Multisim实验心得

Multisim实验心得
Multisim实验心得

现代电路实验心得

Multisum是一款完整的设计工具系统,提供了一个非常大的呢原件数据库,并提供原理图输入接口﹑全部的数模Spice仿真功能﹑VHDL/Verilog设计接口于仿真、FPGA/CPLD 综合、EF设计能力和后处理功能,还可以进行从原理图到PCB布线工具包的无缝隙数据传输。它提供的单一易用的图形输入接口可以满足用户的设计需求。Multisim提供全部先进的设计功能,满足用户从参数到产品的设计要求。因为程序将原理图输入、仿真和可编程逻辑紧密集成,用户可以放心地进行设计工作,不必顾及不同供应商的应用程序之间传递数据时经常出现的问题。

本学期在现代电路课程实验中,在老师的指导下对Multisim进行了初步的学习与认识,由对此款软件的一无所知,到渐渐熟悉,感到莫大欢喜。本学期的学习也只是对Multisim 此款仿真软件的初步认识与学习。在初步学习与认识的过程中,深深了解到Multisun此款仿真软件是一款完整的设计工具,今后一定会在实训中将此款软件学习的更好,应用的更好。

本学期的上机实验中,主要应用了Multisim此款软件的模电与数电的电路仿真,下面将从本学期的上机实验中总结本学期对Multisim此款仿真软件的学习心得。

数电部分实验:

实验中通过阅读实验指导用书,及在老师的指导下,从打开Multisum软件、建立文件、放置元器件、对元器件参数的修改编辑,按照实验原理图在Multisim软件界面建立了第一个电路图,函数信号发生器实验原理图。并在原理图上添加了示波器(如下图)。

通过对示波器参数的设置与调整,仿真运行后得到了如图中所示波形。

通过观察,与实验理论现象完全一致。

信号源为正弦波,幅值为5V时

并通过调节信号源的参数观察实验现象得到了该电路的各性能参数如下图:

信号源为三角波,幅值为3V时:

信号源为正弦波,幅值为2V时:

在本次实验中我清楚的认识到软件仿真的快捷与方便,使用软件仿真可以快捷迅速的对电路进行查错,修正。省时省力。尤其对较复杂的电路,搭建电路进行硬件仿真比较困难耗时,而且还会浪费资源,如果在软件调试成功后,在进行硬件电路的搭建就比较方便快捷,而且硬件电路的功能也比较容易实现。

模电实验部分:

通过对上次实验的学习,对电路的搭建有了初步的认识,实验原理图如下图,添加示

波器,对输出信号进行观察,得到如下图所示结果。

实验总结:

通过本现代电路的上机课程学习后,清楚地认识到软件仿真的重要性,也学习到了Multisim此款仿真软件的设计功能,及对我们专业电路设计方面的帮助,虽然在本课程的学习只是在了解与认识的程度,但在以后的工作学习中,我一定会更加努力学习此款软件,更加深入学习此款软件的功能,将其应用到实际学习工作之中。

Multisim实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器静态工作点的仿真方法及其对放大器性能的影响 3、学习放大器静态工作点、放大电压倍数、输入电阻、输出电阻的仿真方法,了解共射极 电路的特性 二、虚拟实验仪器及器材 双踪示波器、信号发生器、交流毫伏表、数字万用表 三、实验步骤 4、静态数据仿真 电路图如下:

当滑动变阻器阻值为最大值的10%时,万用表示数为。 仿真得到三处节点电压如下: 则记录数据,填入下表: 仿真数据(对地数据)单位:V 计算数据 单位:V 基极V (3) 集电极V (6) 发射级V (7) Vbe Vce Rp 10K Ω 5、 动态仿真一 R151kΩ R2 5.1kΩR3 R5 100kΩ Key=A 10 % V110mVrms 1000 Hz 0° V212 V C110μF C210μF C347μF 2Q1 2N2222A 3 R7100Ω8 1 XSC1 A B Ext Trig + + _ _ + _ 746R61.5kΩ 5

(1)单击仪器表工具栏中的第四个(即示波器Oscilloscope),放置如图所示,并且连接电路。 (注意:示波器分为两个通道,每个通道有+和-,连接时只需要连接+即可,示波器默认的地已经接好。观察波形图时会出现不知道哪个波形是哪个通道的,解决方法是更改连接的导线颜色,即:右键单击导线,弹出,单击wire color,可以更改颜色,同时示波器中波形颜色也随之改变) (2)右键V1,出现properties,单击,出现 对话框,把voltage的数据改为10mV,Frequency的数据改为1KHz,确定。 (3)单击工具栏中运行按钮,便可以进行数据仿真。 (4) A B Ext Trig + + _ _+_

