光伏发电系统设计与简易计算方法word文档

光伏发电系统设计与简易计算方法word文档
光伏发电系统设计与简易计算方法word文档

光伏发电系统设计与简易计算方法

乛、離网(独立) 型光伏发电系统

(一) 前言:

光伏发电系统的设计与计算涉及的影响因素较多,不仅与光伏电站所在地区的光照条件、地理位置、气侯条件、空气质量有关,也与电器负荷功率、用电时间有关,还与需要確保供电的阴雨天数有关,其它尚与光伏组件的朝向、倾角、表面清洁度、环境温度等等因素有关。而这些因素中,例如光照条件、气候、电器用电状况等主要因素均极不稳定,因此严格地讲,離网光伏电站要十分严格地保持光伏发电量与用电量之间的始终平衡是不可能的。離网电站的设计计算只能按统计性数据进行设计计算,而通过蓄电池电量的变化调节两者的不平衡使之在发电量与用电量之间达到统计性的平衡。

(二) 设计计算依椐:

光伏电站所在地理位置(緯度) 、年平均光辐射量F或年平均每日辐射量f(f=F/365) (详见表1)

我国不同地区水平面上光辐射量与日照时间资料表1

注:1)1 kwh=3.6MJ;亻

2)f=F(MJ/m2 )/365天;

3)h=H/365天;

4) h1=F(KWh)/365(天)/1000(kw/m2 ) (小时);

) 5)表中所列为各地水平面上的辐射量,在倾斜光伏组件上的辐射量比水平面上辐射量多。

设y=倾斜光伏组件上的辐射量/水平面上辐射量=1.05—1.15。故设计计算倾斜光伏组件面上辐射量时应乘以量量时应乘以y。

2. 各种电器负荷电功率w及其每天用电时间t;

3. 確保阴雨天供电天数d;

4. 蓄电池放电深度DOD(蓄电池放电量与总容量之比) ;

(三) 设计计算:

1. 每天电器用电总量Q:

Q=( W1×t1十W2×t2十----------) (kwh)

2. 光伏组件总功率P m:

P m= a×Q/F×y×η/365×3.6×1

或P m=a×Q/f×y×η/3.6×1

或P m= (a×Q/h1×y×η ) (kw p)

P m----光伏组件峰值功率,单位:W P或K W P (标定条件:光照强度1000W/m2,温度25℃,大气质量AM1.5)

a-----全年平均每天光伏发电量与用电量之比

此值 1≤a≤d

η-----发电系统综合影响系数(详见表2)

光伏发电系统各种影响因素分析表表2

3. 蓄电池容量C:

C=d×Q/DOD×η6×η9×η10 (kwh)-----( 交流供电)

C=d×Q/DOD×η9×η10 (kwh)-----( 直流供电)

4. 蓄电池电压V、安时数AH、串联数N与并联数M设计:

蓄电池总安时数AH=蓄电池容量C/蓄电池组电压V

蓄电池电压根据负载需要确定,通常有如下几种:

1.2v;

2.4v;

3.6v;

4.8v;6v;12v;24v;48v;60v;110v;220v

蓄电池串联数N=蓄电池组电压V/每只蓄电池端电压v

蓄电池并联数M=蓄电池总安时数AH/每只蓄电池AH数

5. 光伏组件串联与并联设计:

光伏组件串联电压和组件串联数根据蓄电池串联电压确定:(见表3、表4、表5)

(晶体硅)光伏组件串联电压和组件串联数表3

(晶体硅)光伏组件端电压与电池片串联数表4

(CIS薄膜)光伏组件端电压与电池片串联数表5

光伏组件并联数M=光伏组件总功率P m /每块组件峰值功率×组件串联数

6. 充电控制器选用

主要根据下列要求选用:

1)最大输入电压≥光伏方阵串联空载电压1.2-1.5倍;

2)最大输入电流≥光伏方阵并联短路电流1.2-1.5倍;

3)输入并联支路数≥光伏方阵并联数;

4)额定功率≥最大负载功率总和1.2-1.5倍;

5)输出最大电流≥最大负载电流1.2倍

充电控制器应具有过充、欠压保护;防反充和接反保护功能。

7. 逆变器选用

主要根据下列要求选用:

1)最入电压≥蓄电池串联电压;

2)额定功率≥负载最大功率1.2-1.5倍;(对于感性负载,需考虑启动电流) ;

3)输出电压=负载额定电压;

4)输出电流波形根据负载要求可以为方波或准正弦波或正弦波;

逆变器应具有输出过电压和过电流保护。

(四) 离网电站实际发电举例

1) 西藏昌都地区一座总功率P m=30kw p离网光伏电站,经910天运行,累计发电74332kwh。

平均每天发电量g=74332kwh/910天=81.68kwh。

2)理论计算:

昌都地处西藏东南部,查表1,年平均辐射量为1625-1855kwh/m2 ,取F=1700kwh/m2或h1 =4.6h

a) 年发电量G=P m×F ×y×η/1Kw=30kw p×1700kwh×1.1 ×0.54/1kw=30294(kwh)

每天发电量g=G/365=30294/365=83(Kwh);或

b)每天发电量g=P m×h1×y×η=30kw p×4.6h×1.1 ×0.54=81.97(kwh)

