减阻剂的应用及其研究进展

减阻剂的应用及其研究进展
减阻剂的应用及其研究进展

油田化学剂分类与命名

ICS 75.020 E 13 Q/SH 中国石油化工集团公司企业标准 Q/SH 0242—XXXX 代替Q/SH0242-2009 油田化学剂分类及命名规范 Specifications for classification and nomenclature of oilfield chemical agents (报批稿) XXXX-XX-XX发布XXXX-XX-XX

前言 本标准代替Q/SH 0242-2009 《油田化学剂分类及命名规范》。 本标准与Q/SH 0242-2009 相比主要技术差异为: ——增加了油田化学剂的定义。 ——增加了分类原则,增加了分类类型及化学名称的英文名称。 ——增加了命名原则,完善了命名方法。 ——删除了油田化学剂包装标志部分。 ——修改了油田化学剂的分类,“采油用化学剂”中增加了“防砂用化学剂”、“注水用化学剂”、“调剖堵水用化学剂”、“采油用其他化学剂”。 ——钻井液处理剂分类中将原标准中的“1 通用化学类化学剂”单独列出。删除了原标准中的“13 表面活性剂”、“17 高温稳定剂”,“9 页岩抑制剂”修订为“5 抑制剂”,增加了“4 防塌剂”、“14 屏蔽暂堵剂”和“18 其他类”。 ——油井水泥外加剂分类中,“5 降滤失剂”修订为“3 降失水剂”、“7 减轻剂”修订为“10 减轻外掺料”、“8 防漏剂”修订为“11 堵漏外掺料”,“9 加重剂”修订为“9 加重外掺料”、增加了“6 增强剂”、“7 膨胀剂”、“12 热稳定剂”、“13 其他类”。 ——酸化/酸压用化学剂分类中将原标准中的“1 酸化用防淤渣剂”修订为“15 抗酸渣剂”、“8 酸化用铁稳定剂”修订为“12 铁离子稳定剂”、“9 酸化用缓速剂”修订为“13 化学缓速剂”,增加了“2 交联剂”、“3 降阻剂”、“5 缓蚀增效剂”、“10 转向剂”、“14 互溶剂”和“17 其他类”。 ——压裂用化学剂分类中删除了原标准中的“3 压裂用缓蚀剂”和“11 压裂用支撑剂”,“8 压裂用减阻剂”修订为“3 降阻剂”、“14 转向剂”修订为“14 缝高控制剂”,增加了“5 抗高温稳定剂”、“6 防乳化剂”、“10 起泡剂”、“11 泡沫稳定剂”、“12 消泡剂”、“13 暂堵剂”和“16 其他类”。 ——防砂用化学剂分类中将原标准中的“6 采油用固砂剂”归入“防砂用化学剂”分类中的“固砂剂”,“防砂用化学剂”中增加了“稠化剂”、“交联剂”、“固化剂”、“抑砂剂”、“偶合剂”、“破胶剂”、“滤饼溶解剂”“pH调节剂”和“其他类”。 ——注水用化学剂分类中增加了“增注剂”、“氧化解堵剂”。 ——调剖堵水用化学剂分类中将原标准中的“2 采油用调剖剂”和“9 采油用堵水剂”合并为“调剖堵水剂”,增加了“发泡剂”、“暂堵剂”、“其他类”。 ——采油用其他化学剂分类中将“1 采油用解堵剂”删掉;将“2 采油用调剖剂”和“9 采油用堵水剂”合并为“调剖堵水剂”归入调剖堵水用化学剂;将“6 采油用固砂剂”和“7 采油用防砂剂”归入防砂用化学剂;将“8 采油用稠油乳化降黏剂”修改为“降黏剂”;增加了“防水锁剂”、“消泡剂”和“示踪剂”。 ——提高采收率用化学剂分类中删除了原标准中的“4 提高采收率用流度控制剂”,将“8 提高采收率用薄膜扩展剂”修改为“9 润湿反转剂”,将“9 提高采收率用稠化剂”修改为“1 增黏剂”,增加了“4 黏度稳定剂”、“5 杀菌剂”和“10 高温驱油剂”。 ——油气集输用化学剂分类中删除“4 流动性改进剂”、“5 抑泡剂”、“10 除垢剂”、“12 防蜡剂”、“14清蜡剂”、“16 杀菌剂”、“原油消泡剂”,增加“10 防垢剂”。 ——油田水处理用化学剂分类中删除“3 助滤剂”、“6 除油剂”,增加“8 反相破乳剂”。 本标准由中国石油化工股份有限公司物资装备部提出。 本标准由中国石油化工集团公司科技部归口。 本标准起草单位:中国石化石油工程技术研究院、胜利油田分公司采油工艺研究院、中原石油工程有限公司钻井工程技术研究院。