Multisim基础使用方法详解

第2章Multisim9的基本分析方法 主要容 ? 2.1 直流工作点分析(DC Operating Point Analysis ) ? 2.2 交流分析(AC Analysis) ? 2.3 瞬态分析(Transient Analysis) ? 2.4 傅立叶分析(Fourier Analysis) ? 2.5 失真分析(Distortion Analysis) ? 2.6 噪声分析(Noise Analysis) ? 2.7 直流扫描分析(DC Sweep Analysis) ? 2.8 参数扫描分析(Parameter Sweep Analysis) 2.1 直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。 在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 2.1.1构造电路 为了分析电路的交流信号是否能正常放大,必须了解电路的直流工作点设置得是否合理,所以首先应对电路得直流工作点进行分析。在Multisim9工作区构造一个单管放大电路,电路中电源电压、各电阻和电容取值如图所示。

注意:图中的1,2,3,4,5等编号可以从Options---sheet properties—circuit—show all 调试出来。 执行菜单命令(仿真)Simulate/(分析)Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图A所示。直流工作点分析对话框B。 1. Output 选项 Output用于选定需要分析的节点。 左边Variables in circuit 栏列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏中选中需要分析的变量(可以通过鼠标拖拉进行全选),再单击Add按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。 2.Analysis Options 和Summary选项表示:分析的参数设置和Summary页中排列了该分析所设置的所有参数和选项。用户通过检查可以确认这些参数的设置。 2.1.3 检查测试结果

Multisim三相电路仿真实验

实验六 三相电路仿真实验 一、实验目的 1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真; 2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结; 3、 加深对三相四线制供电系统中性线作用的理解。 4、 掌握示波器的连接及仿真使用方法。 5、 进一步提高分析、判断和查找故障的能力。 二、实验仪器 1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求 1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。 3.仿真分析三相电路的相关内容。 4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明 1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。这种联接方式的 特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。 2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。 3、电流、电压的“线量”与“相量”关系 测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。画仿真图时要注意。 负载对称星形联接时,线量与相量的关系为: (1) P L U U 3= (2)P L I I = 负载对称三角形联接时,线量与相量的关系为: (1)P L U U = (2)P L I I 3= 4、星形联接时中性线的作用 三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。

如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。 五、实验内容及参考实验步骤 (一)、建立三相测试电路如下: 图1 三相负载星形联接实验电路图 1.接入示波器:测量ABC三相电压波形。并在下表中绘出图形。 Timebase:_________/DIV 三相电压相位差:φ=__________。 (二)、三相对称星形负载的电压、电流测量 (1)使用Multisim软件绘制电路图1,图中相电压有效值为220V。 (2)正确接入电压表和电流表,J1打开,J2 、J3闭合,测量对称星形负载在三相四线制(有中性线)时各线电压、相电压、相(线)电流和中性线电流、中性点位移电压。记入表1中。 (3)打开开关J2,测量对称星形负载在三相三线制(无中性线)时电压、相电压、相(线)电流、中性线电流和中性点位移电压,记入表1中。 表1 三相对称星形负载的电压、电流 (4)根据测量数据分析三相对称星形负载联接时电压、电流“线量”与“相量”的关系。 结论: (三)、三相不对称星形负载的电压、电流测量 (1)正确接入电压表和电流表,J1闭合,J2 、J3闭合,测量不对称星形负载在三相

Multisim仿真实验报告

Multisim仿真实验报告 实验课程:数字电子技术 实验名称:Multisim仿真实验 姓名:戴梦婷 学号: 13291027 班级:电气1302班 2015年6月11日

实验一五人表决电路的设计 一、实验目的 1、掌握组合逻辑电路——五人表决电路的设计方法; 2、复习典型组合逻辑电路的工作原理和使用方法; 3、提高集成门电路的综合应用能力; 4、学会调试Multisim仿真软件,并实现五人表决电路功能。 二、实验器件 74LS151两片、74LS32一片、74LS04一片、单刀双掷开关5个、+5V直流电源1个、地线1根、信号灯1个、导线若干。 三、实验项目 设计一个五人表决电路。在三人及以上同意时输出信号灯亮,否则灯灭,用8选1数据选择器74LS151实现,通过Multisim仿真软件实现。 四、实验原理 1、输入变量:A B C D E,输出:F;