理论计算发电量81.97(kwh)与实际发电量81.68kwh十分接近,表明理论计算的正确性。

二、并网光伏发电系统设计计算

并网光伏发电系统的设计比离网光伏发电系统简单,这不仅是因为离网光伏发电系统不需要蓄电池和充电控制器,且其供电对象是较稳定的电网。故毋须考虑发电量与用电量之间的平衡,也不需要考虑负载的电阻、电感特性。通常只需根据光伏组件总功率计算其发电量。反之,根据需要的发电量设计并网发电系统设置。

(一)设计依椐:

1)光伏发电系统所在地理位置(纬度) ;

2)当地年平均光辐射量;

3)需要年发电量或光伏组件总功率或投资规模或占地面积等;

4)并网电网电压,相数;

(二)并网发电系统设计计算

1) 发电量或组件总功率计算:

年平均每天发电量g=P m×h1×y×η (kwh) 或

g= P m×F(M J/m2 )×y×η/3.6×365×1 (kwh) 或

g= P m×F(kwh/m2 )×y×η/365 (kwh)

平均年发电量G=g×365 (kwh)

2)并网逆变器选用:

并网逆变器的选用主要根据下列要求:

a)逆变器额定功率=0.85-1.2P m;

b)逆变器最大输入直流电压>光伏方阵空载电压;

c)逆变器最输入直流电压范围>光伏方阵最小电压;

d)逆变器最大输入直流电流>光伏方阵短路电流;

e)逆变器额定输入直流电压=光伏方阵最大功率电压;

f)额定输出电压=电网额定电压;

g)额定频率=电网频率;

h)相数=电网相数;

并网逆变器的输出波形畸变、频率误差等应满足并网技术要求。此外,必须具有短路、过压、欠压保护和防孤岛效应等功能。

三、光伏组件方阵设计:

(一) 光伏组件水平倾角设计:

光伏组件水平倾角的设计主要取决于光伏发电系统所处纬度和对一年四季发电量分配的要求。

1)

光伏发电系统所处纬度光伏组件水平倾角

纬度0°--- 25°倾角等于纬度

纬度26°--- 40°倾角等于纬度加5°∽10°

纬度 41°----55°倾角等于纬度加10°∽15°

纬度>55°倾角等于纬度加15°∽20°

2)

对于要求冬季发电量较多情况,可以采用所在纬度加11°的组件水平倾角。

对于要求夏季发电量较多情况,可以采用所在纬度减11°的组件水平倾角。

(二)光伏方阵倾角与朝向对发电量的影响:

光伏方阵倾角与朝向对发电量有很大影响,一般光伏方阵应面向正南方(北半球) ,合理的倾角在前面巳论述。但在有些场合,组件的倾角和朝向不一定理想。这就会对光伏方阵的对发电量的产生明显的影响。下图是光伏方阵倾角与朝向对发电量影响的大致关系图。

(三)光伏方阵前后两排间距或与前方遮挡物之间的间距设计:

光伏方阵前后间距或与前方遮挡物之间的间距如果不合理设计,则会影响光伏系统的发电量,尤其在冬季。光伏方阵前后间距或与前方遮挡物之间的间距的设计与光伏系统所在纬度、前排方阵或遮挡物高度有关。

设D-------为前后间距;

Φ------为光伏系统所处纬度(北半球为正,南半球为负);

H-------为后排光伏组件底边至前排遮挡物上边的垂直高度;

D=0.707H/tan〔arc sin(0.648cosΦ—0.399sinΦ) 〕

举例:设Φ=32°

D=0.707H/tan〔arc sin(0.648cos32°—0.399sinΦ32°) 〕

=0.707H/tan〔arc sin(0.648×0.848—0.399×0.529) 〕

=0.707H/tan〔arc sin(0.549—0.211)= 0.707H/tan〔arc sin0.338〕

=0.707H/tan18.6°=0.707H/0.336=2.1H

(四)光伏方阵总功率与占地面积的关系:

光伏方阵总功率与占地面积的关系取决于光伏组件的安装方式、光伏组件种类(晶体硅或薄膜电池)及其光伏组件光电转换效率。组件安装方式可分为两种:

1)复盖型:如复盖在坡屋面或平屋面或墙面上的安装方式。这种方式能安装的光伏方阵总功率较多。根

椐组件不同光电转换率,大致如下:

a)晶体硅组件(光电转换率15-17%):130—145W P /m2 ;

b)薄膜电池(光电转换率5-7%):43-60 W P /m2

2)锯齿型:在平屋顶或平地上安装倾斜光伏组件方式。这种安装方式,有利于提高光伏方阵的发电量。

但从前面所述,为防止前排遮挡后排,前后排之间必须有一定间距。这种间距随着光伏发电系统所在

纬度的增大而增加。对于我国大部分地区而言,每平方米能安装的组件功率仅为复盖型的一半。即

a)晶体硅组件(光电转换率15-17%):65—72W P /m2 ;;

b)薄膜电池(光电转换率5-7%):22-30W P /m2;

有了上列各项数椐,就可以计算不同组件安装方式情况下,光伏组件总功率所需安装面积。反之,巳知面积,可以计算能安装的最大光伏方阵总功率。

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优化设计

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优 化设计 《太阳能光伏发电系统》 课程设计 课题名称: 家庭并网光伏发电系统的优化设计专业班级: 学生姓名: 学生学号: 指导教师: 设计时间: 沈阳工程学院 报告正文 目录 第1章绪 论 ..................................................................... . (3) 1.1 设计背 景 ..................................................................... .. (3) 1.2 设计意 义 ..................................................................... ......................................... 3 第2章朝阳市气象资料及地理情况...................................................................... ............... 4 第3章家用并网型...................................................................... .. (6)

太阳能光伏发电系统的优化设 计 ..................................................................... .. (6) 3.1 设计方 案 ..................................................................... .. (6) 3.2负载的计算...................................................................... . (8) 3.3 太阳能电池板容量及串并联的设计及选 型 (9) 3.4 太阳能电池板的方位角与倾斜角的设 计 (10) 3.5 蓄电池容量及串并联的设计及选型..................................................................... 11 3.6 控制器、逆变器的选 型 ..................................................................... (12) 3.7 电气配置及其设 计 ..................................................................... (13) 3.8 系统配置清 单 .....................................................................

