第8章:典型光学系统

合集下载

课件工程光学-08典型光学系统.ppt

课件工程光学-08典型光学系统.ppt

1.0
0.8
光谱光效率
为什么暗环境下能
0.6
做饭、洗衣,但不
0.4
能描龙绣凤?
0.2
2024/10/8
0.0 400 500 600 700 800
l(nm)
光谱光效率函数曲线
第七章 光度学基础
7
§8.1.5 眼睛的分辨率
眼睛刚能分辨开二个很靠近点的能力称为眼睛的分辨率。 二者成反 比
刚能分辨的二个点对眼睛物方节点的张角称为极限分辨角。
瞄准精度和前面讲到的分辨率是不是一个概念?
瞄准精度随所选取的瞄准标志而异,最高精度可达人眼分辨率的1/6到1/10。
二实线重合 60
2024/10/8
二直线端部对准 叉线对准单线
(10~20)
10
第七章 光度学基础
双线对称夹单线 (5~10)
9
§8.1.7 眼睛的立体视觉
眼睛观察空间物体时,能区别它们的相对远近而具有立体视觉。简称体视。 C
若以50%渐晕点为界来决定线视场2 y
F
2 y 2B2F
f tanW2
f h d
250 f
2 y 500h d
W F
f 眼瞳
W3W2 W1 2a 2h
眼瞳
d
2024/10/8
第七章 光度学基础
14
讨论:
逢年过节,要买放大镜孝敬老人, 该如何选择其放大倍率?
2y h
2y 1
2y 1 d
(2)与照明光谱成份有关:单色光分辨率高(眼睛有色差); (3)与视网膜上成像位置有关,黄斑处分辨率最高。
对眼睛张角小物体的要借助望远镜或显微镜等仪器,仪器 应有适当的放大率,使能被仪器分辨的也能被眼睛分辨。

工程光学第八章知识点

工程光学第八章知识点

⼯程光学第⼋章知识点第⼋章典型光学系统●通常把光学系统分为10个⼤类:(1)望远镜系统(2)显微镜系统(3)摄影系统(4)投影系统(5)计量光学系统(6)测绘光学系统(7)物理光学系统(8)光谱系统(9)激光光学系统(10)特殊光学系统(光电系统、光纤系统等)第⼀节眼睛的光学成像特性1.眼睛的结构⽣理学上把眼睛看作⼀个器官眼睛包括⾓膜、⽔晶体、视⽹膜等部分⼈眼的光学构造:●⾓膜:由⾓质构成的透明的球⾯薄膜,厚度为0.55mm,折射率为1.3771;●前室:⾓膜后的空间,充满折射率为1.3774的⽔状液体;●虹彩:位于前室后,中间有⼀圆孔,称为瞳孔,它限制了进⼊⼈眼的光束⼝径,可随景物的亮暗随时进⾏⼤⼩调节;●⽔晶体:由多层薄膜组成的双凸透镜,中间硬外层软,各层折射率不同,中⼼为1.42,最外层为1.373,⾃然状态下其前表⾯半径为10.2mm,后表⾯半径为6mm,⽔晶体周围肌⾁的紧张和松驰可改变前表⾯的曲率半径,从⽽改变⽔晶体焦距;2.眼睛的视觉特性●应⽤光学把眼睛看作⼀个光学系统●⼈眼对不同波长的光的敏感度不同,就形成了视觉函数●⼈眼灵敏峰值波长在555nm(黄绿光)3.眼睛的调节和适应1.调节●眼睛成像系统对任意距离的物体⾃动调焦的过程称为眼睛的调节●眼睛所能看清的最远的点称为“远点”,远点距⽤lr表⽰,正常眼lr = ∞●眼睛所能看清的最近的点称为“近点”,近点距⽤lp表⽰,正常眼的近点距随年龄⽽变化●眼睛的调节能⼒⽤“视度”来表⽰,远点视度⽤R表⽰,近点视度⽤P表⽰:●11r pR Pl l= =(8-2)●视度的单位是“屈光度”,屈光度(D)等于以⽶为单位的距离的倒数,即1D=1m-1 ●如某⼈的近点为-0.5m,则⽤视度表⽰为P=1/(-0.5)=-2D●眼睛的调节能⼒A R P=-(8-3)●在正常照明条件下,眼睛观察近物最适宜的距离为-250mm,称为“明视距离”●在明视距离下观察物体,眼睛能长时间⼯作⽽不疲劳●年龄超过45岁后,眼睛的近点远于明视距离,这时称为⽼年性远视眼即⽼花眼2.适应●眼睛能在不同亮暗条件下观察物体,这种能⼒称为“适应”●眼睛瞳孔在外界光强变化时能⾃动改变孔径,⽩天瞳孔为2mm左右,夜晚为8mm左右●当光线较暗时,杆状细胞取代锥状细胞感光,进⼀步提⾼灵敏度●从暗处到亮处称为亮适应,适应较快;从亮处到暗处称为暗适应,需较长时间3.眼睛的缺陷与矫正●正常眼的远点在⽆限远处,即眼睛光学系统的像⽅焦点位于视⽹膜上●对于⾮正常眼来说,其远点位置发⽣变化●若远点位于眼前有限远处(lr <0),只能清晰接收发散光束,眼睛的像⽅焦点位于视⽹膜之前,称为近视眼●为了使近视眼的⼈能看清⽆限远点,须在近视眼前放置⼀负透镜,负透镜的像⽅焦点F ’与远点重合● f ’= lr●即负透镜的折光度与眼睛的视度相等●φ = R●折光度的单位为屈光度(D)●同理,若远点位于眼后有限远处(lr >0),只能清晰接收会聚光束,眼睛的像⽅焦点位于视⽹膜之后,称为远视眼。