3、逻辑表达式 F= ABCDE+ABCDE+ABCDE+ABCDE+ ABCDE+ ABCDE+ABC DE+ABCDE+ ABCDE+ ABCDE+ABCDE+ABCDE+ ABCDE+ABCDE+ABCDE+ABCDE =ABCDE+ ABCDE+ABCDE+ ABCD+ABCDE+ABCDE+ABCD+ABCDE+ ABCD+ABCD+ABCD 4、对比16选1逻辑表达式,令A3=A,A2=B,A1=C,A0=D,D3=D5=D6=D9=D10=D12=E, D 7=D 11 =D 13 =D 14 =D 15 =1,D =D 1 =D 2 =D 4 =D 8 =0; 5、用74LS151拓展构成16选1数据选择器。 五、实验成果 用单刀双掷开关制成表决器,同意开关打到上线,否则打到下线。当无人同意时,信号指示灯不亮,如下图:

基于multisim的晶闸管交流电路仿真实验分析报告

基于multisim的晶闸管交流电路仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

自动化(院、系)自动化专业112 班组电力电子技术课 学号21 姓名易伟雄实验日期2013.11.24 教师评定 实验一、基于Multisim的晶闸管交流电路仿真实验 一、实验目的 (1)加深理解单相桥式半控整流电路的工作原理。 (2)了解晶闸管的导通条件和脉冲信号的参数设置。 二、实验内容 2.1理论分析 在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。u2过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。 在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。此后重复以上过程。 2.2仿真设计

(院、系)专业班组课学号姓名实验日期教师评定 触发脉冲的参数设计如下图

(院、系)专业班组课学号姓名实验日期教师评定 2.3仿真结果 当开关S1打开时,仿真结果如下图

(院、系)专业班组课学号姓名实验日期教师评定 三、实验小结与改进 此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。还有一个问题一直困扰着我,那就是为什么仿真老是报错。后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。同时,也让我认识到实践比理论更难掌握。通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。 而对于当开关S1打开时的实验结果,这是因为出现了失控现象。我从书中发现:当一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud 为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形 另外,在实验过程中,我们如果进行一些改进:电路在实际应用中可以加设续流二极管,以避免可能发生的失控现象。实际运行中,若无续流二极管,则当α突然增大至180度或触发脉冲丢失时,会发生一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形。有二极管时,续流过程由二极管完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的想象。同时续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

Multisim基础使用方法详解

M u l t i s i m基础使用方 法详解 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第2章 Multisim9的基本分析方法 主要内容 ?直流工作点分析(DC Operating Point Analysis ) ?交流分析(AC Analysis) ?瞬态分析(Transient Analysis) ?傅立叶分析(Fourier Analysis) ?失真分析(Distortion Analysis) ?噪声分析(Noise Analysis) ?直流扫描分析(DC Sweep Analysis) ?参数扫描分析(Parameter Sweep Analysis) 直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。 在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 2.1.1构造电路

为了分析电路的交流信号是否能正常放大,必须了解电路的直流工作点设置得是否合理,所以首先应对电路得直流工作点进行分析。在Multisim9工作区构造一个单管放大电路,电路中电源电压、各电阻和电容取值如图所示。 注意:图中的1,2,3,4,5等编号可以从Options---sheet properties—circuit—show all 调试出来。 执行菜单命令(仿真)Simulate/(分析)Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图A所示。直流工作点分析对话框B。 1. Output 选项 Output用于选定需要分析的节点。 左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏内中选中需要分析的变量(可以通过鼠标拖拉进行全选),再单击Add按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。 Options 和Summary选项表示:分析的参数设置和Summary页中排列了该分析所设置的所有参数和选项。用户通过检查可以确认这些参数的设置。 2.1.3 检查测试结果 点击B图下部Simulate按钮,测试结果如图所示。测试结果给出电路各个节点的电压值。根据这些电压的大小,可以确定该电路的静态工作点是否合理。如果不合理,可以

multisim电路仿真实验报告

模拟电子技术课程 multisim 仿真 一、目的 2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A ? 、i R 、o R 和om U 的影响。 二、仿真电路 晶体管采用虚拟晶体管,12V C C V =。 1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1): 图 1 2、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2)

图 2 3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3) 图 3 4、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4)

图 4 三、仿真内容 1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 。由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降C E Q U 。从示波器可读出输出电压的峰值。 2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的C E Q U 和u A ? 。 四、仿真结果 1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 仿真结果如下表(表1 仿真数据)