最新小型光伏发电系统4KW的设计

小型光伏发电系统4K W的设计

南京信息职业技术学院 毕业设计论文 作者陈德清学号 31041P03 系部中认新能源技术学院 专业光伏发电技术及应用 题目小型独立光伏发电系统(4KW)的设计 指导教师程超 评阅教师张渊 完成时间: 2013年 5 月 2 日

毕业设计(论文)中文摘要

毕业设计(论文)外文摘要

目录 1 引言 (5) 2 独立光伏发电系统概述 (7) 2.1 独立光伏发电系统的概念 (7) 2.2.1 结构 (8) 2.2.2 工作原理 (9) 3 独立光伏发电系统的设计 (9) 3.1 系统的设计原则、步骤和内容 (9) 3.1.1 系统设计原则 (9) 3.1.2 设计步骤和内容 (9) 3.2 系统容量的设计 (10) 3.2.1 数值计算值 (10) 3.3 太阳能电池组件及方阵的设计 (12) 3.3.1 光伏组件方阵需要考虑的问题 (12) 3.3.2 太阳能电池组件(方阵)的方位角与倾斜角 (12) 3.3.3 一般设计方法 (13) 3.4 直流接线箱的选型 (16) 3.5 光伏控制器的选型 (18) 3.6 光伏逆变器的选型 (19) 4 结论 (20) 5 致谢 (21) 6参考文献 (21)

1 引言 自人类社会诞生以来,能源一直是人类生存和发展的重要物质基础。随着社会的发展,能源在社会发展中的重要性越来越突出,尤其是近年来各国日益呈现出来的能源危机问题更加明显地把能源置于社会发展的首要地位。 根据《BP世界能源统2005》的统计数据,以目前的开采速度计算,全球石油储量可供生产40 多年,天然气和煤炭则分别可以供应67年和164年。而我国的能源资源储量情况更是危机逼人,按2000 年底的统计,探明可开发能源总储量约占世界总量的10.1%.我国能源剩余可开采总储量的结构为原煤占58.8%,原油占3.4%,天然气占1.3%,水资源占36.5%。我国能源可开发剩余可采储量的资源保证程度仅为129.7年。 目前世界大部分国家能源供应不足,不能满足经济发展的需要,各国纷纷出台各种法规支持开发利用新能源和可再生能源,使得新能源和可再生能源在全球升混。20世纪90年代以来,以欧盟为代表的地区集团,大力开发利用可再生能源,连续1 0 年可再生能源发电的年增长速度都在15%以上。以德国、西班牙为代表的一些国家通过立法方式,促进可再生能源的发展,1999 年以来可再生能源年均增长速度均达到3日%以上。四班牙2003 年风力发电装机占到全机总量的4% ,德国在过去11年间,风力发电增长21倍,2003年占全的3.1%,瑞典和奥地利的生物质能源在其能源消费结构中高达15%以上。 近年来,光伏产业迅速发展,世界太阳电池年产量在最近十年内保持了30%以上的增速,2007 年年增长率达到了50% ,2008 年年增长率甚至达到了100% ,年产量达到6.5GW ,大阳电池产量迅速增加的动力来自于世界对太阳能等清洁能源持续增长的需求,2008 年世界光伏系统新装机容量达到5.95

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

独立光伏发电系统设计

独立光伏发电系统设计 目录 1引言 (1) 2 独立光伏发电系统工作原理 (1) 3 独立光伏发电系统的设计 (2) 3.1 系统容量的设计 (2) 3.2 太阳能电池组件及方阵的设计 (3) 3.2.1 光伏组件方阵设计需要考虑的问题 (3) 3.2.2 太阳能电池组件(方阵)的方位角与倾斜角 (4) 3.2.3 一般设计方法 (4) 3.3 直流接线箱的选型 (5) 3.4 光伏控制器的选型 (7) 3.6 光伏逆变器的选型 (8) 结论 (9)