第八章 光学系统的像质评价和像差公差

第八章 光学系统的像质评价和像差公差

第二节 分辨率
★ 分辨率——反映光学系统能分辨物体细节的能力,可用来 评价光学系统的成像质量。
★ 瑞利指出“能分辨的两个等亮度点间的距离对应艾里斑的 半径”,即一个亮点的衍射图案中心与另一个亮点的衍射图案 的第一暗环重合时,这两个亮点则能被分辨。
如 图 8-3b 。 这 时 在 两 个 衍 射图案光强分布的叠加曲线 中有两个极大值和一个极小 值,其极大值与极小值之比 为 1:0.735 , 这 与 光 能 接 收 器 (如眼睛或照相底板)能分 辨的亮度差别相当。若两亮 点更靠近时,如图8-3c,则光 能接收器就不能再分辨出它 们是分离开的两个点。
图8-8 光学系统的调制传递函数计算实例
下面简要介绍两种利用调制传递函数评价成像质量的方法。
一、利用MTF曲线来评价成像质量
MTF表示各种不同频率的正弦强度分 布函数经光学系统成像后,其对比度(即 振幅)的衰减程度。当某一频率的对比度 下降到零,说明该频率的光强分布已无
亮度变化,即该频率被截止。这是利用 光学传函评价成像质量的主要方法。
瑞利判断和中心点亮度是从不同角度提出的像质评价方法, 研究表明,对一些常用的像差形式,当最大波像差为λ/4时,其 中心点亮度S.D约等于0.8,表明这两种评价方法是一致的。
斯托列尔准则同样是一种高质量的像质评价标准,也只适用 于小像差系统。但由于其计算相当复杂,在实际中不便应用。
现代光学设计软件不仅能计算中心点亮度,而且能绘制任一
★ 任何光学系统都不可能,也没有必要把所有的像差都校正 为零,必然还残存有剩余像差,故有必要讨论各种光学系统所 允许存在的剩余像差值及像差公差的范围。
第一节 瑞利(Reyleigh)判断和中心点亮度
一、瑞利判断
瑞利判断是根据成像波面相对理想 球面波的变形程度来判断光学系统的 成像质量.瑞利认为“实际波面与参 考球面波之间的最大波像差不超过 λ/4 时 , 光 学 系 统 的 成 像 质 量 是 良 好 的”.

