碳纳米管原位包覆金属锡纳米线的制备方法及其生长机理

碳纳米管原位包覆金属锡纳米线的制备方法及其生长机理
碳纳米管原位包覆金属锡纳米线的制备方法及其生长机理

第28卷 第4期Vol 128 No 14材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering 总第126期Aug.2010

文章编号:167322812(2010)0420555204

碳纳米管原位包覆金属锡纳米线的制备方法及其生长机理

谭俊军,寿庆亮,牛 强,孙晨曦,崔白雪,张孝彬

(浙江大学材料系硅材料国家重点实验室,浙江杭州 310027)

【摘 要】 采用直接沉淀法制备出粒径为10nm 以下的二氧化锡(SnO 2)颗粒,将其作为前躯体采

用CVD 法原位生长碳纳米管,通过XRD 、SEM 、TEM 等方法观察了该复合物的微观结构,对其生长机理做出了合理的推断。

【关键词】 锡纳米线;原位包覆;碳纳米管;CVD ;生长机理

中图分类号:TB383 文献标识码:A

In 2situ Preparation of CNT 2encapsulated Sn N anowires

and Investigation of the G row th Mechanism

TAN Jun 2jun ,SH OU Q ing 2liang ,NIU Q ing ,SUN Chen 2xi ,CUI B ai 2xue ,ZHANG Xiao 2bin

(State K ey Lab of Silicon Materials ,Department of Materials Science and

E ngineering ,Zhejiang U niversity ,H angzhou 310027,China)

【Abstract 】 SnO 2nanoparticles wit h an average diameter less t han 10nanometers have been synt hesized by

chemical p recipitation met https://www.360docs.net/doc/995187946.html, T 2encap sulated Sn nanowires were prepared by a chemical vapor depo sition (CVD )met hod over as 2synt hesized SnO https://www.360docs.net/doc/995187946.html, T 2encap sulated Sn nanowires were characterized by X 2ray diff ractomet ry (XRD ),transmission elect ron micro scopy (TEM ),scanning elect ron micro scopy (SEM ).It s growt h mechanism was investigated.

【K ey w ords 】 Sn nanowires ;in 2sit u encap sulation ;carbon nanot ube (CN T );CVD ;growt h mechanism

收稿日期:2009212210;修订日期:2010201213

作者简介:谭俊军(1985-),男,硕士研究生,研究方向:纳米材料在电池材料中的应用。E 2mail :tanjunjun_zju @https://www.360docs.net/doc/995187946.html, 。通讯作者:张孝彬(1948-),教授,E 2mail :zhangxb @https://www.360docs.net/doc/995187946.html, 。

1 引 言

自碳纳米管被发现以来[1],一维空腔结构作为其最重要的结构特征之一,受到了人们的广泛关注。碳纳米管包覆纳米材料的性能、制备及应用也已成为碳科学与材料科学领域的又一研究热点。1992年Broughto n J.Q.等人[2]从理论上论证了将外来物质填充入纳米碳管的可能性。理论计算和实验研究的结果表明,在纳米碳管的内腔中,填充物质的自身结构和性质与宏观状态相比发生了变化。碳包覆金属纳米线是一种新型的碳包覆金属复合材料,由于纳米金属线处于碳包覆结构的内部,被碳层或者碳纳米管禁锢在很

小的空间,从而避免了环境对纳米金属线的影响,另一

方面也在一定程度上解决了纳米金属线自身的体积膨胀收缩问题。另外由于碳包覆层的存在,改善了某些金属与生物体之间的相容性,因而在医学方面也具有潜在广阔的应用前景。目前研究者通过物理填充、化学填充、原位填充等诸多途径将三十几种元素填入到了纳米碳管中。Hsu W.K.等人[3,4]利用一种原位填充的方法即熔盐电解法合成出了碳管包覆的Sn 和Sn -Pb 合金纳米线,但此方法工艺复杂且产率较低。另外一种可以将金属Sn 填充入纳米碳管的原位填充法为电弧放电法[5],此种方法的填充效率非常低,且填充的Sn 很难形成纳米线。J.Y.Lee 等人[6]以及S.H Lee 等人[7]利用化学气相沉积方法合成出了碳管包覆

的Sn和Sn-Sb合金纳米棒,长径比较小。

1997年Y o shio Idato在Science上报道了锡基氧化物用作锂离子电池负极材料[8]。制备锡/碳复合材料,在纳米锡颗粒外面包覆一层碳材料或将有效解决锡基纳米材料作为锂离子负极材料在充放电合金化过程中造成的坍塌。

本实验通过沉淀法制备SnO2纳米颗粒,以此为前躯体采用CVD法原位生长碳纳米管,原位地将Sn 填充入碳纳米管中。该方法的优点在于生长方法简单,易于控制,不易产生杂质,产品纯度高;生产成本低廉,生长效率高,适合推广。通过XRD、TEM、SEM等方法观测其微观形貌,以此分析其生长机理。

2 实验方法

2.1 纳米SnO2粉末制备

将8g SnCl2加入到10ml盐酸溶液(1mol/L)中溶解。在磁力搅拌器作用下,将稀氨水逐滴加入溶液,并控制最终p H值为7,溶液中出现白色胶状物。冷却沉淀数分钟后,抽滤,将沉淀物冷冻干燥。放入烘箱在60℃下干燥24h,之后在400℃下煅烧30min。取出样品,冷却,研磨至400目,得到纳米SnO2粉末。

2.2 碳纳米管原位包覆金属锡纳米线的制备

将SnO2粉末散放于石英舟中,置于CVD炉内。以氮气(N2)为保护气体,流量为300ml/s;以乙炔(C2H2)为碳源,流量为100ml/s;温度为650℃;生长时间为30min。

采用透射电镜(TEM,J EM2200CX),高分辨透射电镜(HR TEM,Philip s CM200)和扫描电镜(SEM, Sirion)对样品形貌和结构进行分析。采用XRD对样品进行成分及结构分析。

3 结果分析与讨论

3.1 X射线衍射分析

如图1(a)所示,纳米SnO2在26.60°((110)晶面)、33.90°((101)晶面)和51.80°((211)晶面)附近出现了三个较强的衍射峰,表现为典型的晶体结构特征,这些峰的峰位与标准SnO2谱线非常吻合,说明所得纳米微晶为金红石结构。根据(211)晶面衍射峰,由Scherrer公式计算SnO2粉末的微晶尺寸为7.5nm:

D=0.9λ/(βco sθ)

式中:D—微晶尺寸,β—衍射峰的半高宽,θ—衍射角,λ—波长。该数据在图3中SnO

2的TEM图中可以得到印证

图1 (a)SnO2纳米颗粒XRD图谱;(b)碳纳米管包覆锡

纳米线的XRD图谱

Fig.1 (a)XRD pattern of SnO2nanoparticles;(b)XRD pattern

of CN T2encapsulated Sn nanowires

图1(b)中所表示的是以SnO2纳米颗粒作为前躯体生长纳米碳管之后得到的Sn金属XRD图谱。在XRD图中找不到SnO2或者SnO的谱线,故判断实验样品中SnO2在CVD过程中原位转变成了金属Sn单质。在26°可以找到痕量的C峰,可以推断C层主要为非晶状态[6];在图2所示的能谱图中可以看到碳含量较大,可知形成纳米线中有非晶碳层分布

图2 碳包覆锡纳米线能谱图

Fig.2 EDS profile of t he CN T2encapsulated Sn nanowires

3.2 TEM/HRTEM/SEM显微分析

按照图3(a)的TEM图像可以得知,SnO2颗粒已经很好地结晶,并处于良好的分散状态,其粒径大小在7.5nm左右,粉末属四方晶系金红石结构,很好地印证了以上的XRD图谱,以此为前躯体,通过CVD法制备出碳包覆锡纳米线。

图3(b)为碳包覆锡纳米线的SEM图,可以观察到直径约为50nm的管状物,生长较为完全,残留物少,具有完整的线性结构;在图3(c)即样品的TEM图像中可以观察到锡纳米线在该壳结构内填充非常严实,填充长度可以达到微米级,长径比可达300以上,在顶端可以发现空心结构。在图3(d)HR TEM图谱中可以发现外层为碳纳米管结构,其厚度在4nm左右,分布均匀但结晶程度不高。

3.3 生长机理探讨

我们在TEM对样品进行观察的过程中发现有不同生长阶段的纳米线出现,总体上来说分为三类,如图4所示。图4(a)、(b)、(c)表现的是纳米线吸收新的锡原料继续生长的阶段,同时图4(c)还可以观察到初始

?

6

5

5

?材料科学与工程学报2010年8月

图3 (a)SnO2纳米颗粒的TEM照片;650℃下生长30分钟获得的

碳纳米管包覆锡纳米线的;(b)SEM照片;(c)TEM照片;

(d)HR TEM照片,右上角是SA ED图谱

Fig.3 (a)TEM image of SnO2powders,t he inset in t he top right

corner is t he SA ED pattern;CN T2encapsulated Sn nanowires

prepared at650℃for30min;(b)SEM image;(c)TEM image;

(d)HR TEM image,t he inset in t he top right corner is

t he SA ED pattern

形核阶段,图4(d)是在周围没有锡源的情况下碳包覆

锡纳米线停止生长的TEM照片

图4 TEM下观察到不同的碳纳米管包覆锡纳米线形态

Fig.4 TEM images of CN T2Encapsulated Sn nanowires wit h

different morphologies

根据电镜下观察到不同的碳包覆形态推测碳包覆

锡纳米线的端部生长模型,如图5(1)所示。首先在高

温条件下,SnO2纳米颗粒被还原为金属锡液态颗粒,

并在该过程中,Sn液态颗粒开始积聚成形核中心(见

图5(2)),从图5(3)中可以看到本过程。当形核中心

达到一定尺寸时,颗粒外表面吸附由乙炔热解产生的

碳,形成了一层碳包覆层,抵制了颗粒的继续长大,同

时留下一个缺口以继续通过毛细管吸收的方式吸收

Sn液态金属纳米颗粒(见图5(3))。此后,只有在端

部开口处,还保留Sn液态金属纳米颗粒进入的通道

(毛细管吸收通道),从而按照图5(4、5)所表示的方式

开始定向生长,由于表面张力的原因,液态锡可伸出碳

管覆盖的区域,形成一定程度的裸露锡纳米线。在图

4(a)的TEM照片中可以明显地观察到,继而在突出

部分表面沉积碳管壁。如此交替生长,直到端口周围

已经没有Sn颗粒继续向内部填充,生长结束,碳层封

图5 生长模型:(1)分散的Sn纳米颗粒;(2)Sn纳米颗粒聚集长大;

(3)碳包覆形成;(4)毛细管吸附后纳米线;(5)碳层生长同时填充进

Sn纳米颗粒;(6)经过(4、5)步骤交替进行多次到生长结束,碳层封闭。

Fig.5 A growt h model for t he formation of carbon nanotube

encapsulated tin nanowires.(1)Dispersed Sn nanoparticles;

(2)Aggregation of Sn nanoparticles;(3)The beginning of carbon

encapsulation;(4)Capillary forces draw molten Tin into CN T;

(5)The growt h of CN T and filling of new Sn nanoparticles;

(6)The completion of t he growt h process

4 结 论

本文主要叙述了以SnO2纳米颗粒为前驱体,化

学气相沉积法(CVD)制备碳包覆锡纳米复合材料。

TEM的分析结果发现所得样品由包覆碳层和填充金

属锡组成,并且可以观察到除少数在头部留有一定空

隙外,大部分碳层形成的管状结构内部都是完全被金

属锡填满,填充长度可达微米级,形成直径比较均匀的

50nm左右的纳米线结构。碳层的厚度较均匀,约在

3.5~4nm的范围内。根据TEM的分析结果,对其生

长机理进行了探讨,提出了端部生长模型。

参考文献

[1] Lijima S.Helical microtubules of graphitic carbon[J].Nature,

1991,354:56~58.

[2] Pederson,M.R.,J.Q.Broughton.Nanocapillarity in fullerene

tubules[J].Physical Review Letters,1992,69(18):2689~

2692.

[3] Hsu,W.K.,et al.Electrochemical formation of novel nanowires

and t heir dynamic effect s[J].Chemical Physics Letters,1998,

284(3):177~177.