石油助剂

Kemira石油助剂 石油助剂用途:用于油田钻井清蜡、缓蚀、防膨、解堵等。 1.絮凝剂 C-460阳离子聚丙烯酰胺 C-460是一种合成的高分子量聚丙烯酰胺,以无粉尘和自由流动的白色微颗粒状态供应给用户。C-460能完全溶于水,形成粘度很高的溶液。C-460 具有中等到高的阳电荷性; 简介:主要用于处理需要离心或带滤处理的有机工业污泥和城市污泥,亦用于活性污泥的浓缩处理,其有效PH值范围广。?产品类型包括粉状的阴离子、阳离子、非离子和两性离子型聚丙烯酰胺,乳液聚丙烯酰胺系列产品。常规产品型号近百余种,可以适应各行业不同的工艺条件和物料性质 2.乳化剂 由多种表面活性基团的分子结构设计。具有良好的乳化效果,可以形成稳定的油在水乳液。使用乳化剂可以形成一个逆乳化油基钻井液体系。油基钻井液流变特性稳定、高YP /光伏电稳定性高,低的高温高压失水,强烈的反污染前后的老化。该系统具有广泛的应用。 40之间和200°C系统具有良好的适用性。密度范围从到克/立方厘米。乳化剂主要为油基钻井液乳化剂。 它可以使钻井液体系具有较高的稳定性与低剂量。 3.减阻剂(水溶性、有机相) 水溶性减阻剂主要成分: 聚环氧乙烷、聚丙烯酰胺和瓜尔胶;

有机相减阻剂主要成分:氢化聚异戊二烯、聚异丁烯、无规聚丙烯、丁二烯与苯乙烯的嵌段共聚物、乙烯与乙烯基酯类的共聚物、聚丙烯酰胺(用%~%的水溶液加到原油中,控制含量在2~5ppm)、乙烯-丙烯共聚物、α-烯烃的梳状共聚物等等 应用:减阻剂目前已广泛应用于各个领域,取得良好的效果。例如,在消防水带中加入聚环氧乙烷后,用直径较小的水带仍能维持水的流量不变,便于消防人员携带;在农田灌溉中加入减阻剂后,可提高灌溉效率,扩大灌溉面积;在输水和输油系统中加入减阻剂可节省能耗;在泄洪管道中,当出现洪峰时用减阻剂也可提高泄洪效率;在油井钻探方面,在注入水中加入高分子减阻剂可大大提高注入速率。高分子减阻剂的缺点是价格较贵,不耐剪切应力,易于降解,反复使用或长途使用时减阻效率会降低。 4.清蜡剂 清蜡剂,能清除蜡沉积物的化学制剂,可分为油基清蜡剂和水基清蜡剂、水包油型清蜡剂三类。清蜡剂一般用于油田油井清除油管内的蜡质结垢,疏通油管提高产油量。油基清蜡剂是溶解石蜡能力较强的化学溶剂,例CCl4、苯、甲苯、溶剂油等。水基清蜡剂是以水、表面活性剂、互溶剂或碱性物质组成。水包油型清蜡剂是以水基清蜡剂为连续相,油基清蜡剂作分散相,非离子表面活性剂为乳化剂组成。 原油是含有石蜡的烃类混合物。石蜡是C18~C60的碳氢化合物,其中大部分是直链碳氢化合物。当原油接触到一个温度低于监界浊点

表面活性剂最新研究进展

表面活性剂最新研究进展 人类的日常生活,各类生产活动,多种科学和技术的进步对表面活性剂品种和性能提出越来越高的要求,促使表面活性剂科学不断发展,迄今方兴未艾,表面活性剂已经深入到生命起源以及膜材料、纳米材料、对映体选择性的反应等各个领域中,设计新的有特殊用途和应用价值的表面活性分子仍不断受到人们的关注。新的功能型表面活型剂与附加的官能基团的性质和位置有密切关系, 对传统的表面活性剂分子结构的修饰会导致其结构形态有很大的变化,近几年国内外的相关研究单位在表面活性剂领域的最新研究进展主要有以下方面。 一、高分子表面活性剂 高分子表面活性剂的合成成为近年来表面活性剂合成研究的热点课题之一。高分子表面活性剂是相对一般常言的低相对分子质量表面活性剂而讲的,通常指相对分子质量大于1000且具有表面活性功能的高分子化合物。它像低分子表面活性剂一样,由亲水部分和疏水部分组成。高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等性质,广泛应用作胶凝剂、减阻剂、增黏剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等。因此,高分子表面活性剂近年来发展迅速,目前已成为表面活性剂的重要发展方向之一。 高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。如阴离子型的高分子表面活性剂有聚(甲基)丙烯酸(钠)、羧甲基纤维素(钠)、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸酯等。两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸-阳离子丙烯酸酯共聚物、两性聚丙烯酰胺等。非离子型的高分子表面活性剂有羟乙基纤维素、聚丙烯酰胺、聚乙烯吡咯烷酮、聚氧乙烯类共聚物等。阳离子型的高分子表面活性剂有聚烯烃基氯化铵阳离子表面活性剂、亚乙基多胺与表氯醇共聚季铵盐、淀粉或纤维素高取代度季铵盐、多聚季铵盐、聚多羧基季铵盐等。 开发低廉、无毒、无污染和一剂多效的高分子表面活性剂将是今后高分子表面