Multisim 10-正弦稳态交流电路仿真实验

暨南大学本科实验报告专用纸 课程名称电路分析CAI 成绩评定 实验项目名称正弦稳态交流电路仿真实验指导教师 实验项目编号05实验项目类型验证型实验地点计算机中心C305 学生姓学号 学院电气信息学院专业实验时间 2013 年5月28日 一、实验目的 1.分析和验证欧姆定律的相量形式和相量法。 2.分析和验证基尔霍夫定律的相量形式和相量法。 二、实验环境定律 1.联想微机,windows XP,Microsoft office, 2.电路仿真设计工具Multisim10 三、实验原理 1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。正弦稳态电路中的KCL和KVL适用于所有的瞬时值和向量形式。 2.基尔霍夫电流定律(KCL)的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。 3. 基尔霍夫电压定律(KVL)的向量模式为:具有相同频率的正弦电流电路中的任一回路,沿该回路全部的支路电压向量的代数和等于零。 四、实验内容与步骤 1. 欧姆定律相量形式仿真 ①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。打开仿真开关,用示波器经行仿真测量,分别测

量电阻R、电感L、电容C两端的电压幅值,并用电流表测 出电路电流,记录数据于下表 ②改变电路参数进行测试。电路元件R、L和C参数不变, 使电源电压有效值不变使其频率分别为f=25Hz和f=1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。 ③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。 暨南大学本科实验报告专用纸(附页) 欧姆定律向量形式数据 V Rm/V V Lm/V V Cm/V I/mA 理论计算值 仿真值(f=50Hz) 理论计算值 仿真值(f=25Hz) 理论计算值 仿真值(f=1kHz) 2.基尔霍夫电压定律向量形式 在Multisim10中建立如图(2)所示仿真电路图。 打开仿真开关,用并接在各元件两端的电压表经行 仿真测量,分别测出电阻R、电感L、电容C两端 的电压值。用窜连在电路中的电流表测出电路中流 过的电流I,将测的数记录在下表。 ②改变电路参数进行测试。电路元件R=300Ω、L=

Multisim实验报告

实验一 单级放大电路 一、实验目得 1、 熟悉m ultisi m软件得使用方法 2、 掌握放大器静态工作点得仿真方法及其对放大器性能得影响 3、 学习放大器静态工作点、放大电压倍数、输入电阻、输出电阻得仿真方法,了解共射极电 路得特性 二、虚拟实验仪器及器材 双踪示波器、信号发生器、交流毫伏表、数字万用表 三、实验步骤 4、 静态数据仿真 电路图如下: 当滑动变阻器阻值为最大值得10%时,万用表示数为2、204V 。 R151kΩ R25.1kΩR320kΩ R41.8kΩ R5 100kΩ Key=A 10 % R61.5kΩ V110mVrms 1000 Hz 0° C110μF C210μF C347μF 2Q1 2N2222A 3 R7 100Ω8 1 5 64XMM1 7

仿真得到三处节点电压如下: 仿真数据(对地数据)单位:V 计算数据 单位:V 基极V(3) 集电极V(6) 发射级V(7) Vb e V ce Rp 2。83387 6、12673 2。20436 0.6295 1 3。92237 10K Ω 5、 动态仿真一 (1)单击仪器表工具栏中得第四个(即示波器Oscilloscope),放置如图所示,并且连接电路。 (注意:示波器分为两个通道,每个通道有+与-,连接时只需要连接+即可,示波器默认得地已经接好。观察波形图时会出现不知道哪个波形就是哪个通道得,解决方法就是更改连接得导线颜色,即:右键单击导线,弹出,单击wire col or,可以更改颜色,同时示波器中波形颜色也随之改变) (2)右键V 1,出现pro per ties,单击,出现 R151kΩ R25.1kΩR3 20kΩ R41.8kΩ R5 100kΩ Key=A 10 % V110mVrms 1000 Hz 0° V212 V C110μF C210μF C347μF 2Q1 2N2222A 3 R7100Ω8 1 XSC1 A B Ext Trig + + _ _ + _ 746R61.5kΩ 5

Multisim基本操作

XXXX学院–物理与电子信息工程学院 实验报告 实验班级: 课程名称: 专业实训 实验名称: Multisim基本操作 指导教师: 实验日期: 2017.12.10 姓名: 学号:

实训目的 学会使用Multisim进行基本电路操作 实训内容 一、基本操作 1、菜单栏 菜单栏中有以下常用选择 File中有以下主要文件操作: New新建文件,Open打开文件,Close关闭文件,Close all关闭所有文件,Save保存文件,Save As另存文件,Print打印文件,Print Setup打印设置和Exit退出等。 Edit中常用的编辑操作有:undo撤退,redo前进,cut剪切,copy复制,paste粘贴,这些操作也可以在工具栏内快速选择。 View中常用的操作有:zoom in放大电路,zoom out缩小电路,zoom area以100%的比率来显示电路等。 Place中常用的放置操作有:component放置元器件,bus总线,text放置文字等。这些选择在工具栏内也有快捷选项。 Simulate中常用的仿真操作有:run运行,pause暂停,这些在工具栏内可直接操作。以及analyses仿真方法选择,Instruments 仪表选择,在仪表栏内可快速找到。 Reports中常用的报告操作有:bill of materials电路图使用器件报告,可以获取详细的所需器件列表,方便购买等。 Options中常用的常用的操作有:sheet properties选项中的主