(下转第581页)

?

7

5

5

?

第28卷第4期谭俊军,等.碳纳米管原位包覆金属锡纳米线的制备方法及其生长机理 

相、CuZn 4中间化合物ε相、高熔点高硬度的TiZn 15中

间化合物相组成。

3.300℃热挤压过程中TiZn 15相和CuZn 4相为被拉长或者破碎,并沿挤压方向分布,挤压过程中发生了动态再结晶现象和再结晶长大现象,TiZn 15相多分布于晶界处,能够抑制再结晶晶粒的长大。

4.Zn 22.0Cu 20.2Ti 合金的抗拉强度达267M Pa ,伸长率达49%,而Zn 22.0Cu 的抗拉强度为231M Pa ,伸长率为32%,Ti 的加入能够改善合金的塑性和韧性。在0.5Cu %~3.0Cu %范围内,随着含铜量的增加,Zn 2Cu 2Ti 合金的抗拉强度在246M Pa ~272M Pa 之间递增,硬度在65HV ~81HV 之间递增;但随Cu 含量增加,合金的伸长率递增,当Cu 含量超过2.0%时伸长率开始下降。

参考

文献

[1] Trant mann

R.

Metallwristchaft.

Development

of

several

wrought zinc alloys ].t Metal Indust ries ,1944,(7):75~81.

[2] Anderson ,E A.Boyle E J ,Ramsey P W.St udy on t he creep

behavior of a new Zn 2Ti alloy [J ].Trans.AIME.,1944,(4):156~278.

[3] Xiaoge Gregory Zhang.Corrosion and Electrochemistry of Zinc

[M ].New Y ork :Plenum Press ,1996.

[4] TAN Bing.Preparation and properties of Zn 2Cu 2Ti strip [J ].

Metallurgy Collections ,1999(2):37~39.

[5] L IN

Gao 2yong ,

ZH EN G

Xiao 2yan ,

ZEN G

J u 2hua.

Microstructure and properties of extruded profiles of zinc 2based alloys [J ].Journal of Cent ral Sout h University (Science and Technology ):2008,39(2):246~250.

[6] Bos C banden ,Schnitger H C ,Zhang X ,et al.Influence of

alloying element s on t he corrosion resistance of rolled zinc sheet [J ].Corrosion Science ,2006,48(6):1483~1499.

[7] Mongeon L ,Barnhurst R J.Metallography and Microstructures

[M ].Ohio :ASM International Press ,1985.

[8] Ma D ,Xu W ,Ng S C ,Li Y.On secondary dendrite arm

coarsening in peritectic solidification [J ].Materials Science and Engineering A ,2005,390(1~2):52~62.

[9] MA D L I Y ,N G S C ,et al.Unidirectional solidification of Zn 2

rich peritectic alloy —I.Microstructure selection [J ].Acta material ,2000,48(2):419~431.

[10] Diot M.,Philippe M J.,We Gria J ,Esling C.Addition element s

and texture gradient s in rolled zinc alloy[J ].Scripta Materialia ,1999,40(11):1295~1303.

[11] J ulius C.Schuster ,Pierre Perrot.Non 2Ferrous Metal Ternary

Systems.Part 2.[M ].Stuttgart ,Germany :Springer Berlin Heidelberg Press ,2007,451~458.

[12] E.Gebhardt.

Alloy Systems of

Zinc wit h

Titanium and

Zirconium [J ].Z.Metallkd ,1941,33:355~357.

[13] Spittle J A.The Effect s of Composition and Cooling Rate on t he

As 2Cast Microstructures of Zn 2Ti Alloys [J ].Metallography ,1972,5(5):423~447.

[14] Pelzel E.The Structure of Zn 2Cu 2Ti Alloys [J ].Metall ,1961,

15:881~883.

[15] Heine W ,Zwicker U.Contribution on t he Constitution of Zn 2

Cu 2Ti Alloys[J ].Z.Metallkd.1962,53:386~388.

[16] Wegria J ,Foct J.St ructural Aspect s of t he Bendability of Zinc 2

Copper 2Titanium Alloys [J ].Mem.Sci.Rev.Metall.,1984,81(3):145~155.

[17] 孙连超,蔡强.Zn 227Al 合金耐蚀性能的研究[A ].蔡强.锌合金

[M ].长沙:中南工业大学出版社,1987.

(上接第557页)

[4] Hsu W.K.,Trasobares S.,Terrones H.,Terrones M.,Grobert

N.,Zhu Y.Q.,Li W.Z.Electrolytic formation of carbon sheat hed mixed Sn 2Pb nanowires[J ].Chem.Mater.,1999,11:1747~1751.

[5] Guerret 2Plecourt C.,Le Bouar Y.,Loiseau A.,Pascard H.

Relation between metal electronic st ructure and morphology of metal compounds inside carbon nanotubes [J ].Nature ,1994,372:761~765.

[6] Deng ,D.,J.Y.Lee.

Reversible storage of lit hium in a

rambutan 2like tin 2carbon electrode [J ].Angewandte Chemie 2

International Edition ,2009,48(9):1660~1663.

[7] Sang Ho Lee ,Martin Mat hews ,Hossein Toghiani ,David O.

Wipf ,

Charles

U.

Pitt man ,

J r.

Fabrication

of

Carbon 2

Encapsulated Mono 2and Bimetallic (Sn and Sn/Sb Alloy )Nanorods.Potential Lit hium 2Ion Battery Anode Materials [J ].Chem.Mater ,2009,21,2306~2314.

[8] Y oshio Idota ,Tadahiko Kubota.Akihiro Mat sufuji.Tin 2based

amorphous oxide :A high 2capacity Lit hium 2ion 2storage material [J ].Science ,1997,276:1395~1397.