高分子减阻剂减阻效果试验研究

高分子减阻剂减阻效果试验研究 指导老师:毛根海 实验成员:薛文洪一红 班级: 土木工程0101结构班 实验日期:2003年12月7日

高分子减阻剂减阻效果试验研究 流体流动存在阻力,产生流体能量损失。在管流中有管道阻力,如长距离输水、石油、天然气等,都必须在流经一定距离之后设置升压泵,以补充损失的能量。同样,在明渠输水、水面必须有水利坡降才能产生顺坡降方向的流动,在同坡降的情况,流动阻力越大,则流速越慢,过流能力越差。 若在水体中添加减阻剂,就能大大减少沿程阻力。这是减小水流沿程阻力的另一种新途径。减阻剂种类很多,不同减阻剂及添加量不同,其减阻效果也不一样。 由于客观条件的限制,我们此次通过“同一减阻剂在不同浓度下减阻效果”的比较,对减阻剂加入水体后的减阻效果进行定性、定量的了解。 本次实验采用的减阻剂是聚丙烯酰胺(又称PAM),初配浓度为0.1%,室温(10o C左右)。采用沿程阻力试验装置进行测定(实验装置如图)。实验地点,土木系水利实验室。

聚丙烯酰胺,别名PAM ,是一种有机高分子聚合物,为玻璃状固体,溶于水,也溶于醋酸、乙二酸、甘油和胺 等有机溶剂。聚丙烯酰胺是重要的水溶性聚合物,而且兼具增稠性、絮凝性、耐剪切性、降阻性、分散性等宝贵性能。 一、试验数据及结果分析如下: 清水实验时:

加入 100ml 3

加入 700ml 0.1%PAM 溶液入水 箱: 各项常数:d=0.675cm L=85cm K=1.993 从如上的数据可以看出,PAM要起到减阻效果是有一定浓度限制的。浓度太小,减阻效果 不明显;浓度太大,反而会增阻。通过粘度计的测定,清水与各浓度溶液的粘度相差很小,(清 水时平均粘度为0.012,加入375ml溶液时平均粘度为0.013)。通过几组实验数据的对比可 得,相同沿程损失的情况下,PAM减阻效果最大的浓度出现在向水箱中加入375ml 0.1%溶液 左右,过流量增大,阻力粘制系数呈下降趋势。(加入400ml该溶液时,过流量已开始减小)。 通过各表的Re与λ关系比较可知,加入PAM后,相同Re下,λ有明显减小(曲线图待 补充),说明PAM起到了一定的减阻效果。同时该减阻剂在层流区几乎不起作用,在紊流区能 够起到一定的作用。但是需要指出的是,通过本次定量实验可以看出,PAM并不是一种十分有 效的减阻剂,虽然阻力粘制系数随PAM加入量的增加一直呈下降趋势,但是过流量的增加并 不显著。

接地装置的种类及作用

接地的种类及作用探讨 电化四段张彬 摘要:在供电系统运行中接地装置起着至关重要的作用。它不仅是电力系统的重要组成部分,而且还是人身安全及保护用电器的主要措施。在日益发生的自然雷害面前我们特别论述防雷的危害性、重要性、必要性。 关键词:供电系统接地防雷、电磁脉冲防护LEMP 电子(逻辑)接地 正文: 通过近一段时间在对现场设备及临时电网的维修与维护,发现许多问题的发生及一些最终的解决方法都是与接地有密切关系的,也让我彻底改变了从前对供电系统及用电设备接地不重视、有时候则有要不要没有关系的想法,让自己总是停留在一个业余者的角度上。通过认真地请教、查询资料等途径,来充实自己。在电力系统运行中接地装置起着至关重要的作用。它不仅是电力系统的重要组成部分,而且还是保护人身安全及用电器的主要措施。供电系统和电气设备的某一部分与大地做金属性的良好接触,称为接地。按接地的目的可分为:工作接地、保护接地、保护接零以及防雷接地。特别论述配电网接地制式与建筑物电气设备的电磁兼容问题;接地网的电阻值及接地网的结构在防雷中的作用;外部防雷和内部防雷两个子系统的放电过程;指出了接地技术中的宣传误导。 一、接地分类及作用 1、工作接地 在正常或异常情况下,为了保证正常且可靠地运行,必须将供电系统中的某点与地做可靠的金属连接,称为工作接地。如变压器的中性点与接地装置的可靠金属连接等。其作用:①降低人体的接触电压,在中性点对地绝缘的系统中,当一相接地,而人体又触及另一相时,人体将受到线电压,但对中性点接地系统,