郁道银主编-工程光学(知识点)要点

郁道银主编-工程光学(知识点)要点

第一章小结(几何光学基本定律与成像概念)1 、光线、波面、光束概念。

光线:在几何光学中,我们通常将发光点发出的光抽象为许许多多携带能量并带有方向的几何线。

波面:发光点发出的光波向四周传播时,某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。

光束:与波面对应所有光线的集合称为光束。

2 、几何光学的基本定律(内容、表达式、现象解释)1 )光的直线传播定律:在各向同性的均匀介质中,光是沿着直线传播的。

2 )光的独立传播定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。

3 )反射定律和折射定律(全反射及其应用):反射定律:1、位于由入射光线和法线所决定的平面内;2、反射光线和入射光线位于法线的两侧,且反射角和入射角绝对值相等,符号相反,即I’’=-I。

全反射:当满足1、光线从光密介质向光疏介质入射,2、入射角大于临界角时,入射到介质上的光会被全部反射回原来的介质中,而没有折射光产生。

sinI m=n’/n,其中I m为临界角。

应用:1、用全反射棱镜代替平面反射镜以减少光能损失。

(镀膜平面反射镜只能反射90%左右的入射光能)2、光纤折射定律:1、折射光线位于由入射光线和法线所决定的平面内;2、折射角的正弦和入射角的正弦之比与入射角大小无关,仅由两种介质的性质决定。

n’sinI’=nsinI。

应用:光纤4 )光路的可逆性光从A点以AB方向沿一路径S传递,最后在D点以CD方向出射,若光从D点以CD方向入射,必原路径S传递,在A点以AB方向出射,即光线传播是可逆的。

5 )费马原理光从一点传播到另一点,其间无论经历多少次折射和反射,其光程为极值。

(光是沿着光程为极值(极大、极小或常量)的路径传播的),也叫“光程极端定律”。

6 )马吕斯定律光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。

折/反射定律、费马原理和马吕斯定律三者中的任意一个均可以视为几何光学的一个基本定律,而把另外两个作为该基本定律的推论。

应用光学各章知识点归纳

应用光学各章知识点归纳

第一章 几何光学基本定律与成像概念波面:某一时刻其振动位相相同的点所构成的等相位面称为波阵面,简称波面。

光的传播即为光波波阵面的传播,与波面对应的法线束就是光束。

波前:某一瞬间波动所到达的位置。

光线的四个传播定律:1)直线传播定律:在各向同性的均匀透明介质中,光沿直线传播,相关自然现象有:日月食,小孔成像等。

2)独立传播定律:从不同的光源发出的互相独立的光线以不同方向相交于空间介质中的某点时彼此不影响,各光线独立传播。

3)反射定律:入射光线、法线和反射光线在同一平面内,入射光线和反射光线在法线的两侧,反射角等于入射角。

4)折射定律:入射光线、法线和折射光线在同一平面内;入射光线和折射光线在法线的两侧,入射角和折射角正弦之比等于折射光线所在的介质与入射光线所在的介质的折射率之比,即nn I I ''sin sin = 光路可逆:光沿着原来的反射(折射)光线的方向射到媒质表面,必定会逆着原来的入射方向反射(折射)出媒质的性质。