?1

85?第28卷第4期张喜民,等.挤压Zn 2Cu 2Ti 合金的组织及其力学性能 

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

氧化锡的制备工艺

SnO2具有更宽的带隙和更高的激子束缚能,SnO2体材料的密度为5.67g/cm,通常制备的SnO2薄膜密度大约为体材料密度的80~90%,熔点为1927摄氏度。SnO2及其掺杂薄膜具有高可见光透过率、高电导率、高稳定性、高硬度和极强的耐腐蚀性等性能。宽带隙半导体的纳米线具有巨大的纵横比,表现出奇特的电学和光学性能,使其在低压和短波长光电子器件方面具有潜在的应用前景。与传统SnO2相比,由于SnO2 纳米材料具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而在光、热、电、声、磁等物理特性以及其他宏观性质方面都会发生显著的变化。 二、纳米氧化锡的制备 1.固相法 1)高能机械球磨法 高能机械球磨法是利用球磨机的转动或振动,对原料进行强 烈的撞击、研磨和搅拌。 2)草酸锡盐热分解法 2.液相法 1)醇—水溶液法 2)溶胶—凝胶法 溶胶—凝胶法的基本原理是:金属醇盐或无机盐在有机介质 中经水解、缩聚,形成溶胶,溶胶聚合凝胶化得到凝胶,凝胶经 过加热或冷冻干燥及焙烧处理,除去其中的有机成分,即可得

到纳米尺度的无机材料超细颗粒。 3)微乳液法 微乳液法是将两种反应物分别溶于组成完全相同的两份微乳液中;然后这两种反应物在一定条件下通过物质交换彼此发生反应,借助超速离心,使纳米微粒与微乳液分离;再用有机溶剂清洗除去附着在表面的油和表面活性剂;最后在一定温度下干燥处理,即可得到纳米微粒的固体样品。 4)沉淀法 沉淀法分直接沉淀法和均匀沉淀法,直接沉淀法是制备超细氧化物广泛采用的一种方法,它是在含有金属离子的溶液中加入沉淀剂后,于一定条件下生成沉淀,除去阴离子,沉淀经热分解。均匀沉淀法是利用某一反应使溶液中的构晶离子从溶液中缓慢均匀地释放出来。制得超细氧化物。 5)水热法 水热法制备超细微粉的技术始于1982年,它是指在高温、高压下一些氢氧化物在水中的溶解度大于对应氧化物在水中的溶解度,氢氧化物溶入水中同时析出氧化物。 6)微波法 7)锡粒氧化法 3.气相法 1)等离子体法 等离子体法是在惰性气氛或反应性气氛下通过直流放电

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

碳纳米管科普

碳纳米管科普 骞伟中?
一 心细如发,发真得够细吗??
中国有句谚语为"心细如发",用来形容一个人的心思缜密,细微程度达 到了头发丝的尺寸。 在古人的眼里, 头发丝已经是非常细的东西的代表了。 或者, 人们形容薄时,爱用“薄如蝉翼” ,但蝉翼真得够薄吗?然而,大家知识头发丝 的直径或蝉翼的厚度是什么尺度的吗?仅仅是几十微米而已。 有没有比头发丝更 细的丝及比蝉翼更薄的纸吗? 事实上还多得很。 比如铜丝,现代的加工技术可以将铜丝拉伸到小于 10 微米的级别。用于光 导通讯的玻璃纤维丝,也能达到这个级别。 而更绝的是,用激光刻蚀可以在硅片上刻出几十纳米(nm)的细槽,从而成 为现代超级计算机的基础。 但你可能更加想不到的是, 人类真得造出了直径仅 0.4‐1nm 的碳丝(图 1), 而 且还是中空结构。这种材料与头发丝相比,直径小了 1 万倍。另外一种比喻可以 让你进一步想象 1nm 有多大,人的指甲的生长速度几乎是不为人察觉的。人一 般觉得指甲长了,总得一周左右 的时间。但即使这样,您的指甲 仍以每秒 1nm 的速度在不停地生 长。但由于一个分子的大小也就 在 0.3nm(如氢气分子)到 0.6 nm(如苯分子),所以你可以想象 这种碳丝在本质上就是一种原子 线或分子线。但它的确构成了一 种长径比巨大的固体材料,成为 一种实物,而不再是无所束缚的, 到处乱跑的分子或原子。
图1 碳纳米管的三种卷曲结构 (从上而下的英文 字形结构;手性结构)?
armchair
zigzag
chiral
为:扶手椅式结构;Z

实际上, 这种神奇的材料的发现是基于非常偶然的机缘。 在 1985‐1990 年间, 科学家热衷于制造一种形状像足球的由 60 个碳组成的分子。这种分子通常是用 电弧放电,将石墨靶上的碳原子进行激发,然后进行自组装而得。而在偶然的机 缘里,科学家发现,只要能量足够,这些碳原子就会自动连接起来,形成一条碳 链。而利用放大倍数在 10 万倍至 100 万倍的电子显微镜下,科学家惊异地发现 这个丝状的材料竟然是中空的管状材料,所以,根据其元素,尺寸与形状,科学 家形象地称这种材料为“碳纳米管” 。应该说这种丝状材料与头发相比,才是真 正算得上细与小。当然如果说一个人“心细如碳纳米管” ,则恐怕不只是“心细 如发”的赞许与褒扬,而或许带有一种调侃或讽刺意味的“小心眼”了。由此可 见,社会科学中的词语包含了粗与细的平衡,什么事都得适可而止,非常玄妙。 然而,在追求真理与真知的“实心眼”科学家那里,却不是这样,自从 C60 与碳纳米管的发现,人类正式进行了纳米时代,可能大家都听过“纳米领带” , “纳米洗衣机” 或 “纳米药物” 。 不论这些东西是否属实, 却毫无疑问地夸耀 “细” 与“小”的作用。 事实上,追求细小或细微或精细,是人类科技进步的一条主线。 从人类走过的路程可以看到,从旧石器时代,新石器时代,以及青铜时代, 铁器时代,到火车轮船时代,以及飞机及计算机时代。从手工打造,铸造,到普 通车床加工, 再到数字车床加工, 激光刻蚀。 比如, 普通汽车与拖拉机的发动机, 一般有成千至万个零件。而飞机或火箭的发动机则有上百万个零件组成。而保证 这个零件良好组合或密封,以及长时间工作不损伤的关键因素,就在加工结构的 精细化与细微化。一般来说,汽车与拖拉机对应的加工精度为微米级,而计算机 与手机等通讯产品中硅片的加工精度则为纳米级。人类加工的产品越来越精细, 也就越来越有功能。而到达纳米级后,计算机硅片的加工要求又从 100 nm,小 到 60?nm,直到目前的 15?nm。这些数字减小的后面,是一代一代计算机的更新 换代与巨大的产业价值。 而我们故事的主人公:碳纳米管,竟然可以小至 0.4‐1nm。大家可以想见, 如果计算机的加工基础可以小到这个程度,或由这么小的材料来组装器件,则现 代的工业革命又将会发生什么样的变化。 在此开篇,有必要向大家介绍一下时空的概念。在时间尺度上,生物的新陈