人体受到的为相电压。②迅速切断故障设备。在中性点绝缘的系统中,一相接地时,接地电流仅为电容电流和泄漏电流,数值很小,不足以使保护装置动作以切断故障设备。在中性点接地系统中,发生碰地时将引起单相接地短路,能使保护装置迅速动作以切断故障。③减轻高压窜人低压的危险。 2、保护接地 在正常工作状态下,各种电器的外壳是不带电的。但由于某些原因,造成设备绝缘损坏后可能使外壳带电,人或动物一旦接触到这种外壳带电的设备就有触电的危险。为了防止这种现象出现时危及人身安全,将电器设备正常时不带电的金属外壳、配电装置的金属部分同大地做良好的电气连接,称作保护接地。图1,设备外壳不接地。当故障时,由于带电线路对地电容存在,将产生电容电流。又因为设备外壳与大地间的接触电阻较大,若忽略其分流作用,则故障电流将全部由地中经人体返回设备外壳。即人体中的电流为:Ir=Ijd。由于人触电的危害程度主要决定于通过人体的电流。人体最小的感觉电流工频约为1mA,直流约为5mA。当工频电流超过10mA时,手已难于摆脱电源;当超过50mA且触电时间超过15~30s,即可致命,所以,在绝缘损坏时,人碰触到电器设备外壳是很危险的。若要使人们触及绝缘损坏的电器设备外壳不遭受触电的危险,关键是减少设备外壳与大地间的接触电阻,使流过人体的电流在安全要求的允许范围内。保护接地的目的就在于此。如图2所示,采用保护接地后,流入人体的电流为:Ir=Ijd*rjd/(r r+r jd)。式中:Ijd----接地电流(A);Ir----流入人体电流(A); rjd----接地电阻(Ω);r r----人体电阻(Ω)。由于人体电阻远大于接地电阻,则上式可以简化为:Ir= rjd/r r。流过人体的电流Ir与接地电阻rjd和接地电流Ijd成正比。因此,为了保证人身安全,应设法尽量减少接地电阻和故障电流的值。

超空泡减阻技术简介

超空泡减阻技术简介 超空泡是一种物理现象,当物体在水中的运动速度超过185千米/小时后,其尾部就会形成奇异的大型水蒸气沟,将物体与水接触的部分包住,物体接触的介质就由水变成了空气,由于空气密度只有水的1/800,因而就能大幅减少物体所受阻力,物体表面会形成大型空气泡,这就是“超空泡化现象”。 超空泡技术就是在艇体表面和水之间产生一个气体空腔,因此减小了阻力,增大了艇的航速。超空泡现象很长时间一直是令造船工程师们头痛的事,因为超空泡现象经常会在高速旋转的螺旋桨叶片表面产生而使螺旋桨高速“空转”从而损坏螺旋桨叶片。 超空泡技术概述 当航行体与水之间发生高速相对运动时,航行体表面附近的水因低压而发生相变,形成覆盖航行体大部分或全部表面的超空泡。形成超空泡之后,航行体将在气体中航行,由于航行体在水中的摩擦阻力约为在空气中摩擦阻力的850倍,因此,超空泡技术的应用可以使水下航行体的摩擦阻力大幅减小,从而使鱼雷等大尺度水下航行体的速度提高到100m/s的量级,使水下射弹等小尺度水下航行体的航速提高到1000m/s的量级。 超空泡发展过程 当航行体在流体中高速运动时,航行体表面的流体压力就会降低,当航行体的速度增加到某一临界值时,流体的压力将达到汽化压,此时流体就会发生相变,由液相转变为汽相,这就是空化现象。随着航行体速度的不断增加,空化现象沿着航行体表面不断后移、扩大、进而发展成超空化。其发展过程一般可以分为四个状态:游离型空泡、云状空泡、片状空泡和超空泡。 超空泡形成方法 超空泡分为自然超空泡和通气超空泡两种,形成超空泡一般有三种途径: 1)提高航行体的速度; 2)降低流场压力; 3)在低速情况下,利用人工通气的方法增加空泡内部压力。前两种方法形成的为自然超空泡,最后一种方法所得到的就是所谓的通气超空泡。 现有的减阻技术 脊装表面减阻,微气泡减阻,复合材料减阻,超空泡减阻技术。而水下超空泡武器是一种新概念武器,基于这种新概念、新原理设计的水下超空泡武器,其运动速度极高,且不受水声对抗器材的干扰,从而大大提高了水下武器的突防能力。 前苏联海军很早在七十年代就发展了火箭推进的“风雪”超空泡代号为BA-Ⅲ的“暴风”超高速鱼雷,航速已达到370公里/小时(约200节),其气泡一是利用超高速自行产生,二是把鱼雷发动机的尾气引到前面放出。超空泡潜艇的主要问题一是控制运动方向困难,二是气泡长时间的产生。德国正在研究开发的超空泡鱼雷用变换头部来控制运动方向,但是潜艇不太可能变换头部。然而美国人宣称已经解决控制运动方向和长时间产生气泡这两个问题,估计美国的潜艇是用调节气泡喷头的方法来操纵潜艇