光程:光在介质中传播的几何路程S 和介质折射率n 的乘积。

各向同性介质:光学介质的光学性质不随方向而改变。

各向异性介质:单晶体(双折射现象)马吕斯定律:光束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。

费马原理:光总是沿光程为极小,极大,或常量的路径传播。

全反射临界角:12arcsinn n C = 全反射条件:1)光线从光密介质向光疏介质入射。

2)入射角大于临界角。

共轴光学系统:光学系统中各个光学元件表面曲率中心在一条直线上。

物点/像点:物/像光束的交点。

实物/实像点:实际光线的汇聚点。

虚物/虚像点:由光线延长线构成的成像点。

共轭:物经过光学系统后与像的对应关系。

(A ,A’的对称性)完善成像:任何一个物点发出的全部光线,通过光学系统后,仍然聚交于同一点。

每一个物点都对应唯一的像点。

理想成像条件:物点和像点之间所有光线为等光程。

工程光学第七章典型光学系统

工程光学第七章典型光学系统
六、显微镜的照明方式
①透射光亮视场照明。光通过透明物体产生亮视场。 ②反射光亮视场照明。对不透明的物体,从上面照射产生漫射或规 则的反射形成亮视场。 ③透射光暗视场照明。倾斜入射的照明光束在物体旁侧向通过,光 束通过物体结构的衍射、折射和反射,射向物镜,形成物体的像, 则获得暗视场。 ④反射光暗视场照明。在旁侧入射到物体上的照明光束经反射后在 物镜侧向通过,若无缺陷的放射镜作为物体,得到一均匀暗视2场2 。
距离
距离
R为远点视度,P为近点视度,单位为屈光度(D)=1/m。 医学上, 1D=100度。 随着年龄增大,肌肉调节能力下降,调节范围减小。
(二)眼的缺陷及校正
眼睛的远点在无限远或眼光学系统的后焦点在视网膜上,称
为正常眼。
正常眼观察近物时,物体距眼最适宜的距离是250mm,称
为明视距离M。
4
①近视眼 近视眼的网膜离水晶体太远或水晶体表面曲率太大,无限 远物点成像在网膜之前,远点在眼前有限远。 需配一负光角度凹面透镜,透镜的像方焦点与眼睛的远点 重合,这样,无限远物点就能成像在网膜上。
大小应与目 500tgw 6,8,11,16,22,32。 镜的视场角 250 D ②成实像的眼睛、摄影和投影系统。
f e
e
一致: e
2 y 5 0 0tg w e
5 0 0tg w
表明:在选定目镜后,显微镜的视觉放大率越大,其在物
空间的线视场越小。
18
三、显微镜的出瞳直径 普通显微镜,物镜框是孔径光阑。 复杂物镜,其最后镜组的镜框为孔径光阑。 测量用显微镜,物镜像方焦平面上设置专门的孔径光阑, 经目镜所成的像为出瞳(直径为D‘)。 则有: n ysinun ysinu nsinuyn sinu y n sinu fo

大学_物理光学与应用光学第二版(石顺祥著)课后答案下载

大学_物理光学与应用光学第二版(石顺祥著)课后答案下载

物理光学与应用光学第二版(石顺祥著)课后答案下载物理光学与应用光学第二版(石顺祥著)课后答案下载《学习指导书》可以作为工科高等院校光电信息类、光学工程类学科及电子科学与技术、光信息科学与技术、光电子技术等专业的“物理光学与应用光学”、“物理光学”、“光学”等课程的教学参考书,也可以作为其它专业学习的'参考书,亦可作为相关专业考研的参考书。

物理光学与应用光学第二版(石顺祥著):内容简介点击此处下载物理光学与应用光学第二版(石顺祥著)物理光学与应用光学第二版(石顺祥著):目录第1章光在各向同性介质中的传播特性1.1 基本要求1.2 基本概念和公式1.3 典型例题1.4 习题选解第2章光的干涉2.1 基本要求2.2 基本概念和公式2.3 典型例题2.4 习题全解第3章光的衍射3.1 基本要求3.2 基本概念和公式3.3 典型例题3.4 习题选解第4章光在各向异性介质中的传播特性 4.1 基本要求4.2 基本概念和公式4.3 典型例题4.4 习题全解第5章晶体的感应双折射5.1 基本要求5.2 基本概念和公式5.3 典型例题5.4 习题全解第6章光的吸收、色散和散射6.1 基本要求6.2 基本概念和公式6.3 典型例题6.4 习题全解第7章几何光学基础7.1 基本要求7.2 基本概念和公式7.3 典型例题7.4 习题选解第8章理想光学系统8.1 基本要求8.2 基本概念和公式8.3 典型例题8.4 习题选解第9章光学系统像差基础和光路计算 9.1 基本要求9.2 基本概念和公式9.3 典型例题9.4 习题选解第10章光学仪器的基本原理10.1 基本要求10.2 基本概念和公式 10.3 典型例题10.4 习题选解。