独立光伏发电系统设计 摘要 太阳能光伏发电是一种最具可持续发展理想特征的可再生能源发电技术,发展太阳能光伏发电系统也具有很高的可行性,首先能缓解我国目前的能源问题以及日益严重的环境问题,还能解决边远地区居民用电难,成本高的问题。本论文将从小型独立系统的发电原理,系统设计原理,及其本身具有的优势结合其受众群体的所需考虑的各方面因素来设计适合家庭使用的小型系统。通过理论与实际市场调查相结合的方法设计适合全国各地人民使用的优惠且实用的系统。 关键词:小型;独立光伏发电;系统;优惠实用 1引言 当下,许多国家已把发展可再生能源作为未来实现可持续发展的重要方式,而中国也将以太阳能为代表的可再生能源作为未来低碳经济的重要组成部分。近年来,国家财政对太阳能产业的补贴力度逐年增强。独立光伏发电系统是指未与公共电网相连接的太阳能光伏发电系统,其输出功率提供给本地负载(交流负载或直流负载)的发电系统。其主要应用于远离公共电网的无电地区和一些特殊场所,如为公共电网难以覆盖的边远偏僻农村、海岛和牧区提供照明、看电视、听广播等基本生活用电,也可为通信中继站、气象站和边防哨所等特殊处所提供电源。 2 独立光伏发电系统工作原理 通过太阳能电池将太阳辐射能转换为电能的发电系统称为太阳能光伏发电系统。其主要结构由太阳能电池组件(或方阵)、蓄电池(组)、光伏控制器、逆变器(在有需要输出交流电的情况下使用)以及一些测试、监控、防护等附属设施构成。 太阳能电池方阵吸收太阳光并将其转化成电能后,在防反充二极管的控制下为蓄电池组充电。直流或交流负载通过开关与控制器连接。控制器负责保护蓄电池,防止出现过充或过放电状态,即在蓄电池达到一定的放电深度时,控制器将自动切断负载,当蓄电池达到过充电状态时,控制器将自动切断充电电路。有的控制器能够显示独立光伏发电系统的充放电状态,并能贮存必要的数据,甚至还具有遥测、遥信和遥控的功能。在交流光伏发电系统中,DC-AC逆变器将蓄电池组提供的直流电变成能满足交流负载需要的交流电。

离网光伏系统设计

离网光伏发电系统容量设计 一.任务目标 1.掌握容量设计的步骤和思路。 2.掌握光伏发电系统的容量设计方法。 3.了解光伏发电系统容量设计考虑的相关因素。 二.任务描述 光伏发电系统容量设计主要涉及蓄电池容量、蓄电池串并联数、光伏发电系统的发电量、光伏组件串并联数的计算。本实验报告主要以两种常见的计算方法为主。计算过程中需要注意不同容量单位之间的换算。 三.任务实施 1.容量设计的步骤及思路: 光伏发电系统容量设计的主要目的是计算出系统在全年内能够可靠工作所需的太阳能电池组件和蓄电池的数量。主要步骤: 2.蓄电池容量和蓄电池组的设计: (1)基本计算方法及步骤 ①将负载需要的用电量乘以根据实际情况确定的连续阴雨天数得到初步的蓄电池容量。阴雨天数的选择可参照如下:一般负载,如太阳能路灯等,可根据经验或需要在3-7内选取,重要

的负载。如通信、导航、医院救治等,在7-15内选取。 ②蓄电池容量除以蓄电池的允许最大放电深度。一般情况下,浅循环型蓄电池选用50%的放电深度,深循环型蓄电池选用75%的放电深度。 ③综合①②得电池容量的基本公式为 最大放电深度 连续阴雨天数 负载日平均用电量蓄电池容量?= 式中,电量的单位是h A ?,如果电量的单位是h W ?,先将h W ?折算为h A ?,折算关系如下: 系统工作电压 ) 负载日平均用电量(负载平均用电量h W ?= (2)相关因素的考虑 上 ①放电率对蓄电池容量的影响。 蓄电池的容量随着放电率的改变而改变,这样会对容量设计产生影响。计算光伏发电系统的实际平均放电率。 最大放电深度 连续阴雨天数 负载工作时间)平均放电率(?= h 负载工作功率 负载工作时间负载工作功率负载工作时间∑∑?= ②温度对蓄电池容量的影响。 蓄电池的实际容量会随着温度的变化而变化,当温度下降时,蓄电池的实际容量下降;温度升高时,蓄电池的实际容量略有升高。蓄电池的实际容量与温度的关系如图4-3所示曲线所示。

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

光伏发电系统设计方案专业设计书

光伏发电工程 项 目 方 案 设 计 书

目录 一、概述 (4) 1.1项目概况 (4) 1.2编制依据 (4) 二、建设地址资源简述 (4) 2.1日照资源 (4) 2.2接入系统条件 (6) 三、总体方案设计 (6) 3.1光伏工艺部分 (6) 3.2太阳电池组件选型 (7)

3.3光伏阵列设计 (12) 3.4系统效率分析 (15) 四、电气部分 (16) 4.1概述 (16) 4.2系统方案设计选型 (16) 4.3电气主接线 (20) 4.4主要设备选型 (20) 4.5防雷及接地 (30) 4.6电气设备布置 (31) 4.7电缆敷设及电缆防火 (31) 五、工程案例 ........................................................................... 错误!未定义书签。 六、系统配置以及报价.............................................................. 错误!未定义书签。

一、概述 1.1 项目概况 1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。针对固定式安装电池板,采用最佳倾角进行安装,地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室。 1.2 编制依据 本初步设计说明书主要根据下列文件和资料进行编制的: 1)GB50054《低压配电设计规》; 2)GB50057《建筑物防雷设计规》; 3)GB31/T316—2004《城市环境照明规》; 4)GBJl33—90《民用建筑照明设计标准》; 5)JGG/T16—921《民用建筑电气设计规》; 6)GBJ16—87《建筑设计防火规》; 7)《中华人民国可再生能源法》; 8)国家发展改革委《可再生能源发电有关管理规定》; 二、建设地址资源简述 2.1日照资源 我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。全国总面积2/3 以上地区年日照时数大于2000 小时。

光伏并网发电系统设计复习过程

光伏并网发电系统设 计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。

R L U 图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC 变换器和后级的DC-AC 逆变器组成。在系统中,DC-DC 变换器采用BOOST 结构,主要完成系统的MPPT 控制;DC-AC 部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz 交流电。设计采用单片机SPWM 调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT 原理及电路设计 3.1 MPPT 原理