减阻表面活性剂的研究进展

第24卷第1期2007年1月精细化工 FI NE C H E M I CAL S Vo.l24,No.1 J an.2007 表面活性剂 减阻表面活性剂的研究进展* 乔振亮,熊党生 (南京理工大学材料科学与工程系,江苏南京 210094) 摘要:介绍了表面活性剂减阻的机理。探讨了影响表面活性剂减阻效果的各种因素,包括:表面活性剂与补偿离子的结构及其浓度、管路系统的直径、流体的温度和速度以及环境中的金属离子。论述了表面活性剂的减阻与传热效率之间的关系;并且讨论了在使用减阻表面活性剂的循环系统中提高传热效率的方法。总结了减阻表面活性剂的一般特点。预测了减阻表面活性剂的发展趋势。引用文献35篇。 关键词:表面活性剂;减阻;传热效率 中图分类号:TQ423.99 文献标识码:A 文章编号:1003-5214(2007)01-0039-05 Progress i n D rag R educi ng Surfactant R esearch Q I A O Zhen li a ng,X I O NG Dang sheng (D e p ar t m ent of M aterial Science and E ngineer i ng,N anjin g Universit y of Science and T echnology,N anjing210094,J iangsu,China) Abstract:The m echanis m of drag reduc i n g surfactant is i n troduced.M any facto rs i n fluenc i n g t h e effectiveness o f drag reducing surfactant are addressed,such as surfactan,t counteri o n,concentra ti o n, dia m eter of c ircu lati n g syste m s,te m perature and velocity o f the fl u i d,and i o ns inside the recircu lation syste m s.The re l a ti o nship bet w een drag reduction and heat transfer ab ility i s discussed,and m ethods of i m prov i n g the effic i e ncy of heat transfer i n the recircu lation syste m s conta i n ing the drag reduci n g surfactan t are a lso described.Co mm on characteristics of drag reduc i n g surfactant are su mm arized. F i n ally,t h e developm ent trend of drag reduc i n g surfactant is i n d icated.35references are c ited. Key w ords:surfactan;t drag reduction;heat transfer ab ility 19世纪80年代的石油危机引起了人们对减阻技术的普遍关注,继而这一技术迅速应用于各个行业。主动减阻是一种向紊流中添加少量添加剂,使流体摩擦力大大降低的方法。流体的紊流被改变或者受到抑制,便产生了减阻的效果。 一些少量的高分子聚合物和阳离子表面活性剂可以加在水中降低紊流阻力,研究发现,紊流流动阻力最高可以降低80%[1]。所以,这一技术在远距离流体输送、城市供热制冷等领域具有良好的应用前景。虽然一些水溶性的高分子也可以用来减阻,但是在有工业泵的系统中,如果用水溶性高分子就存在着机械降解的问题,并且降解后分子结构无法恢复,使减阻能力下降。表面活性剂受大的剪切应力作用也会发生机械降解,但是它可以自行修复[2]。因此,在有机械力的场合,多用表面活性剂来进行减阻。 用来减阻的表面活性剂有阳离子、阴离子、两性离子等。阴离子表面活性剂做减阻剂使用时,易与水中的钙、镁离子形成沉淀而影响减阻效果;阳离子表面活性剂做减阻剂对水质要求不高,有更广泛的使用范围;在加热系统中用两性减阻表面活性剂也是一种增加经济效益的很有前途的方法[3]。在实际使用中最常用的表面活性剂是阳离子型和两性离子型两类。减阻表面活性剂的特殊重要性,使它受到广泛关注,国内许多人都做了相关研究[4~7]。 本文综述了减阻表面活性剂的研究进展。 *收稿日期:2006-06-19;定用日期:2006-09-08 作者简介:乔振亮(1970-),男,河南省巩义市人,博士研究生,师从熊党生教授,主要从事生物材料、仿生减阻材料的研究,电话:025-********,E-m ai:l q i aozhen liang@126.co m。

输油管道减阻剂

输油管道减阻剂 减阻剂是一种能减少流体在输送时所受阻力的试剂。多为水溶性或油溶性的高分子聚合物。 简介 例如水溶性的聚环氧乙烷,只用25毫克/千克就能使水在管道中所受阻力下降75%,出水速率增加好几倍,用于灭火或其他紧急用水的场合;油溶性的聚异丁烯用量为60毫克/千克时,即可使原油在管道中的输送能力大大提高,起到增输节能的作用。 用于降低流体流动阻力的化学剂称为减阻剂(drag reducing agent),简称DRA。减阻剂广泛应用于原油和成品油管道输送,它是在特定地段提高管道流通能力和降低能耗的重要手段。流体的摩擦阻力限制了流体在管道中的流动,造成管道输量降低和能量消耗增加,而高聚物减阻法是在流体中注入少量的高分子聚合物,使之在紊流状态下降低流动的阻力。 发展历史 20世纪60年代末,美国Conoco公司研制成CDR-101型减阻剂,1972年取得专利,1977~1979年间首次商业化应用于横贯阿À­斯加的原­油管道的越站输送及提高输量方面,并取得巨大成功。1981年又研制成功CDR-102型减阻剂,比CDR-101型的性能成数倍地提高。20世纪80年代初,开展了成品油管道的减阻试验,用于汽油、煤油、柴油和NGL、LPG的减阻,到1984年正式在成品油管道上应用。70年代中期,美国Shellco公司和加拿大Shell Inc公司提出申请减阻剂专利。1983年,美国Atlantic Richfield co公司研制出Arcoflo减阻剂产品,加入5ppm即可达到20%的减阻效果。 减阻聚合物的生产条件很难控制,国际上只有极少数公司垄断了这项技术,其代表是美国的Conoco公司和Baker Hughes公司,他们的产品基本上代表了目前世界上减阻剂生产工艺的最高水平和发展方向。 1982年,我国浙½­大学开始国产减阻剂的开发和试验工作,1985年进行了EDR 型减阻剂的试生产,并在国内原­油管道上进行了中型试验,产品性能已达到国外70年代初期水平。1984年,成都科技大学也发表了PDR型减阻剂的研制成果,以上两校的试验,都曾采用过柴油和煤油等成品油。近年来,中国石油管道公司管道科技研究中心开展了减阻剂的研究工作,并取得了成功,其EP系列减阻剂产品的性能已经­达到国际同类产品的