(工程光学教学课件)第7章 典型光学系统

(工程光学教学课件)第7章 典型光学系统

D' l'z D lz
[例7-4] 有一显微镜,物镜的放大率β=-40×,目镜的倍率 为Γe=15(均为薄透镜),物镜的共轭距为195mm,求物 镜和目镜的焦距、物体的位置、光学筒长、物镜和目镜的间 距、系统的等效焦距和总倍率。
解: 已知物镜的共轭距L=195mm和放大率β=-40×
11 1
l' l f0'
眼睛的视角分辨率相适应,即光学系统的放大率和被观察物体所
需的分辨率的乘积等于眼睛的分辨率。
五、眼睛的对准精度
对准:是指在垂直于视轴方向上的重合或置中过程; 对准误差:对准后,偏离置中或重合的线距离或角距离。
六、眼睛的景深
当眼睛调焦在某一对准平面时,眼睛不必调节 能同时看清对准平面前和后某一距离的物体, 称作眼睛的景深。
设艾里斑的半径为 a,则 :
a 0.61 n'sin u'
道威判断:两个相邻像点之间的两衍射斑中心距为 0.85a 时,则能被光学系统分辨。
设显微镜能分辨的物方两点间最短距离为
由瑞利判断可得:
a 0.61 0.61 n sin u NA
(7-28)
由道威判断或得:
0.85a 0.5 NA
眼睛的调节能力:用能清晰调焦的极限距离表示, 即远点距离lr和近点距离lp。以远点距离lr和近点 距离lp的倒数差来度量:
1 1 RP A lr lp
(7-1)
正常眼:眼睛的像方焦点F’与视网膜重合; 远点位于人眼前无限远处。
近视眼:眼睛的像方焦点F’位于视网膜前方; 远点位于人眼前有限距离处。
开普勒望远镜746三望远镜的视场孔径光阑渐晕光阑y为分划板半径2一般在1015伽利略望远镜孔径光阑视场光阑例76有一架开普勒望远镜视觉放大率为6物方视场角28出瞳直径d5mm物镜和目镜之间距离l140mm假定孔径光阑与物镜框重合系出瞳距离目镜口径分划板直径物镜口径和目镜焦距物镜焦距目镜的作用类似于放大镜把物镜所成的像放大在人眼的远点或明视距离供人眼观察其光学特性参数有