分布式光伏发电系统设计方案(专业)

某学校 512K分布式光伏发电系统设计方案2013年10月10日 项目编号:XXX

目录 1工程概述 (3) 1.1工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 3.4.1电池组件 (6)

3.4.2 组件结构图 (7) 3.4.3 并网逆变器 (8) 3.4.4 并网逆变器规格 (9) 4发电量估算 (10) 5系统的社会效益 (10) 5.1社会效益(25年) (10) 6设备材料清单及造价一览表(此报价含税不含物流费用) (11) 7工程业绩表及典型工程 (11) 8合利欧斯优势 (16) 8.1 与保利协鑫(GCL)的合作 (16) 8.2 与河北**的的合作 (17) 1工程概述 1.1工程名称 河南**外国语学校512kW户用分布式光伏发电项目。

1.2 地理简介 郑州位于东经112°42'-114°13' ,北纬34°16'-34°58',东西宽166公里,南北长75公里,总面积约为7446.2平方公里,其中市区面积约1010.3平方公里,山地面积约2377平方公里,水面面积约11.4平方公里。郑州市属北温带大陆性季风气候,冷暖适中、四季分明,春季干旱少雨,夏季炎热多雨,秋季晴朗日照长,冬季寒冷少雨。郑州市冬季最长,夏季次之,春季较短。统计资料表明郑州市的平原和丘陵地区春季开始的时间大致在3月27日,终止于5月20日,历时55天;夏季开始于5月21日,终止于9月7日,历时110天;秋季开始于9月8日,终止于11月9日,历时63天;11月10日至次年的3月26日为冬季,长达137天。处于西部浅山丘陵区的荥阳、巩义、新密和登封四市,年平均气温在14~14.3℃之间。郑州年平均降雨量640.9毫米,无霜期220天,全年日照时间约2400小时。 1.3 气象资料 气象资料以NASA数据库中郑州气象数据为参考。 表1 气象资料表

光伏发电系统_毕业设计

1. 引言 日常生活和社会生产都离不开能源。人们通过直接或间接利用某些自然资源得到能,因而,把具有某种形式能量资源以及由它加工或转换得到的产品统称为能源。前者叫自然能源或一次能源,如矿物燃料、植物燃料、太阳能、水能、风能、海洋能、地热能和潮汐能等,后者通常又把可再生的自然资源称为新能源,其围包括太阳能、生物质能、风能、地热能和海洋能等。矿物燃料(煤、石油、天然气等)又称为常规能源。 值得注意,几乎所有的自然资源,从广义的角度看都来自太阳能。由大气、陆地、海洋、生物等所接受的太阳能都是各种自然资源的源泉。矿物燃料是古生物长期沉积在地下形成的,它的形成源自远古的太阳能。[9]水的蒸发和凝结,风、雨、冰、雪等自然现象的动力也是靠太阳,因而水能、风能归根到底都来自太阳能。生物质能是通过光合、光化作用转化太阳辐射能取得的。由于太阳和月球对地球水的吸水作用产生潮汐能。 世界上最丰富的永久能源是太阳能。地球截取的太阳能辐射能通量为1.7ⅹ1014kW,比核能、地热和引力能储量总和还要大5000多倍。其中约30%被反射回宇宙空间;47%转变为热,以长波辐射形式再次返回空间;约23%是水蒸发、凝结的动力,风和波浪的动能,植物通过光合作用吸收的能量不到0.5%。地球每年接受的太阳能总量为1ⅹ1018kW·h。这相当于5ⅹ1014桶原油,是探明原油储量的近千倍,是世界年耗总能量的一万余倍。 太阳的能量是如此巨大,正如通常所说的“取之不尽、用之不竭”,但是太阳辐射能的通量密度较低,大气层外为1353W/m2.太通过大气层时会进一步衰减,还会受到天气、昼夜以及空气污染等因素的影响,因而,太阳能对地球又呈现间歇性质,时高时低,时有时无。太阳能须加有储热装置,这些都使太阳能利用系统的初期投资变得昂贵。综上所述,太阳能利用具有以下明显的特点:(1)总能量很大,但太阳能通量密度较低; (2)是可再生的能源,但又具有间歇性; (3)无污染的清洁能源; (4)太阳能本身是免费的,有效利用它的初期投资较高; (5)太阳能热利用较容易实现热能能级的合理匹配,从而做到热尽使用。

家用小型太阳能光伏发电系统设计

专科生毕业论文(设计)题目:家用小型太阳能光伏发电系统设计 系(部)光伏发电及应用 专业光伏发电及应用 学号 201111120**** 姓名王 * 指导教师龚** 1

20 13年 10 月 6 日 摘要 太阳能是最普遍的自然资源,也是取之不尽的可再生能源。为解决边远的农牧地区、偏僻的山区、孤立的岛屿等地方人们日常生活、生产用电的需要,改善人们的生活水平,进行了家用太阳能光伏发电系统的设计。根据当地的气象、环境状况及具体用电情况,给出了系统的设计方法及施工要求,包括蓄电池容量的计算、控制器的选择、逆变器功率的选择、太阳能电池组件的选择和布置等。安装运行以来,系统工作稳定正常,验证了设计的正确性。 关键词:太阳能光伏发电;太阳能电池组件;系统设计。 Abstract:Solarenergyisthemostcommonformofnaturalresources,itisalsotheinexhaustiblerenewab leenergy.Aimingatsolvingthepeople'sdailylifeandproductionelectricityneedsinremotefarming,m ountainandislands,ahomeusesolarphotovoltaicgenerationsystemwasdesigned.Accordingtolocal weather,environmentalconditionsandspecificcasewithelectricity,thedesignmethodandconstructi onrequirementweredeveloped,includingthecalculationofthebatterycapacity,theselectionofthecon troller,thechoiceofinverterpower,theselectionandlayoutofthesolarcellmodules,etc..Theresultsind icatethatthesystemrunsstabilityandnormal,theaccuracyofthede-signisverified.