要操作有circuit电路背景设置,workspace纸张大小设置,wiring 电线宽度设置,font字体设置等。 Window中常用的操作有:new window新窗口。 Help中常用的常用的操作有:multisim help可以查找关于软件的一些问题。 其他的像MCU 、Transfer以及Tools我们很少用到。 2、工具栏 主要的操作是元器件的选择,以及一些快捷操作,例如放大(缩小)页面,电路运行以及停止,文字输入(直接在电路工作区输入文字或者在文本描述框输入文字)等等。

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告 实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了

解共射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 10k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

实验1:电路仿真工具Multisim的基本应用

实验一电路仿真工具Multisim的基本应用 一.实验目的 1.学会电路仿真工具Multisim的基本操作。 2.掌握电路图编辑法,用Multisim对电路进行仿真。 二、实验仪器 PC机、Multisim软件 三、实验原理 MultiSim 7 软件是加拿大Electronics Workbench 公司推出的用于电子电路仿真的虚拟电子工作台软件。它可以对模拟电路、数字电路或混合电路进行仿真。该软件的特点是采用直观的图形界面,在计算机屏幕上模仿真实实验室的工作台,用屏幕抓取的方式选用元器件,创建电路,连接测量仪器。软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。 1. Multisim 7主窗口 2. 常用Multisim7 设计工具栏 元件编辑器按钮--用以增加元件仿真按钮--用以开始、暂停或结束电路仿真。 分析图表按钮--用于显示分析后的图表结果分析按钮--用以选择要进行的分析。 3.元件工具栏(主窗口左边两列) 其中右边一列绿色的为常用元器件(且为理想模型)。左边一列包含了所有元器件(包括理想模型和类实际元器件模型)。在电路分析实验中常用到的器件组包括以下三个组(主界面左边第二列): 电源组信号源基本器件组

(1)电源(点击电源组) 交流电源直流电源接地 (2)基本信号源 交流电流源交流电压源 (3)基本元器件(点击基本器件组) 电感电位器电阻可变电容电容 4.常用虚拟仪器(主窗口右侧一列) ⑴数字万用表 数字万用表的量程可以自动调整。双击虚拟仪器可进行参数设定。下图是其图标和面板: 其电压、电流档的内阻,电阻档的电流和分贝档的标准电压值都可以任意设置。从打开的面板上选Setting按钮可以设置其参数。 (2)信号发生器 信号发生器可以产生正弦、三角波和方波信号,其图标和面板如下图所示。可调节方波和三角波的占空比。双击虚拟仪器可进行参数设定。 (3)示波器 在Multisim 7中提供了两种示波器:通用双踪示波器和4通道示波器。双击虚拟仪器可进行参数设定。这里仅介绍通用双踪示波器。其图标和面板如下图所示。

Multisim数字电路仿真实验报告

基于Multisim数字电路仿真实验 一、实验目的 1.掌握虚拟仪器库中关于测试数字电路仪器的使用方法,入网数字信号发生器和逻辑分析仪的使用。 2.进一步了解Multisim仿真软件基本操作和分析方法。 二、实验内容 用数字信号发生器和逻辑分析仪测试74LS138译码器逻辑功能。 三、实验原理 实验原理图如图所示: 四、实验步骤 1.在Multisim软件中选择逻辑分析仪,字发生器和74LS138译码器; 2.数字信号发生器接138译码器地址端,逻辑分析仪接138译码器输出端。并按规定连好译码器的其他端口。 3.点击字发生器,控制方式为循环,设置为加计数,频率设为1KHz,并设置显

示为二进制;点击逻辑分析仪设置频率为1KHz。相关设置如下图 五、实验数据及结果 逻辑分析仪显示图下图

实验结果分析:由逻辑分析仪可以看到在同一个时序74LS138译码器的八个输出端口只有一个输出为低电平,其余为高电平.结合字发生器的输入,可知.在译码器的G1=1,G2A=0,G2B=0的情况下,输出与输入的关系如下表所示