工程光学-第八章-望远系统课件

工程光学-第八章-望远系统课件

入射窗和出射窗分别位于系统的物方和像方无限远,
分别与物平面和像平面重合。可消除渐晕。
→ 视场光阑半径
视场大小2 w: tg
F—f.→
10/12/2023
9
五、 望远镜的分辨率、有效和工作放大率
1、望远镜的分辨率
B
影响望远镜分辨率的因素
入瞳衍射效应 各类剩余像差 其它制造缺陷
A
均与物镜部分相关联, 衍射效应是主要因素。
划板大,放大率不能太大。
高斯型主要应用于普通光学自准直仪的光学系统。
10/12/2023
17
、阿贝型自准直平行光管
· 优点:光强度大,亮度损失小,10~15%,适用 于反射面弱,反射面小的情况。
· 缺点:它的一半视场被45 0棱镜遮挡,物镜孔径利 用率不高。
阿贝型应用于光学计的光学系统。
10/12/2023
一般天文望远镜的口径都很大, 世界上最大的天文望远镜在智利, 直径16米。美国最大的望远镜直径 为200英寸。
11
§8-2 望远物镜系统
1、望远物镜的技术参数
焦距 — —参与决定系统的视觉放大率和视场;
通光孔径——影响分辨率和工作放大率;
相对孔径
影响像面亮度和像差大小;
2、望远物镜的种类: (1).折射式;(2).折反式;(3).反射式
18
三、 双分划板型立方棱镜型自准直平行光管
优点: 视场不被遮挡;设置于目镜前面的分划板的 刻化线与自准直像(十字影像)形成反差区别, 便于观测; 目镜焦距短,放大率可以提高。
缺点: 光亮度损失较大,达50~60%。
10/12/2023
19
§8-5 平直度测量仪光路系统
10— 目镜:11一千分螺丝:12—读数鼓轮

工程光学第章典型光学系统课件 (一)

工程光学第章典型光学系统课件 (一)

工程光学第章典型光学系统课件 (一)
工程光学部分中,光学系统是一个非常重要的概念。

作为光学系统学习的第一步,我们需要学习典型的光学系统。

在本节课件中,我们将会学到三种典型的光学系统:单透镜系统、双透镜系统和望远镜。

第一,单透镜系统是最简单的光学系统,由一个透镜组成。

在这种情况下,光线从物体经过透镜形成像。

单透镜系统中,我们需要考虑像的位置和大小,物像距离和像的性质,如实际或虚像。

这些性质可以通过把物体图和像的图画在一起来表达。

第二,双透镜系统包括两个透镜,用于对光线进行更复杂的控制。

目光机是双透镜系统的一种,其中一个透镜更接近眼睛,另一个透镜离眼睛更远。

双透镜系统可以具有不同的配置,但是我们通常需要在系统中考虑的属性包括眼睛和物体之间的距离、眼睛所处位置、物体的位置、望远镜的放大率等,这些属性可以帮助我们确定望远镜成像的性质和特征。

第三,望远镜可以用于查看遥远的物体。

望远镜可以看作是双透镜系统的一种特殊情况,其中一个透镜是目镜行星镜,另一个透镜是大反射镜或透镜。

望远镜与单透镜和双透镜系统的不同之处在于,望远镜中透镜的位置和物体和眼睛的距离都有所不同。

在这三种光学系统中,我们学会了处理物体成像和图像特性的能力。

到达像靠近元素也需要一定的反思和技巧。

我们还意识到,光学系统可以有许多乐趣和有趣的应用场景,例如望远镜和显微镜等等。

对于喜欢光学系统的人来说,这是一种非常有趣和有创造性的领域,它可以启发人们的想象力和知识积累,可以帮助人们更好地理解我们周围的世界。

第七章 典型的光学系统

第七章 典型的光学系统

显然,从公式中见, Γ 是一个变量,它随着 p' (放大镜与人眼距离)和 l ' (虚像 与放大镜的距离)的变化而变化。 讨论:1)当 l ' = ∞ 时,即物放于透镜前焦点上时,从上式有: Γ =
D = 250 / f ' f'
2)但是实际上由于人眼观察物体最佳距离为明视距离,250 毫米处,故
为了舒适起见,一般将放大镜所成的虚像成像于明视距离处,而不是无穷远。
图 7—10
显微镜成像原理
在整个成像过程中,目镜起到了一个放大镜的作用,所以它对物体所起的放 大是一个视觉放大,而物镜所起的则是一个垂轴放大作用。显然整个显微镜的视 觉放大率既与物镜的垂轴放大率有关,也与目镜的视觉放大率有关。
Γ = β o ⋅ Γe x'1 250∆ 250 ∆ =− ⇒Γ=− = f 'o f 'o f 'o f 'e f'
∆ L = ∆θ L2 b
c 1 d
c 2 d
1
2
体视半径
可见, ∆L 与 L 及视差有关,随着它们取值的不同,有不同的 ∆L 值。
§7-2
一、视觉放大倍率
放大镜
P' y'
ω'
y F' -l' f'
图 7-8 1、定义:
放大镜成像原理
通过放大镜观察物体时,其像对眼睛所张角度的正切,与眼直接看物体时对 眼所张角度的正切之比。
a
c
) )
δ =( ~
1 6
)
d
b
对准形式
1 )ε 10
)
A C
图 7—5
1 1 ' J C 1 ' A 1 ' B