纳米氧化锌的制备实验报告

纳米ZnO2的制备 实验报告 班级:应091-4 组号:第九组 指导老师:翁永根老师 成员:任晓洁 1428 邵凯 1429 孙希静 1432 【实验目的】 1.了解纳米氧化锌的基本性质及主要应用 2.通过本实验掌握纳米氧化锌的制备方法

3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产 品。 4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原 理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。 5.掌握基础常用的缓冲溶液的配制方法和原理。 6.加深对实验技能的掌握及提高查阅文献资料的能力。 【实验原理】 1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。纳米氧化锌一系列的优异性和十分诱人的应用前景。 2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法 3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。 4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控 制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下: 在氨性溶液中: Zn2++4NH3?Zn(NH3)42+ 加入EBT(铬黑T)时: Zn(NH3)42++EBT(蓝色)?Zn-EBT(酒红色)+4NH3 滴定开始-计量点前: Zn(NH3)42++EDTA?Zn-EDTA+4NH3 计量点时: Zn-EBT(酒红色)+EDTA?Zn-EDTA+EBT(蓝色)

关于氧化锡的制备方法

SnO2体材料的密度为5.67g/cm,通常制备的SnO2薄膜密度大约为体材料密度的80~90%,熔点为1927摄氏度。SnO2及其掺杂薄膜具有高可见光透过率、高电导率、高稳定性、高硬度和极强的耐腐蚀性等性能。宽带隙半导体的纳米线具有巨大的纵横比,表现出奇特的电学和光学性能,使其在低压和短波长光电子器件方面具有潜在的应用前景。与传统SnO2相比,由于SnO2 纳米材料具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而在光、热、电、声、磁等物理特性以及其他宏观性质方面都会发生显著的变化。 二、纳米氧化锡的制备 1.固相法 1)高能机械球磨法 高能机械球磨法是利用球磨机的转动或振动,对原料进行强 烈的撞击、研磨和搅拌。 2)草酸锡盐热分解法 2.液相法 1)醇—水溶液法 2)溶胶—凝胶法 溶胶—凝胶法的基本原理是:金属醇盐或无机盐在有机介质 中经水解、缩聚,形成溶胶,溶胶聚合凝胶化得到凝胶,凝胶经 过加热或冷冻干燥及焙烧处理,除去其中的有机成分,即可得 到纳米尺度的无机材料超细颗粒。

3)微乳液法 微乳液法是将两种反应物分别溶于组成完全相同的两份微乳液中;然后这两种反应物在一定条件下通过物质交换彼此发生反应,借助超速离心,使纳米微粒与微乳液分离;再用有机溶剂清洗除去附着在表面的油和表面活性剂;最后在一定温度下干燥处理,即可得到纳米微粒的固体样品。 4)沉淀法 沉淀法分直接沉淀法和均匀沉淀法,直接沉淀法是制备超细氧化物广泛采用的一种方法,它是在含有金属离子的溶液中加入沉淀剂后,于一定条件下生成沉淀,除去阴离子,沉淀经热分解。均匀沉淀法是利用某一反应使溶液中的构晶离子从溶液中缓慢均匀地释放出来。制得超细氧化物。 5)水热法 水热法制备超细微粉的技术始于1982年,它是指在高温、高压下一些氢氧化物在水中的溶解度大于对应氧化物在水中的溶解度,氢氧化物溶入水中同时析出氧化物。 6)微波法 7)锡粒氧化法 3.气相法 1)等离子体法 等离子体法是在惰性气氛或反应性气氛下通过直流放电 使气体电离产生高温等离子体,使原料熔化和蒸发,蒸气遇

碳纳米技术发展综述

碳纳米管技术发展概况 学院:电子信息工程学院 专业:通信工程 姓名:彭昱 学号:3013204217 【摘要】随着社会经济的飞速发展,碳纳米材料的应用日趋广泛,以富勒烯、石墨烯和碳纳米管为代表的碳纳米材料。在经历20世纪90年代的研究高潮后,如今也已经进入了平稳扎实的研究阶段。随着研究的不断深入,碳纳米材料在人类生产生活中显示出越来越多不可替代的重要作用。碳纳米管(CNT)也是“纳米世界”中的重要一员,因其独特的结构和优异的物理化学性能,具有广阔的应用前景和商业价值。本文综述了碳纳米管的发展历程、结构性能,应用及其发展前景及展望。 【关键词】碳纳米管;发展历程;结构;特性;应用;前景 碳纳米管的发展历程 1985 年英国萨塞克斯大学的波谱学家Kroto 教授与美国莱斯大学的Smalley和Curl 两教授在合作研究中,发现碳元素可以形成由60 个或70 个碳原子构成的高度对称性笼状结构的C60和C70分子,被称为巴基球(Buckyballs);1991 年,日本NEC 科学家Iijima 在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为515nm、内径为213nm,仅由两层同轴类石墨圆柱面叠而成的碳纳米管;1992年,科研人员发现碳纳米管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实其优良的场发射性能;1996年,我国科学家实现碳纳米管大面积定向生长;1998年,科研人员应用碳纳米管作电子管阴极,同年,科学家使用碳纳米管制作室温工作的场效应晶体管;1999年,韩国一个研究小组制成碳纳米管阴极彩色显示器样管;2000年,日本科学家制成高亮度的碳纳米管场发射显示器样管。 碳纳米管的结构 碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管。按照所含石墨片层数的不同,碳纳米管可分为:单壁碳纳米管和多壁碳纳米管。单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。下图为常见的碳纳米管结构图。虽然从本质上讲,碳纳米管都是有相同的石墨层构成的但它们的导电特性却并不一样,具体情况取决于起的是金属还是半导体的作用。 碳纳米管的特性 碳纳米管的独特结构决定了它具有许多特殊的物理和化学性质。组成碳纳米管的C=C 共价键是自然界最稳定的化学键,所以使得碳纳米管具有非常优异的力学性能。理论计算表明,碳纳米管具有极高的强度和极大的韧性。其理论值估计杨氏模量可达5TPa,强度约为钢的100 倍,而重量密度却只有钢的1/6。Treacy 等首次利用了TEM 测量了温度从室温到800 度变化范围内多壁碳纳米管的均方振幅,从而推导出多壁碳纳米管的平均杨氏模量约为1.8Tpa。而Salvetat 等测量了小直径的单壁碳纳米管的杨氏模量,并导出其剪切模量为1Tpa。Wong 等用原子力显微镜测量多壁碳纳米管的弯曲强度平均值为14.2±10.8GPa,而碳纤维的弯曲强度却仅有1GPa。碳纳米管无论是强度还是韧性,都远远优于任何纤维,被认为是未来的“超级纤维”。直径、螺旋角以及层间作用力等存在的差异是碳纳米管兼导体和半导体的特性;独特的螺旋分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高的吸收率。此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性。