无人机机翼减阻技术研究

American Institute of Aeronautics and Astronautics 1 Drag Reduction of Light UA V Wing with Deflectable Surface in Low Reynolds Number Flows Masoud Darbandi * and Ali Nazari ? Sharif University of Technology, Tehran, P.O. Box 11365-8639, Iran Gerry E. Schneider ? University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada The most effective approach to drag reduction is to concentrate on the components that make up the largest percentage of the overall drag. Small improvements on large quantities can become in fact remarkable aerodynamic improvements. Our experience shows that the use of light material in constructing human-powered airplanes and unmanned-air-vehicles UAVs has a few side effects on the aerodynamic characteristics of their wings. One important side effect is the unwanted deflection on wing shell. It is because of high flexibility and low solidity of the light material, which covers the wing skeleton. The created curvature has direct impact on the separation phenomenon occurred over the wing in low Reynolds number flows. In this work, we numerically simulate the flow over a UAV wing with and without considering the generated deflection on its shell. It is shown that the curvature on the wing surface between two supporting airfoil frames causes total drag coefficient reduction. Indeed, this drag reduction is automatically achieved without benefiting from additional drag-reduction devices and/or drag-reduction considerations. The current investigation has been conducted on a UAV wing with fxmp-160 airfoil section. This airfoil normally provides high lift coefficient in low Reynolds flows because of having suitable camber. The drag of a wing with this airfoil section can be reduced by the proper usage of low weight material as its wing shell providing that the wing shell deflects between its supporting frames during stretching the shell in manufacturing stage. Nomenclature α = angles of attack C d = total drag coefficient C dp = profile drag C ds = skin friction drag C l = two-dimensional lift coefficient C L three-dimensional lift coefficient L/D = lift-drag ratio Re = Reynolds number I. Introduction RAG reduction is one of the major objectives to the air vehicle designers and manufacturers 1. The study of air vehicles at their cruise shows that there are two main sources of drag force including lift-induced and skin-friction drags. It is reported that these two sources of drag are approximately one-third and one-half of the total drag, respectively, in civil transport aircraft. Reneaux 2 emphasizes that hybrid laminar flow technology and innovates wing tip devices offer the greatest potential for drag reduction. With respect to lift-induced drag, the classical way to reduce drag has been to increase the wing aspect ratio, which is automatically provided in UAV wings. However, for the wings with low aspect-ratio, it is suggested to use various winglet devices such as wing tip sails, wing grid, * Associate Professor, Department of Aerospace Engineering. ? Graduate Student, Department of Aerospace Engineering. ? Professor and Chair, Department of Mechanical Engineering, AIAA Fellow. D 3rd AIAA Flow Control Conference 5-8 June 2006, San Francisco, California AIAA 2006-3680

湍流减阻意义与工程应用

湍流减阻意义与工程应用 摘要:湍流减阻的原理与粘性减阻的定义应用,高分子聚合物在湍流中的原理解释,从不同的方向阐述了当今流体湍流减阻的研究成果,展现了湍流减阻的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流减阻的前景,并对湍流减阻的发展提出了一些建议和设想。 关键词:湍流减阻;粘性减阻;高分子聚合物;湍流 Turbulent drag reduction significance and engineering application Abstract: the principle of turbulent drag reduction and viscous drag reduction the definition of the application of polymer in the turbulence theory to explain, in different directions this paper expounds the current research achievements of fluid turbulent drag reduction, showed the in-depth of turbulent drag reduction for the important role of science and technology and social development, the outlook of the turbulent drag reduction, and puts forward some Suggestions on the development of turbulent drag reduction and ideas Key words: turbulent drag reduction; Viscous drag reduction; Polymer; turbulence 人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化,预测方法不断改进。随着我国飞速发展,所需的战略型资源--化工石油越发紧缺【1】。同时,随着我国大部分油田开发进入中后期,采出油品的流动性不断恶化,使得管道输送阻力急剧增大,运营成本剧增。因此如何降低石油及其产品的管输阻力成为国内外众多学者研究的热点和难点问题。 自从Toms,Kramer先后发现高分子稀溶液或弹性材料护面都能实现减阻以来,减阻现象与边界剪切湍流产生的基本规律密切相联【2-3】。粘性减阻就是通过或从外部改变流体边界条件或从内部改变其边界条件,依靠改变边界材料的物理、化学、力学性质或在流动的近壁区注入物理、化学、力学性质不同的气体、液体来改变近壁区流动的运动和动力学特性,从而达到减阻目的的技术【4】。 1、粘性减阻 当粘性流体沿边界流过时,由于在边界上流速为零,边界面上法向流速梯度异于零,产生了流速梯度和流体对边界的剪力。边壁剪力作功的结果消耗了流体中部分能量,并最终以热量形式向周围发散。边界面的粗糙程度,决定微观的分离和边界的无数小旋涡几何尺寸的差 异,从而决定流体能量消散的差异和阻力系数的差异[5~7]。如想达到粘性减阻,首先要实现壁的光滑减阻;就要改变层流边界层和湍流边界层中层流附面层的内部结构: 1)减小层流边界层和层流附面层贴近边界处的流速梯度值和流体对边界的剪力,减小通过粘性直接发散的能量值,达到减阻。 2)增大层流边界层和层流附面层的厚度,从而达到减阻【8-10】。