工程光学第8章

工程光学第8章

6
2、远视眼及矫正方法 远视眼:人眼在完全放松情况下, 完全放松情况下 远视眼:人眼在完全放松情况下, 无限远物体成像于视网膜后 无限远物体成像于视网膜后。 人眼在完全放松情况下, 完全放松情况下 或:人眼在完全放松情况下,眼后 有限远物体成像于视网膜上。 有限远物体成像于视网膜上。 不恰当描述: 不恰当描述:远视眼就是越远的 物体越能看清楚。 物体越能看清楚。 矫正方法: 凸透镜。 矫正方法:配戴 f ′ ≈ lr 的凸透镜。 其它矫正方法:角膜激光手术。 其它矫正方法:角膜激光手术。 3、散光眼 散光眼:不同主截面内光线汇聚点不同。 散光眼:不同主截面内光线汇聚点不同。 正常和非正常散光眼 和非正常散光眼。 有正常和非正常散光眼。 双心柱面透镜矫正正常散光眼 矫正正常散光眼。 双心柱面透镜矫正正常散光眼。
远点 不恰当描述: 不恰当描述:近视眼就是越近的 物体越能看清楚。 物体越能看清楚。 矫正方法: 凹透镜。 矫正方法:配戴 f ′ ≈ lr 的凹透镜。
F’
F’
原理: 原理:加凹透镜使无限远物体经凹透镜后 成像于该近视眼的远点 远点处 成像于该近视眼的远点处。 其它矫正方法:角膜激光手术。 其它矫正方法:角膜激光手术。
9
课程设计(几何光学部分) 课程设计(几何光学部分)
题目一:设计一用于中小学生观察月球、 题目一:设计一用于中小学生观察月球、近距彗星等较大 天体,中低倍率(30 60倍 的简易天文望远镜。 (30— 天体,中低倍率(30—60倍)的简易天文望远镜。 题目二:设计一用于野外中远距离( 500米左右 题目二:设计一用于野外中远距离( 500米左右 )测距的测 距仪。倍率和测量精度自行确定。 距仪。倍率和测量精度自行确定。 题目三:同学们可根据自己的兴趣和能力自行拟订设计题目。 题目三:同学们可根据自己的兴趣和能力自行拟订设计题目。

典型光学系统_工程光学

典型光学系统_工程光学
焦距f ’(像的大小)、相对孔径D/f ’ (像面照度、分辨率)和视场角2(成像的范围)
3)分辨率公式:1/N=1/NL+1/Nr
NL=1/σ=D/1.22λf ’
精品课件
6
4)光圈的定义及其与孔径光阑、分辨率、 像面照度、景深的关系: 光圈数:F=f’/D, 光圈F, 光圈
2a,光圈分辨率,光圈像面照度 ,光圈 景深
精品课件
2
4. 关于显微镜系统:
1)组成(光学结构特点)、成像关系、 光束限制(生物显微镜和测量显微镜)
2)视觉放大率公式: 3)线视场公式Г:=250/ f'ttg g' f2'05f '0 e e 4)数值孔径、出瞳D’:50NtAg0='nsi5nu0,tg0 D'=500NA/Г
2y e
第七章 典型光学系统
1.正常眼、近视眼和远视眼的定义和特征是什么?应如何校正非正常眼?调节能 力的计算公式是什么?
2.什么是视觉放大率?表达式及其意义?它与光学系统的角放大率有何异同?
精品课件
y'i l'tg' tg' y'e l'tg tg
1
=2501 P' f' f'
3.放大镜的视觉放大率为何?(注意条件) 0=D/f '=250/f ཆ.61
nsinu NA
6)显微镜的有效放大率:500NA≤Г≤1000NA
7)物镜的景深:NA,
8)视度调节: xN'fe2 5f 'e2(mm )
10001000
5. 临界照明和坷拉照明中的光瞳衔接关系?
精品课件
4
6. 关于望远系统(开普勒):