沉淀法制备纳米氧化锌粉体讲义

沉淀法制备纳米氧化锌粉体 一、实验目的 1.了解沉淀法制备纳米粉体的实验原理。 2.掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3.了解实验产物粒度的表征手段,掌握激光纳米粒度仪的使用。 4.了解沉淀剂、实验条件对产物粒径分布的影响。 二、实验原理 氧化锌是一种重要的宽带隙(3.37eV)半导体氧化物,常温下激发键能为60meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。纳米氧化锌由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点,已经广泛的应用在陶瓷、化工、电子、光学、生物、医药等许多领域。纳米氧化锌的制备方法有物理法和化学法,物理法主要包括机械粉碎法和深度塑形变形法,化学法包括沉淀法、溶胶—凝胶法、水热法、微乳液法等方法。本实验采用沉淀法制备纳米氧化锌粉体。 沉淀法包括直接沉淀法和均匀沉淀法。直接沉淀法是制备纳米氧化锌广泛采用的一种方法。其原理是在包含一种或多种离子的可溶性盐溶液中,加入沉淀剂(如OH-,CO32-等)后,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去,沉淀经热分解最终制得纳米氧化锌。其中选用不同的沉淀剂,可得到不同的沉淀产物。均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地、均匀地释放出来,所加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌ZnAc2。常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH3·H2O)、尿素(CO(NH2)2)等。一般情况下,锌盐在碱性条件下只能生成Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体需要进行高温煅烧。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH3·H2O与锌离子反应生成沉淀。反应如下: OH-的生成: CO32-的生成: 形成前驱物碱式碳酸锌的反应: 热处理后得产物ZnO: 用NaOH作沉淀剂一步法直接制备纳米氧化锌的反应式如下: 该实验方法过程简单,不需要后煅烧处理就可以得到氧化锌晶体,而且可以通过调控Zn2+/OH-的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

简单的制备纳米氧化锌的制备方法

在水——乙醇介质中用氨水沉淀法制备出了纳米()和材料,讨论了介质组成对沉淀产物微粒地粒径范围及形貌地影响,并研究出由()分解为纳米地最佳干燥脱水条件为℃、.表明本方法不需高温处理就可得到颗粒均匀且分布窄地纳米材料,粒径可达~. 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂. 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱. 二、试验方法 以水——乙醇为溶剂,其中醇地体积含量分别为(去离子水)、、、.将氯化锌、氨水配制成不同浓度地溶液(不同浓度是多少?).取一定体积(一定体积是多少?)地氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度地氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应.控制氨水用量,调节值为左右,确定滴定终点.反应得到地白色沉淀物,经抽滤洗涤后自然风干即为()纳米粉,()经干燥(℃、)脱水后,为纳米粉体.资料个人收集整理,勿做商业用途 三、不同乙醇浓度对粒径地影响 并且含量越高,这种抑制作用也越强.资料个人收集整理,勿做商业用途 氯化锌地浓度对地粒径影响不大,规律性不强;氨水地浓度对地粒径稍有影响,浓度增大,粒径是减小趋势,浓度为时,粒径为~,浓度为时,粒径为~.资料个人收集整理,勿做商业用途 五、该方法操作简单,条件温和,所用原材料成本低,过程易控制等,是制备纳米粉地好方法,值得推广. 固相合成氧化锌 一、试剂与前驱物地准备 七水硫酸锌、无水草酸纳均为分析纯; 准确称取比为地七水硫酸锌和无水草酸纳,分别研磨后,充分混合,再转入同一研钵中共研磨.热水洗去副产物后,再用无水乙醇淋次,于℃烘干.资料个人收集整理,勿做商业用途二、纳米氧化锌地制备 由前驱物地热分析得地热分解温度为℃.将置于马弗炉中加热升温至分解温度,保持,即得浅黄色纳米氧化锌.资料个人收集整理,勿做商业用途 液相沉淀制备氧化锌 一、单组分锌氨溶液地制备

二氧化锡半导体纳米粉体

二氧化锡半导体纳米粉体的制备及气敏性能研究报告 学院:资源加工与生物工程学院 班级:无机0801 姓名:魏军参 学号:0305080723 组员:张明陈铭鹰项成有