离网光伏发电系统

毕业论文 学生姓名学号 学院物理与电子电气工程学院 专业电气工程及其自动化 题目离网型光伏供电系统研究 指导老师 (姓名)(专业技术职称/学位) (姓名)(专业技术职称/学位) 2012年 5 月

摘要:本文介绍了太阳能光伏发电的系统的基本组成和特性,说明了太阳能电池最大功率跟踪的原理以及一些常用的方法,并比较了他们的优缺点。本文研究一种带有双向变换器功能的离网光伏发电系统,通过对目前太阳能离网光伏发电系统常用DC/DC拓扑结构的研究,总结了各种DC/DC拓扑结构的优缺点。添加了逆变电路使系统能够向交流负载供电,并对逆变电路通过MALTAB进行了仿真。 关键词:离网光伏发电,逆变电路,DC/DC变换器,最大跟踪率

Abstract: This article describes the basic components and characteristics of the solar photovoltaic system, illustrates the principle of the solar cell maximum power point tracking as well as some commonly used method, and compare their advantages and disadvantages. This article focuses on research with a bi-directional converter function off-grid photovoltaic systems, solar stand-alone PV power generation systems commonly used in the DC / DC topology, summarizes the advantages and disadvantages of a variety of DC / DC topology. Added to the inverter circuit makes the system load to the AC power supply, and inverter circuit by MALTAB the the simulation. Keywords:off-grid photovoltaic inverter circuit, the DC / DC converter, the maximum tracking rate

分布式光伏发电系统设计方案

分布式光伏发电系统 设 计 方 案 编制人: 审核人: 批准人: 20 年月

目录 1 工程概述 (3) 1.1 工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2 太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3 方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 4 发电量估算 (11) 5 系统的经济和社会效益 (11) 5.1 经济效益 (11) 6 设备材料清单 (12) 7 工程业绩表及典型工程照片 (12) 8 英利介绍............................................................................................... 错误!未定义书签。 9 附图1 .................................................................................................... 错误!未定义书签。

1 工程概述 1.1 工程名称 河北省分布式光伏发电项目。 1.2 地理简介 项目地点位于河北省保定市,保定市地处太行山东麓,冀中平原西部。北纬38°10′-40°00′,东经113°40′-116°20′之间。北邻北京市和张家口市,东接廊坊市和沧州市,南与石家庄市和衡水市相连,西部与山西省接壤。保定年平均气温12℃,年降水量550毫米,属于温带季风性气候。这里四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,来此旅游一般以夏秋季为宜。 1.3 气象资料 气象资料以NASA数据库中保定市气象数据为参考。 表1 气象资料表

小型光伏发电系统设计

小型光伏发电系统设计 摘要:本文对小型光伏发电系统设计进行了详细阐述,主要包括:太阳能光伏发电系统结构、太能能光伏发电系统容量的选择与计算、太阳能电池组件功率和方阵的设计与计算、蓄电池 容量的设计与计算、控制器和逆变器的选型等内容,最后本文给出了一个装机容量为3kW 的小型光伏发电系统的典型配置。 关键词:小型光伏发电设计;成本分析;小型光伏系统典型配置 一、引言 2013 年以来,中国各地持续加重的雾霾天气,一再引发人们对环境的关注。 2014 年伊始,我国中东部地区因雾霾天气造成中重度空气污染,严重影响了公众的健康,不仅成为社会关注的焦点,而且也已经成为严重的社会问题。治理雾霾已成为政府工作的重中之重,继国务院出台《大气污染防治行动计划》后,相关部门陆续出台大气治理措施。当前,以光伏发电为代表的清洁能源为治理雾霾提供了破解路径,并得到了国家高度重视。 然而,当前由于大型光伏电站投资成本过高、对大型光伏发电站的成本测算、 预期投资回收期以及运营费用等各方面的研究还不成熟,导致资本不敢贸然投资光伏发电,当前看似如火如荼进展的光伏发电站则主要还是依赖政府补贴,大型光伏发电站真正进入市场还有较长一段路要走。 小型光伏发电系统相对而言具有投资成本小、技术瓶颈低、成本回收期短等 优势。在当前各投资资本对大型光伏发电产业持观望态度时期,小型光伏发电系 统无疑会成为各资本进入光伏产业的探路石。 在此背景下,本文提出一种小型光伏发电系统的设计,并对该系统中的各关 键问题进行研究分析。 二、小型光伏发电系统的基本设计思路 太阳能光伏发电系统的负载大小有别、用途各异、发电系统所处的地理位置、