当G1=1,G2A=0,G2B=0中任何一个输入不满足时,八个输出都为1 六、实验总结 通过本次实验,对Multisim的基本操作方法有了一个简单的了解。同时分析了38译码器的功能,结果与我们在数字电路中学到的结论完全一致。 实验二基于Multisim的仪器放大器设计 一、实验目的 1.掌握仪器放大器的实际方法; 2.理解仪器放大器对共模信号的抑制能力; 3.熟悉仪器放大器的调试方法; 4.掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器、毫伏表、信号发生器等虚拟仪器的使用方法。

multisim实验四实验报告

仲恺农业工程学院实验报告纸 __自动化学院_(院、系)__工业自动化__专业__144_班_电子线路计算机仿真课程 实验四:触发器及其应用仿真实验 一、实验目的 1.掌握集成JK触发器和D触发器的逻辑功能及其使用方法。 2.熟悉触发器之间相互转换的设计方法。 3.熟悉Multisim中逻辑分析仪的使用方法。 二、实验设备 PC机、Multisim仿真软件。 三、实验内容 1.双JK触发器74LS112逻辑功能测试 (1)创建电路 创建如下图所示电路,并设置电路参数。 图4-1 74LS112逻辑功能测试

(2)仿真测试 ①J1和J5分别74LS112的异步复位端输入,J2和J4分别为J、K数据端输入,J3为时钟端输入,X1和X2指示74LS112的输出端Q和Q_的状态。 ②异步置位和异步复位功能测试。 闭合仿真开关 拨动J1为“0”、J5为“1”,其他开关无论为何值,则74LS112被异步置“1”,指示灯X1亮,X2灭。理解异步置位的功能。 拨动J1为“1”、J5为“0”,其他开关无论为何值,则74LS112被异步清“0”,指示灯X1灭,X2灭,理解异步复位的功能。 ③74LS112逻辑功能测试 首先拨动J1和J5,设定触发器的初态。 接着,拨动J1和J5均为“1”,使74LS112处于触发器工作状态。 然后,拨动J2-J4,观察指示灯X1和X2亮灭的变化,尤其注意观察指示灯令亮灭变化发生的时刻,即J3由“1”到“0”变化的时刻,从而掌握下降沿触发的集成边沿JK触发器的逻辑功能。如下图所示: 图4-2 JK触发器逻辑功能测试

设定触发器的初态为Q = 1。将J2置1后,再将J3置1,可以观察到此时触发器状态并无改变。 将J3清0,观察到输出Q = 1。同样的,将J2清0,同时将J4置1,在J3由1->0的时刻,可以观察到Q = 0。 2.JK触发器构成T触发器 (1)创建电路 创建如图所示电路,并设置电路参数。 图4-3 74LS112构成T触发器 (2)仿真测试 ①闭合仿真开关。 ②打开示波器窗口,如图所示。 示波器窗口从上到下同时显示三个波形,即时钟输入信号(A通道)、Q端输出信号(B通道)及Q端输出信号(C通道)。由读数指针T1所在位置看出:当时钟输入信号下降沿到来时,触发器输出状态翻转,即Q由“0”变“1”,同时Q由“1”变“0”;由读数指针T2所在位置看出:当时钟输入信号上升沿到来时,触发器输出状态不变,即Q保持“1”,Q保持“0”。所以,每当时钟输入信号下降沿到来时,Q的状态就翻转,实现了下降沿触发的边沿T触发器的功能,同时也是二分频电路。

multisim仿真实验报告格式

模拟电子技术课程 电流负反馈偏置的共发射极放大电路仿真实验报告学号:王海洋姓名:5090309560 一、本仿真实验的目的 1.研究在电流负反馈偏置的共发射极放大电路中各个电路元件参数与电路中电 压增益A us=v o/v s、输入电阻R i、输出电阻R o以及低频截止频率f L的关系; 2.进一步理解三极管的特性以及电流负反馈偏置的共发射极放大电路的工作原 理; 3.进一步熟悉Multisim软件的使用方法。 二、仿真电路 图1 电流负反馈偏置的共发射极放大电路 注:在此电路中,三极管为BJT-NPN-VRTUAL*,设置参数为BF=100,RB=100Ω(即设置晶体管参数为β=100,r bb’=100Ω)。