半导体纳米粉体的制备及气敏性能研究 前言 SnO2 粉体作为一种功能基本材料,在气敏、湿敏、光学技术等方面有着广泛的应用。目前是应用在气敏元件最多的基本原材料之一。纳米级SnO2 对H2 、C2H2 等气体有着较高的灵敏度、选择性和稳定性,具有更广阔的应用市场前景。研究纳米SnO2 粉体的制备方法很多,例如:真空蒸发凝聚法、低温等离子法、水解法、醇盐水解法、化学共沉淀法、溶胶—凝胶法,近期还出现了微乳液法,水热合成法等。每种制粉方法各有特点,但是在目前技术装备水平和纳米粉体应用市场还未真正形成的条件下,上述纳米粉体制备方法由于技术成熟度或制备成本等方面的原因,大多都还未形成具有实际意义上的生产规模,主要还处于提供研究样品阶段。 以廉价的无机盐SnCl4·5H2O为原料,采用溶胶-凝胶法制备出粒度均匀的超细SnO2粉体,该工艺具有设备简单,过程易控,成本低,收率高等优点。实验考察制备工艺过程中原料浓度、反应温度、反应终点pH值、干燥脱水方式、培烧温度等因素对纳米SnO2粉体粒径的影响。实验过程以TG-DTA热分析、红外光谱等测试手段,分析前驱体氢氧化物受热行为,前驱体表面基团及过程防团聚机理等。利用透射电子显微镜、X-射线衍射仪、比表面测试仪分别对纳米粒子的形貌与粒径分布、晶相组成、比表面积进行了表征与测定。 在实验中制备得到得SnO2 胶体,在干燥、煅烧的过程中很容易形成团聚。因为粉体颗粒细小, 表面能巨大, 往往会粘结在一起。水热法是近年来出现的制备超细粉体的新方法,其利用密封压力容器, 以水为溶剂, 温度从低温到高温(100 ℃~400 ℃) , 压力在10~200 MPa 。该方法为前驱物反应提供了一个在常压下无法实现的特使物理化学条件。避免在普通煅烧过程中, 由于晶粒间细小间隙产生毛细现象导致的颗粒长大团聚。 水热法制备过程中, 粉体在液相中达到“煅烧”温度。通过控制反应条件, 有效阻碍颗粒间的长大, 保持颗粒粒度均匀, 形态规则, 且干燥后无需煅烧, 避免形成硬团聚。 本文以SnCl4·5H2O 为原料, 利用溶胶凝胶法和离心洗涤制备纯净凝胶, 水热脱水法制备SnO2微晶;研究不同水热条件下, SnO2 粉体的形成、晶粒大小以及分散性能。 文献综述 1.1 半导体纳米粉体 半导体定义 电阻率介于金属和绝缘体[1]之间并有负的电阻温度系数的物质。半导体室温时电阻率约在10E-5~10E7欧姆?米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由

碳纳米管

碳纳米管“太空天梯” 未来的“太空天梯” 碳纳米管是由石墨分子单层绕同轴缠绕而成或由单层石墨圆筒沿同轴层层套构而成的管状物。其直径一般在一到几十个纳米之间,长度则远大于其直径。1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了这一特别的分子结构。 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。作为人类发现的力学性能最好的材料,碳纳米管有着极高的拉伸强度、杨氏模量和断裂伸长率。例如,碳纳米管的单位质量上的拉伸强度是钢铁的276倍,远远超过其他任何材料。 目前碳纳米管的研究现状 自从1991年碳纳米管被正式报道以来,为了提高其长度,全世界的碳纳米管研究者进行了大量艰辛的探索。然而一直到2009年,碳纳米管的最大长度只有18.5厘米,直到目前成功制备出单根长度达到半米以上的碳纳米管。这种有限的长度极大地限制了碳纳米管的实际应用。 碳纳米管的优点。 (1)界面层的存在和界面层厚度的增大均降低

碳纳米管和界面层的应力传递效率随长径比的变化了应力传递效率和纤维的饱和应力, 但同时增大了碳纳米管纤维的有效长度。所以界面层比较明显地承担了应力载荷, 则在碳纳米管复合材料中应该考虑界面层存在和界面层厚度的影响。 (2)碳纳米管的长径比只在较小时影响有效长度和应力传递效率。 长径比所影响的具体范围不同, 对碳纳米管有效长度为小于50 , 而对于应力传递效率则小于10 。 (3)碳纳米管的应力传递效率要远比界面层的应力传递效率大。 在碳纳米管复合材料中虽应要考虑界面层的影响, 但应力载荷的最主要承担者仍是碳纳米管纤维。对碳纳米管复合材料的应力场、纤维的饱和应力和应力传递效率以及有效长度的分析, 为碳纳米管复合材料力学性能的分析、结构优化和功能化设计以及寿命预测等做好必要的准备。 碳纳米管的缺点 (1)如何实现高质量碳纳米管的连续批量工业化生产。 碳纳米管的制备现状大致是:MWNTs能较大量生产,SWNTs多数处于实验室研制阶段,某些制备方法得到的碳纳米管生长机理还不明确,对碳纳米管的结构(管径、管长、螺旋度、壁厚等)还不能做到任意调节和控制,影响碳纳米管的产量、质量及产率的因素太多。 (2)有限的长度极大地限制了碳纳米管的实际应用。 提高了碳纳米管的长度,唯一的途径就是尽可能地提高其催化剂活性概率。对于碳纳米管的生长而言,在其生长过程中催化剂失活从而使其停止生长是一个不可逆转的规律,从而造成了超长碳纳米管很难达到很长的长度,并且也使其单位宽度上的生长密度急剧下降。 (3) 对人体的毒害作用 碳纳米管对人体存在一定的毒性作用,目前研究主要集中在肺脏毒性和细胞毒性,表现为可引起肺脏炎症、肉芽肿和细胞凋亡、活力下降、细胞周期改变等。其毒力大小与碳纳米管的特性有关,如结构、长度、表面积、制备方法、浓度、