精品课件-物理光学与应用光学_第三版(石顺祥)-第8章

精品课件-物理光学与应用光学_第三版(石顺祥)-第8章

(x f ) tan u h (x' f ') tan u'

x y f , x' y' f '
y'
y
代入上式得
29
yf tan u y' f ' tan u'
(8.2-3) (8.2-4)
第 8 章 理想光学系统
图 8-9 理想光学系统导出两焦距关系用图
30
第 8 章 理想光学系统
23
第 8 章 理想光学系统
图 8-7 任意入射线的出射线的作图
24
第 8 章 理想光学系统 另一种方法是认为任意光线是由物方焦平面上一点发出的 光束中的一条。这时过该入射光线与物方焦平面的交点作一条 平行于光轴的辅助线,其出射线必过像方焦点。由于入射光线 的出射线平行于辅助光线的出射线,因而可求得任意光线的出 射线方向,如图8-7(b)所示。 图解法求解物像关系,方法简单、直观,便于判断像的位 置和虚实,但精度较低。为了更全面地讨论物体经光学系统的 成像规律,常采用解析法确定物像的关系。
18
第 8 章 理想光学系统 2. 在折射球面中,轴向放大率β=nl′/n′l,所以主平面相对
nlH' n' lH
lH ' lH 0
即折射球面的物方主点和像方主点重合,位于顶点上。
由于节平面上角放大率 1 lJ / lJ ' ',因而 lJ lJ,' 根
即折射球面的物方节点和像方l节J' 点 重lJ 合,r 位于球心处。
3
第 8 章 理想光学系统 根据理想光学系统上述特征, 可以得到如下推论: 物空 间的任一个同心光束必对应于像空间中的一个同心光束; 若 物空间中的两点与像空间中的两点共轭, 则物空间两点的连 线与像空间两点的连线也一定共轭; 若物空间任意一点位于 一直线上, 则该点在像空间的共轭点必位于该直线的共轭线 上。 上述定义只是理想光学系统的基本假设。在均匀透明介质 中,除平面反射镜具有上述理想光学系统的性质外,任何实际 的光学系统都不能绝对完善成像。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物体位于明视距离处对人眼的张角放大镜的工作原理
250mm,
r=−
两块密接透镜构成的放大镜
显微镜物镜物平面到像平面的距离称为共轭距。

适用于远视眼的视度调节
适用于近视眼的视度调节
F e
F F e
F
满足齐焦要求:调换物镜后,不需再调焦就能看到像——物镜共轭距不变加反射棱镜、平行平板
望远镜系统的结构
望远镜中的轴外光束走向
'tan '
o y f ω=−
视角放大率:
'tan '
f ω望远镜系统中平行于光轴的光线
(a)
(b)两类望远镜系统中的轴外光束走向(a)开普勒望远镜系统和(b)伽利略望远镜系统
开普勒式望远系统加入场镜的系统
=1:2.8
照相镜头可变光圈
孔径光阑探测器
视场光阑
01.22d λ=
艾里斑Airy disk
2
)实验系统相同,所用光波波长愈短则艾里斑愈小;刚能分辩的两个像点
min
0.15

视觉细胞的直径,约5μm
角距离时人眼还
2mm
显微物镜的分辨率
'σβσ
=显微镜的几何景深
2''
x u δ≈Δ⋅弥散斑。

相关文档
最新文档