三、仿真内容 1.计算电路的电压增益A us=v o/v s,输入电阻R i及输出电阻R o; 2.研究耦合电容、旁路电容对低频截止频率f L的影响: 1)令C2,C E足够大,计算由C1引起的低频截止频率f L1; 2)令C1,C E足够大,计算由C2引起的低频截止频率f L2; 3)令C1,C2足够大,计算由C E引起的低频截止频率f L3; 4)同时考虑C1,C2,C E时的低频截止频率f L; 3.采用图1所示的电路结构,使用上述给定的晶体管参数,设R L=3kΩ,R S=100 Ω,设计其它电路元件参数,满足下列要求:A us≥40,f L≤80Hz。 四、仿真结果 1.计算电路的电压增益A us=v o/v s,输入电阻R i及输出电阻R o; 仿真电路如图2所示: 图2 测量结果如下所示: 1)Vs有效值为5mv,频率为60Hz: 测得A us=-29.2,R i=5.60kΩ,R o=3.35 kΩ。 2)Vs有效值为5mv,频率为100Hz: 测得A us=-43.5,R i=3.89kΩ,R o=3.33kΩ。 3)Vs有效值为5mv,频率为1kHz: 测得A us=-76.1,R i=2.27kΩ,R o=3.31kΩ。 4)Vs有效值为5mv,频率为1kHz: 测得A us=-77.1,R i=2.25kΩ,R o=3.30kΩ。

Multisim使用简介

ⅤMultisim 2001 使用简介 Multisim是Interactive Image Technologies (Electronics Workbench)公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。为适应不同的应用场合,Multisim推出了许多版本,用户可以根据自己的需要加以选择。在本书中将以教育版为演示软件,结合教学的实际需要,简要地介绍该软件的概况和使用方法,并给出几个应用实例(样例文件见光盘)。 第一节Multisim概貌 软件以图形界面为主,采用菜单、工具栏和热键相结合的方式,具有一般Windows应用软件的界面风格,用户可以根据自己的习惯和熟悉程度自如使用。 一、Multisim的主窗口界面。 启动Multisim 2001后,将出现如图1所示的界面。 界面由多个区域构成:菜单栏,各种工具栏,电路输入窗口,状态条,列表框等。通过对各部分的操作可以实现电路图的输入、编辑,并根据需要对电路进行相应的观测和分析。用户可以通过菜单或工具栏改变主窗口的视图内容。 二、菜单栏 菜单栏位于界面的上方,通过菜单可以对Multisim的所有功能进行操作。 不难看出菜单中有一些与大多数Windows平台上的应用软件一致的功能选项,如File,Edit,View,Options,Help。此外,还有一些EDA软件专用的选项,如Place,Simulation,Transfer以及Tool等。

1. File File菜单中包含了对文件和项目的基本操作以及打印等命令。 2. Edit Edit命令提供了类似于图形编辑软件的基本编辑功能,用于对电路图进行编辑。

multisim仿真实验报告

实验一单级放大电路 一、实验目得 1、熟悉multisim软件得使用方法 2、掌握放大器得静态工作点得仿真方法,及对放大器性能得影响。 MULTISIM 仿真实验报告 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻得仿真方法,了解共射级电路得特性. 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1、仿真电路图 E级对地电压 25、静态数据仿真

仿真数据(对地数据)单位;V 计算数据单位;V 基级集电极发射级Vbe Vce RP 2、834 6、126 2、204 0、633、922 10k 26、动态仿真一 1、单击仪表工具栏得第四个,放置如图,并连接电路. V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9 2、双击示波器,得到如下波形

5、她们得相位相差180度。27、动态仿真二 1、删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2、重启仿真。 仿真数据(注意填写单位) 计算 Vi有效值Vo有效值Av

Multisim实验报告

课程:Multisim实验报告班级:10电信本2班 姓名: 6 2 2 学号:100917024 教师:吕老师

实验一 负反馈放大器电路 一. 负反馈放大器电路工作原理 图1 带有电压串联负反馈的两级阻容耦合放大器 图1所示为带有负反馈的两级阻容耦合放大电路,在电路中通过R13把输出电压引回到输入端,加在晶体管Q1的发射极上,在发射极电阻R6上形成反馈电压。根据反馈的判断法可知,它属于电压串联负反馈。 1. 闭环电压放大倍数 056211 24312 2(//)/71201010100%f f D S o X Y R f R R R C C C RC R R R R R r Vu DivR U KU U mA V V π= ====≥=++=±+ 其中 uf 1u u u A A A F = + 式中,u A 为基本放大器(无反馈)的电压放大倍数,既开环电压放大倍数;1u u A F +为反馈深度,其大小决定了负反馈对放大器性能改善的程度。 2. 反馈系数 6 u 136 F R R R = + 3. 输入电阻 (1)if u u i R A F R =+ 式中,i R 为基本放大器的输入电阻。 4. 输出电阻

1o of uo u R R A F = + 式中,o R 为基本放大器的输出电阻;uo A 为基本放大器L R =∞时的电压放大倍数。 二. 实验现象 (a )无负反馈 (b )有负反馈 图2 负反馈对放大器失真的改善 (a )中示波器输出信号失真较严重,通过开关Key=A 的闭合,(b )中输出波形失真得到很明显的改善。