氧化锡基纳米材料的制备及应用

氧化锡基纳米材料的制备及应用 应化081(10082072)张明辉 摘要:纳米氧化锡因其独特的性质,在诸多领域中都具有广阔的应用前景,如导电填料,气敏传感器、催化剂、变阻器、陶瓷、透明导电氧化物薄膜和隔热涂料等,是一种极具发展潜力的新型导电材料。本文按照固相法、液相法、气相法综述了目前常见的纳米二氧化锡合成方法,比较了各种方法的优缺点,并简要介绍了其表征。 关键词:纳米材料,氧化锡,制备方法 1 研究背景 纳米材料是指在三维空间中至少有一维处于纳米尺寸范围(1-100nm),或者以它们作为基本单元构成的材料。按纳米材料的几何特征,人们常将其分为零维纳米材料(如纳米团簇、纳米微粒、人造原子)、一维纳米材料(如纳米碳管、纳米纤维、纳米同轴电缆)、二维纳米材料(纳米薄膜)和纳米晶体等。纳米材料尺寸小,比表面积大,具有量子尺寸效应,表面效应和宏观量子隧道效应,因此在光、热、电、声、磁等物理性质以及其他宏观性质方面都发生了显著地变化。所以人们试图通过纳米材料的运用来改善材料的性能。 SnO2是一种重要的宽禁带n型半导体材料,带宽范围为3.6eV-4.0eV。SnO2是重要的电子材料、陶瓷材料和化工材料。在电工、电子材料工业中,SnO2及其掺杂物可用于导电材料、荧光灯、电极材料、敏感材料、热反射镜、光电子器件和薄膜电阻器等领域。在陶瓷工业,SnO2用作釉料及陶瓷的乳浊剂,由于其难溶于玻璃及釉料中,还可用做颜料的载体;在化学工业中,主要是作为催化剂和化工原料。SnO2是目前最常见的气敏半导体材料,它对许多可燃性气体都有相当高的灵敏度。利用SnO2制成的透明导电材料可应用在液晶显示、光探测器、太阳能电池、保护涂层等技术领域[1-3]。正是由于SnO2纳米材料的广泛的应用背景,所以,纳米SnO2的制备技术已成为人们研究的热点之一。 2 文献综述 2.1 固相法合成SnO2纳米材料 固体原材料经过高温或球磨,获得纳米材料的过程称为固相法。采用固相法制备纳米材料,常用的方法有高能机械球磨法等。

碳纳米管的制备工艺与生长机理_朱宝华

?建筑材料及应用? 文章编号:100926825(2007)3320174202 碳纳米管的制备工艺与生长机理 收稿日期:2007206219 作者简介:朱宝华(19772),男,重庆交通大学硕士研究生,重庆 400074 朱宝华 摘 要:针对碳纳米管的独特结构和性能,介绍了电弧法、激光蒸发法和化学气相沉积法三种制备碳纳米管的方法,并建 立不同的物理模型,详细阐述了以上三种方法的生长机理,为研究碳纳米管技术提供了参考借鉴。关键词:碳纳米管,生长机理,制备工艺中图分类号:TU551文献标识码:A 碳纳米管(简称CN Ts )自1991年由Iijima 发现以来,立即受 到全球科学家的关注,很快就变成研究最多的纳米材料。碳纳米管分为单壁和多壁两种,由于多壁碳纳米管结构的复杂性,单壁碳纳米管作为理论计算的研究对象,根据形成碳纳米管的石墨面的卷曲方式,它可以分为非螺旋型和螺旋型两类,对于非螺旋型结构,管壁上原子六元环碳链的排列方向平行于管轴时为“椅式”结构,而当其排列方向垂直于管轴则为“齿式”结构。实际上对于大多数碳纳米管而言,管壁上任何碳原子六元环链的排列方向大都既不平行也不垂直于碳纳米管的轴线方向,而是相对于碳纳米管的轴线方向具有一定的螺旋角,碳六元环以这样的方式排列形成的纳米管就是螺旋型的碳纳米管。螺旋型的碳纳米管具有手性的区别,因此也被称为具有“手性”结构的碳纳米管。 碳纳米管的管状结构和较大长度直径比,使其成为理想的和有前途的准一维材料,而且理论预言这种纯碳分子所构成的直径最细、结构多变的纳米管具有很多奇异的性质,必将在纳米材料科学、分子电子器件及纳米生命科学中发挥重要作用。 1 单壁碳纳米管的制备1.1 电弧法 电弧是一种气体放电现象,当电极两端的电流功率较大时, 电极间的气体被击穿,产生几千度甚至上万度的高压,电能在瞬间转化为光能和热能。将石墨棒作阳极插入反应室,与室内已装有的石墨棒(或短铜棒)阴极接触产生电弧后,在电弧区生成的碳纳米管落下,沉积在筒的底部,反应室内充满液氮。此法的突出优点在于液氮提供保护性气氛及缓冲气源,使得产物在惰性气氛下易保存输运,避免了复杂的真空密封装置。1993年,S ?Iijima 等人就是首次用此方法成功合成单壁碳纳米管。 1.2 激光蒸发法 激光蒸发法制备单壁碳纳米管是将一根金属催化剂和石墨混合的石墨靶放置于一长形石英管中间,该管则置于一加热炉内。当炉温升到1473K 时,将惰性气体充入管内,并将一束激光聚焦于石墨靶上。石墨靶在激光照射下将生成气态碳,这些气态碳和 4 混凝土的早期养护 实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。因此说混凝土的保温对防止表面早期裂缝尤其重要。 从温度应力观点出发,保温应达到下述要求:1)防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度。3)防止旧混凝土过冷,以减少新旧混凝土间的约束。 混凝土的早期养护,主要目的在于保持适宜的温湿条件,以达到两个方面的效果:a.使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。b.使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。 适宜的温湿度条件是相互关联的。混凝土的保温措施常常也有保湿的效果。 从理论上分析,新浇混凝土中所含水分完全可以满足水泥水 化热的要求而有余。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工过程中应切实重视起来。 5 结语 以上对混凝土的施工温度与裂缝之间的关系进行了理论和实践上的初步探讨,虽然学术界对于混凝土裂缝的成因和计算方法有不同的理论,但对于具体的预防和改善措施意见还是比较统一,同时在实践中的应用效果也是比较好的。在施工中要靠多观察、多比较,出现问题后多分析、多总结,结合多种预防处理措施,混凝土的裂缝是完全可以避免的。参考文献: [1]李惠强.高层建筑施工技术[M ].北京:机械工业出版社, 2005.5. [2]赵建光.浅谈施工质量管理的若干要素[J ].建筑学报,2004 (2):31233. R easons of temperature and cracks during construction of pouring concrete L I Feng 2jun JIANG Chu ang 2feng CHENG Xia Abstract :It analyzes the reasons of cracks in pouring concrete.Through analysis of temperature stress ,it brings forward some measures of controlling temperature and protecting cracks ,and elaborates the early maintaining of concrete ,s o as to av oid the happening of concrete cracks.K ey w ords :pouring concrete ,temperature cracks ,early maintaining ,temperature stress ? 471?第33卷第33期2007年11月 山西建筑SHANXI ARCHITECTURE Vol.33No.33Nov. 2007

相关文档
最新文档