离网光伏发电系统分类及工作特点

离网光伏发电系统分类及工作特点 离网光伏发电系统又可分为直流光伏发电系统和交流光伏发电系统以及交、直流混合光伏发电系统。而在直流光伏发电系统中又可分为有蓄电池的系统和没有蓄电池的系统。 (1)无蓄电池的直流光伏发电系统 无蓄电池的直流光伏发电系统如图2-2所示。该系统的特点是用电负载是直流负载,对负载使用时间没有要求,负载主要在白天使用。太阳能电池与用电负载直接连接,有阳光时就发电供负载工作,无阳光时就停止工作。系统不需要使用控制器,也没有蓄电池储能装置。该系统的优点是省去了能量通过控制器及在蓄电池的存储和释放过程中造成的损失,提高了太阳能的利用效率。这种系统最典型的应用是太阳能光伏水泵。 图2-2无蓄电池的直流光伏发电系统图图2-3有蓄电池的直流光伏发电系统 (2)有蓄电池的直流光伏发电系统 有蓄电池的直流光伏发电系统如图2-3所示。该系统由太阳能电池、充放电控制器、蓄电池以及直流负载等组成。有阳光时,太阳能电池将光能转换为电能供负载使用,并同时向蓄电池存储电能。夜间或阴雨天时,则由蓄电池向负载供电。这种系统应用广泛,小到太阳能草坪灯、庭院灯,大到远离电网的移动通信基站、微波中转站,边远地区农村供电等。当系统容量和负载功率较大时,就需要配备太阳能电池方阵和蓄电池组了。 (3)交流及交、直流混合光伏发电系统 交流及交、直流混合光伏发电系统如图2-4所示。与直流光伏发电系统相比,交流光伏发电系统多了一个交流逆变器,用以把直流电转换成交流电,为交流负载提供电能。交、直流混合系统则既能为直流负载供电,也能为交流负载供电。 图2-4 交流和交、直流混合光伏发电系统

(4)市电互补型光伏发电系统 所谓市电互补光伏发电系统,就是在独立光伏发电系统中以大阳能光伏发电为主,以普通220V交流电补充电能为辅,如图2-5所示。这样光伏发电系统中太阳能电池和蓄电池的容量都可以设计得小一些,基本上是当天有阳光,当天就用太阳能发的电,遇到阴雨天时就用市电能量进行补充。我国大部分地区基本上全年都有三分之二以上的晴好天气,这样系统全年就有三分之二以上的时间用太阳能发电,剩余时间用市电补充能量。这种形式即减小了太阳能光伏发电系统的一次性投资,又有显著的节能减排效果,是太阳能光伏发电在现阶段推广和普及过程中的一个过渡性的好办法。这种形式的原理与下面将要介绍的无逆流并网型光伏发电系统有相似之处,但还不能等同于并网应用。 图2-5市电互补型光伏发电系统 市电互补型光伏发电系统的应用举例。某市区路灯改造,如果将普通路灯全部换成太阳能路灯,一次性投资很大,无法实现。而如果将普通路灯加以改造,保持原市电供电线路和灯杆不动,更换节能型光源灯具,采用市电互补光伏发电的形式,用小容量的太阳能电池和蓄电池(仅够当天使用,也不考虑连续阴雨天数),就构成了市电互补型太阳能光伏路灯,投资减少一半以上,节能效果显著。

新能源课程设计-离网型光伏发电系统

新能源技术课程设计指导书

1.实验目的与要求 (1)检索资料,了解光伏发电技术的发展状况以及光伏发电原理; (2)掌握光伏电池模型的建立方法,分析、设计仿真模型,并利用MA TLAB 进行仿真实现; (3)掌握光伏电池的测试方法,选择适合的测量器件与量程,验证光伏阵列模拟方法的正确性; (4)分析离网型光伏发电系统的组成,选择合适的电力变换器拓扑结构并进行原理分析、参数计算; (5)查阅相关文献资料,确定系统MPPT 控制策略,建立MPPT 模块仿真模型,并仿真分析; (6)掌握系统联调的方法,调整控制参数。 2.仪器设备 太阳能电池板1 块,万用表2 个,太阳能功率表TENMARS TM-207,滑动变阻器(100 欧姆,200 瓦)1 个,计算机 1 台,系统仿真软件。 3.实验原理 通过集中授课和查阅相关资料了解离网型光伏发电系统的组成和工作原理。具体包括:(1)光伏电池的发电原理和数学模型; (2)DC—DC—AC变换器的拓扑结构、工作原理和参数计算; (3)研究离网型光伏发电系统最大功率跟踪控制的方法; (4)通过将光伏阵列外接一个可变电阻,调节可变电阻,记录不同情况下的电压和电流值,从而得到I/V 特性,将I 和V 相乘后,可得到P,进一步可获得P/V特性,通过光伏 阵列倾角的调节,从而使照射到光伏阵列上的光强产生变化。 4.实验内容与要求 4.1 实验内容 (1)建立光伏阵列数学模型,依托实际光伏电池板参数对光伏电池输出特性进行相关模拟, 研究光强和温度对光伏电池输出特性的影响,并设计实际光伏电池的检测电路进行实验验证;(2)设计离网型光伏发电系统,包括确定DC-DC-AC变换器拓扑结构、计算电力变换电路参数、确定MPPT控制策略; (3)在MA TLAB环境下建立含光伏阵列模块、电力变换电路模块、MPPT控制模块及输出负载的离网型光伏系统模型,系统调试,在光强和温度突变时系统能够快速、准 确、稳定地实现最大功率跟踪控制。 4.2 实验要求 (1)画出系统框图及原理图,实验接线图,软件流程图。 (2)不同实验步骤时接线不同则要按实验步骤分别给出接线图。 (3)给出接线图中所测量参数的测量点,指明所测参数的变化范围。 (4)指明测量每个参数所对应仪表及选用依据。 (5)指明在测量数据之前对实验线路、实验装置所必须的调试整定工作。

