 的混凝土塑性损伤模型用两个硬化参数分别控制混凝土的拉压行为,同时可以分别引入受压和受拉损伤指标。本文受压硬化曲线采用Saenz 曲线(式1),可用表1中列出的初始弹性模量、峰值应力和峰值应变唯一确定。受拉软化曲线采用Gopalaratnam 和Shah (1985)曲线(式2),并采取江见鲸建议参数k =63,λ=1.01,如图3(b )所示。本文模型只定义受拉损伤指标,损伤指标随开裂应变的变化如图3(c )所示,当开裂应变小于0.0014时,损伤指标线性增大,开裂应变超过0.0014后,损伤指标保持固定值0.6。 02 0000012c c c c E E εσεεεσεε= ??????+?+???????????? (1) e k t t f λ ωσ?= (2) 图4比较了采用4节点单元和8节点单元得到的剪力墙荷载-位移曲线,并同时画出了 文献中提供的荷载-位移骨架线。可见8节点单元模型的计算结果较4节点单元模型更加平滑顺畅,下降段也比较稳定。二者在达到峰值之前差别不大,但软化行为则相差较多。这可能与基于开裂应变定义的损伤指标引入的网格依赖性有关,本文对此不做深入讨论。 与试验曲线相比,有限元分析得到的荷载-位移曲线初始刚度略大,且墙底开裂(图中1点)时刚度退化不如试验中显著,导致之后的分析结果位移偏小。受拉侧钢筋屈服后计算得到的刚度与试验曲线比较接近,不久主斜裂缝的出现使墙的承载力进入软化段,被主要裂缝穿过的钢筋均进行屈服段。软化过程中墙体形成了新的主斜裂缝并最终沿这条主斜裂缝破坏。图5、6分别展示了剪力墙在受力全过程中关键点处的混凝土主拉应变和钢筋大主应力。 与试验曲线相比,计算结果刚度偏差较大,承载力基本一致。

相关文档
最新文档