页岩气清水压裂工艺中的降阻剂的应用

Exploration & Production 杂志 Aug 1, 2010 一种降摩阻聚合物在 Haynesville 页岩气的降阻水压裂工艺中的应用 摘要:本文介绍了一种新型高粘度合成聚合物,在路易斯安那北部的Haynesville 页岩气井的修井和降阻水压裂作业中使用,在恶劣工况条件下,该聚合物提供了良好的降摩阻性能。 作者: Dennis Goldwood 和Shane Bainum (Drilling Specialties Co.钻井特殊化学品公司) Tayvis Dunnahoe 高级主编 在路易斯安那北部的Haynesville 页岩地层,井深在3,200~4,115 m 。该地区的平均垂直井深为3,353 m ,并沿横断面延伸1,830 m 。在这样深的地层,井下的环境十分恶劣。Haynesville 页岩层,井底温度平均在157?C ,最高可达193?C 。伴随高温的同时还存在高压,Haynesville 页岩层的处理压力达到6,000 至 15,000 psi 。 现场在采用连续油管进行修井作业的同时,还要进行降阻水压裂作业。为了保证作业的成功,需要采用一种性能可靠的降摩阻剂。该降摩阻剂的采用,可以充分的降低操作中的循环摩阻压力,在相同泵数的情况下,在更高压的压力条件下能够进行压裂作业。这对于连续油管作业来说,不仅可以让操作中的HSE 得到改善,也为修井作业降低了成本。 钻井特殊化学品公司(Drilling Specialties Co.)的HE 150聚合物最 早是在2008年实现商品化的。该聚合 物在连续油管作业和降阻水压裂作业中 能够起到显著的降摩阻作用。在绝大多 数一价离子和氯化钙盐水中,其稳定的 使用温度高达204oC 。在密度更高的盐 水中,例如在溴化钙和溴化锌盐水中, 它的热稳定性也能达到149?C 。这种高 粘度合成聚合物经常被用作盐酸、盐水 和淡水的增稠剂。它不仅在高温下保持 稳定,其聚合物的单位用量下的增粘效 果也保持最佳。 液态HE 150聚合物是一种用异构链烷烃油配制的聚合物悬浮液,其有效成份为45%,密度为0.984g/cm 3,即有效成份为432kg/M 3。该聚合物即便 在严酷的冬季,使用也很方便。该悬浮

船舶节能技术的最新发展

目录 目录 (1) abstract (3) 第一章绪论 (4) 1.1 研究目的与意义 (4) 1.1.1 研究目的 (4) 1.1.2 研究意义 (5) 1.2 船舶技术节能潜力与特点 (5) 1.2.1 船舶节能潜力 (5) 1.2.2当前船舶节能技术的特点 (5) 二、船舶节能技术取得的进步 (5) 2.1 节能推进器 (5) 2.1.1低速柴油机 (5) 2.1.2 中速柴油机 (6) 2.1.3正反转螺旋桨 (6) 2.2节能附件 (6) 三、节能型船型的设计 (6) 3.1 小水线面双体船型 (6) 3.2 双艉鳍船型 (7) 3.3 球艉和球鼻艏船型 (7) 3.4 非对称尾船型 (7) 四、节能措施 (7) 4.1 减少船舶阻力 (7) 4.1.1减阻球鼻 (7) 4.1.2 球艉船型 (7) 4.1.3微气泡减阻 (8) 4.1.4采用船尾附体(如加鳍、导流管等) (8) 4.1.5 减少船体的粗糙度 (8) 4.2 提高推进效率 (9) 4.2.1 舵球 (9) 4.2.2 扭曲节能舵 (9) 4.2.3 桨前导流鳍 (9) 4.2.4 桨后自旋助推叶轮 (9) 4.2.5 新型的高效推进器 (9) 4.3 采用混合动力装置 (10) 4.3.1 混合动力装置组成 (10) 4.3.2 混合动力装置余热回收 (10) 4.3.3 热能回收系统的工作模式 (10) 4.3.4 混合动力装置的主要优点 (10) 4.4 绿色船舶 (11) 4.5 提高船舶操作运行技术 (12) 五、结论和展望 (14)