[VIP专享]三.电压—频率转换电路实验报告——MultiSim仿真

电压/频率转换电路 一、设计任务与要求 ①将输入的直流电压转换成与之对应的频率信号。 二、方案设计与论证 电压-频率转换电路(VFC)的功能是将输入直流电压转换成频率与其数值 成正比的输出电压,故也称为电压控制振荡电路(VCO),简称压控振荡电路。 通常,它的输出是矩形波。 方案一、电荷平衡式电路: 如图所示为电荷平衡式电压-频率转换电路的原理框图。 电路组成:积分器和滞回比较器,S为电子开关,受输出电压uO的控制。 设uI<0,; uO的高电平为UOH,uO的低电平为UOL; 当uO=UOH时,S闭合,当uO=UOL时,S断开。 当uO=UOL时,S断开,积分器对输入电流iI积分,且iI=uI/R,uO1随时 间逐渐上升;当增大到一定数值时,从UOL跃变为UOH,使S闭合,积分器对 恒流源电流I与iI的差值积分,且I与iI的差值近似为I,uO1随时间下降;因为,所以uO1下降速度远大于其上升速度;当uO1减小到一定数值时,uO从UOH跃变为UOL回到初态,电路重复上述过程,产生自激振荡,波形如图(b)所示。

由于T1>>T2,振荡周期T≈T1。uI数值愈大,T1愈小,振荡频率f愈高,因此实现了电压-频率转换,或者说实现了压控振荡。 电荷平衡式电路:电流源I对电容C在很短时间内放电的电荷量等于iI在较长时间内充电的电荷量。 方案二、复位式电路: 电路组成: 复位式电压-频率转换电路的原理框图如图所示,电路由积分器和单限比较器组成,S为模拟电路开关,可由三极管或场效应管组成。 工作原理: 设输出电压uO为高电平UOH时S断开,uO为低电平UOL时S闭合。当电源接通后,由于电容C上电压为零,即uO1=0,使uO=UOH,S断开,积分器对uI积分,uO1逐渐减小;一旦uO1过基准电压UREF,uO将从UOH跃变为UOL,导致S闭合,使C迅速放电至零,即uO1=0,从而uO将从UOL跃变为UOH,;S 又断开,重复上述过程,电路产生自激振荡,波形如图(b)所示。uI愈大,uO1从零变化到UREF所需时间愈短,振荡频率也就愈高 比较两方案可知,电荷平衡式电路的满刻度输出频率高,线性误差小,精度高,且电路简单、元器件较常见、能容易获得。故采用方案一—电荷平衡式电路。 三、单元电路设计与参数计算 (一)积分器

Multisim实验心得

现代电路实验心得 Multisum是一款完整的设计工具系统,提供了一个非常大的呢原件数据库,并提供原理图输入接口﹑全部的数模Spice仿真功能﹑VHDL/Verilog设计接口于仿真、FPGA/CPLD 综合、EF设计能力和后处理功能,还可以进行从原理图到PCB布线工具包的无缝隙数据传输。它提供的单一易用的图形输入接口可以满足用户的设计需求。Multisim提供全部先进的设计功能,满足用户从参数到产品的设计要求。因为程序将原理图输入、仿真和可编程逻辑紧密集成,用户可以放心地进行设计工作,不必顾及不同供应商的应用程序之间传递数据时经常出现的问题。 本学期在现代电路课程实验中,在老师的指导下对Multisim进行了初步的学习与认识,由对此款软件的一无所知,到渐渐熟悉,感到莫大欢喜。本学期的学习也只是对Multisim 此款仿真软件的初步认识与学习。在初步学习与认识的过程中,深深了解到Multisun此款仿真软件是一款完整的设计工具,今后一定会在实训中将此款软件学习的更好,应用的更好。 本学期的上机实验中,主要应用了Multisim此款软件的模电与数电的电路仿真,下面将从本学期的上机实验中总结本学期对Multisim此款仿真软件的学习心得。 数电部分实验: 实验中通过阅读实验指导用书,及在老师的指导下,从打开Multisum软件、建立文件、放置元器件、对元器件参数的修改编辑,按照实验原理图在Multisim软件界面建立了第一个电路图,函数信号发生器实验原理图。并在原理图上添加了示波器(如下图)。 通过对示波器参数的设置与调整,仿真运行后得到了如图中所示波形。 通过观察,与实验理论现象完全一致。 信号源为正弦波,幅值为5V时 并通过调节信号源的参数观察实验现象得到了该电路的各性能参数如下图:

相关文档
最新文档