小型光伏发电系统(4KW)的设计

南京信息职业技术学院 毕业设计论文 作者陈德清学号 31041P03 系部中认新能源技术学院 专业光伏发电技术及应用 题目小型独立光伏发电系统(4KW)的设计 指导教师程超 评阅教师张渊 完成时间: 2013年 5 月 2 日

毕业设计(论文)中文摘要

毕业设计(论文)外文摘要

目录 1 引言 (5) 2 独立光伏发电系统概述 (7) 2.1 独立光伏发电系统的概念 (7) 2.2.1 结构 (8) 2.2.2 工作原理 (9) 3 独立光伏发电系统的设计 (9) 3.1 系统的设计原则、步骤和内容 (9) 3.1.1 系统设计原则 (9) 3.1.2 设计步骤和内容 (9) 3.2 系统容量的设计 (10) 3.2.1 数值计算值 (10) 3.3 太阳能电池组件及方阵的设计 (12) 3.3.1 光伏组件方阵需要考虑的问题 (12) 3.3.2 太阳能电池组件(方阵)的方位角与倾斜角 (12) 3.3.3 一般设计方法 (13) 3.4 直流接线箱的选型 (16) 3.5 光伏控制器的选型 (18) 3.6 光伏逆变器的选型 (19) 4 结论 (20) 5 致谢 (21) 6参考文献 (21)

1 引言 自人类社会诞生以来,能源一直是人类生存和发展的重要物质基础。随着社会的发展,能源在社会发展中的重要性越来越突出,尤其是近年来各国日益呈现出来的能源危机问题更加明显地把能源置于社会发展的首要地位。 根据《BP世界能源统2005》的统计数据,以目前的开采速度计算,全球石油储量可供生产40 多年,天然气和煤炭则分别可以供应67年和164年。而我国的能源资源储量情况更是危机逼人,按2000 年底的统计,探明可开发能源总储量约占世界总量的10.1%.我国能源剩余可开采总储量的结构为原煤占58.8%,原油占3.4%,天然气占1.3%,水资源占36.5%。我国能源可开发剩余可采储量的资源保证程度仅为129.7年。 目前世界大部分国家能源供应不足,不能满足经济发展的需要,各国纷纷出台各种法规支持开发利用新能源和可再生能源,使得新能源和可再生能源在全球升混。20世纪90年代以来,以欧盟为代表的地区集团,大力开发利用可再生能源,连续1 0 年可再生能源发电的年增长速度都在15%以上。以德国、西班牙为代表的一些国家通过立法方式,促进可再生能源的发展,1999 年以来可再生能源年均增长速度均达到3日%以上。四班牙2003 年风力发电装机占到全机总量的4% ,德国在过去11年间,风力发电增长21倍,2003年占全的3.1%,瑞典和奥地利的生物质能源在其能源消费结构中高达15%以上。 近年来,光伏产业迅速发展,世界太阳电池年产量在最近十年内保持了30%以上的增速,2007 年年增长率达到了50% ,2008 年年增长率甚至达到了100% ,年产量达到 6.5GW ,大阳电池产量迅速增加的动力来自于世界对太阳能等清洁能源持续增长的需求,2008 年世界光伏系统新装机容量达到 5.95 GW ,比200 7年增长了110%。按照目前光伏组件4.5 $/W的价格计算,世界光伏市场规模接近三百亿美元. 新能源是国家“十二五”规划重点要求发展的产业,政策对其扶持力度很大。2009年3月,由科技部、国家发改委等部门联合举办的2009年中国国际节能和新能源科技博览会上集中展示了节能减排和新能源科技的重大成果,引起了国内外的广泛关注。2009年5月全国财政新能源与节能减排工作会议指出,国家财政要全力支持新能源发展和节能减排工作,重点加快启动国内光伏发电市场、开

5kW并网型可调度式光伏发电系统设计

辽宁工业大学 光伏发电技术课程设计(论文)题目: 5kW并网型可调度式光伏发电系统设计 院(系): 专业班级: 学号: 121806015 学生姓名: 指导教师:(签字) 起止时间: 2015.12.14-2015.12.25

课程设计(论文)任务及评语 院(系):新能源学院教研室:电气教研室Array 注:成绩:平时40% 论文质量60% 以百分制计算

摘要 近些年来,能源问题迫使世界各国对新能源开发和利用。太阳能因其自身的优势成为最有前途的一种新能源。将太阳能转换为电能越来越多的成为人们关注的焦点,只要成功,前途无量。但太阳能光伏发电仍旧存在着一些缺点,如成本高、能量转换率低,需要不断地改良,优化。对于光伏发电而言,并网模式是将其效率最大化最为理想的方式,因此要做好并网光伏发电系统的设计优化,才能满足电网对发电质量的要求,以及本身的安全运行。本文先对光伏发电进行了回顾,而后重点介绍了并网光伏发电系统,并提出了并网光伏发电系统设计的优化建议。 关键词:无线传感器网络;室内定位;RSSI;加权质心;混合定位

目录 第1章绪论 (1) 1.1光伏发电系统概况 (1) 1.2本文研究内容 (2) 第2章光伏发电系统总体设计 (3) 第3章发电系统设备选择及设计 (4) 3.1太阳能电池板的选择 (4) 3.2蓄电池参数计算及选择 (5) 3.3逆变器设计 (6) 3.4汇流箱设计 (9) 3.5并网逆变器控制保护设计 (11) 第4章总结 (13) 参考文献 (14) 附录A 光伏并网系统结构图 (16) 附录B 并网发电系统原理图 (17)

相关文档
最新文档