六、致谢 (14) 参考文献 (15)

降阻剂具有的性能特点

降阻剂由多种成份组成,其中含有细石墨、膨润土、固化剂、润滑剂、导电水泥等,一般为灰黑色。它是一种良好的导电体,将它使用于接地体和土壤之间,一方面能够与金属接地体紧密接触,形成足够大的电流流通面;另一方面它能向周围土壤渗透,降低周围土壤电阻率,在接地体周围形成一个变化平缓的低电阻区域。 目前降阻剂用途十分广泛,用于国民经济的各个领域中。它用于电力、电信、建筑、广播、电视、铁路、公路、航空、水运、国防军工、冶金矿山、煤炭、石油、化工、纺织、医药卫生、文化教育等行业中的电气接地装置中。 性能特点 1、降低土壤电阻率 降阻剂具有良好的扩散和渗透性能,可以有效降低接地体周围的土壤电阻率,但降阻剂的稳定性能和长效性能比较差,主要是因为其容易随雨水流失。一般化学降阻剂的扩散和渗透性能要优于其它型式的降阻剂。 2、增大接地体有效截面 降阻剂的使用可以有效地增加接地体的有效截面。一般固体类和膨润土类降

阻剂要优于化学状和树脂状的降阻剂,因为化学状和树脂状的降阻剂对接地体的有效截面的增大效果会随着时间的推移变得越来越不明显。 3、消除接触电阻 降阻剂自身电阻率很低,一般都小于5Ω·m,与土壤电阻率相比可以忽略不计。接地体的电阻由两部分组成,一是接地体和周围大地的电阻;另一是接地体与周围土壤的接触电阻,总电阻。的大小与接地体周围的土壤有关,土壤越松散,越大,相反,土壤越紧实,则越小。另外还与电极表面状况有关,接地极表面越光滑,越小;而表面越粗糙,则越大。接地极生锈会导致表面变得粗糙,会相应地增大。施加某些物理降阻剂和膨润土类降阻剂后,会逐渐增大,而化学和流质降阻剂不具备这方面的性能,甚至有些降阻剂会腐蚀电极而使增大。 4、良好的吸水性和保水性 土壤的导电性能不仅与土壤中的金属离子有关,还与土壤的含水量有关。一些降阻剂如膨润土类降阻剂,具有较强的吸水性和保水性,吸水后体积膨胀并能保持充足的水分,使接地电阻保持稳定不受气候的影响。 湖州至鸿防雷科技有限公司(原杭州至鸿防雷科技有限公司)从事新型铜钢复合接地材料的研发生产销售及技术服务,为各种接地工程提供专业化的接地产品及技术服务。公司拥有多条生产线、多年积累的宝贵经验和完善的安全生产管理制度,为客户提供了产品和服务,也欢迎广大客户来我司莅临指导。公司目前主要产品有:铜覆钢接地棒、铜覆钢接地圆线、铜覆钢扁钢、铜覆钢绞线,电解离子接地极、热熔焊剂、焊接模具等等。

表面活性剂最新设计研究进展

word整理版 表面活性剂最新研究进展 人类的日常生活,各类生产活动,多种科学和技术的进步对表面活性剂品种和性能提出越来越高的要求,促使表面活性剂科学不断发展,迄今方兴未艾,表面活性剂已经深入到生命起源以及膜材料、纳米材料、对映体选择性的反应等各个领域中,设计新的有特殊用途和应用价值的表面活性分子仍不断受到人们的关注。新的功能型表面活型剂与附加的官能基团的性质和位置有密切关系, 对传统的表面活性剂分子结构的修饰会导致其结构形态有很大的变化,近几年国内外的相关研究单位在表面活性剂领域的最新研究进展主要有以下方面。 一、高分子表面活性剂 高分子表面活性剂的合成成为近年来表面活性剂合成研究的热点课题之一。高分子表面活性剂是相对一般常言的低相对分子质量表面活性剂而讲的,通常指相对分子质量大于1000且具有表面活性功能的高分子化合物。它像低分子表面活性剂一样,由亲水部分和疏水部分组成。高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等性质,广泛应用作胶凝剂、减阻剂、增黏剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等。因此,高分子表面活性剂近年来发展迅速,目前已成为表面活性剂的重要发展方向之一。 高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。如阴离子型的高分子表面活性剂有聚(甲基)丙烯酸(钠)、羧甲基纤维素(钠)、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸酯等。两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸-阳离子丙烯酸酯共聚物、两性聚丙烯酰胺等。非离子型的高分子表面活性剂有羟乙基纤维素、聚丙烯酰胺、聚乙烯吡咯烷酮、聚氧乙烯类共聚物等。阳离子型的高分子表面活性剂有聚烯烃基氯化铵阳离子表面活性剂、亚乙基多胺与表氯醇共聚季铵盐、淀粉或纤维素高取代度季铵盐、多聚季铵盐、聚多羧基季铵盐等。 开发低廉、无毒、无污染和一剂多效的高分子表面活性剂将是今后高分子表面

相关文档
最新文档