【中考最值专题】初中几何最值模型汇总讲解,中考数学求几何图形最值问题的典型题目及答案解析

【中考最值专题】初中几何最值模型汇总讲解,中考数学求几何图形最值问题的典型题目及答案解析
【中考最值专题】初中几何最值模型汇总讲解,中考数学求几何图形最值问题的典型题目及答案解析

初中数学基本几何图形

初中数学基本几何图形 这篇帖子是关于几何基本图形的。每一个几何压轴题,几乎都是由几个基本图形构成的,所以如果能把这些图形 用熟,做几何题应该不成问题。 1、 正方形与等腰直角三角形 正方形 ABCD ,EF 为过正方形点 B 的直线且 AE ⊥EF ,CF ⊥EF ,则有△AEB ≌△BFC 。 将上图进行转换,则该基本图形存在于等腰三角形中,可利用此图证明勾股定理: 1 1 令 AD=BE=a ,DB=CE=b ,AB=BC=c ,S △ABC = 2 c = 2 (a+b ) -ab ;化简得到:c =a +b 2、 梯形中位线 梯形 ABCD 中,AD ∥BC ,E 、F 分别为 AB 、DC 中点,则有 EF= 1 (AD+BC ) 结合 1、2 有一道经典题目,在此奉上。 1 △ABC ,分别以 AB 、AC 为边向外做正方形 ABFG 、ACDE ,连接 FD ,取 FD 中点 H ,作 HI ⊥BC ,证明:HI= BC 2 2 2 2 2 2 2

提示:先证明BC等于梯形上下底边之和 【变形题 1】 如图1,以△A BC的边AB、AC为边向内作正方形ABFG和正方形ACDE,M是DF的中点,N是BC的中点,连接MN.探究线段MN与BC之间的关系,并加以证 明.说明:如果你经过反复探索没有解决问题,可以从下面①、②中选取一种情况完成你的证明,选取①比原题少得6分,选取②比原题少得8分. ①如图2,将正方形ACDE绕点A旋转,使点C、E分别落在AG、AB上; ②如图3,将正方形ACDE绕点A旋转,使点B、A、C在一条直线. 答案: 解:BC⊥MN. 证明:连接CM,然后延长CM至H,使CM=MH,连接FH、BH、CM、BM,HG、CG,延长CD,与BF相交于I, ∵MF=MD,CM=HM,∠CMD=∠HMF,

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

几何图形初步练习题(含答案)

第四章几何图形初步 4.1 几何图形 4.1.1 立体图形与平面图形 第1课时立体图形与平面图形 1.从下列物体抽象出来的几何图形可以看成圆柱的是( ) 2.下列图形不是立体图形的是( ) A.球 B.圆柱 C.圆锥 D.圆 3.下列图形属于棱柱的有( ) A.2个 B.3个 C.4个 D.5个 4.将下列几何体分类: 其中柱体有,锥体有,球体有(填序号). 5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆

个. 6.把下列图形与对应的名称用线连起来: 圆柱四棱锥正方体三角形圆

第2课时 从不同的方向看立体图形和立体图形的展开 图 1.如图所示是由5个相同的小正方体搭成的几何体,从 正面看得到的图形是( ) 2.下列常见的几何图形中,从侧面看得到的图形是一个 三角形的是( ) 3.如图所示是由三个相同的小正方体组成的几何体从 上面看得到的图形,则这个几何体可以是( ) 4.下面图形中是正方体的展开图的是( ) 5.如图所示是正方体的一种展开图,其中每个面上都有 一个数字,则在原正方体中,与数字6相对的数字是( ) A.1 B.4 C.5 D.2 6.指出下列图形分别是什么几何体的展开图( 将对应的

几何体名称写在下方的横线上).

4.1.2 点、线、面、体 1.围成圆柱的面有( ) A.1个 B.2个 C.3个 D.4个 2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( ) A.点动成线 B.线动成面 C.面动成体 D.以上答案都不对 3.结合生活实际,可以帮我们更快地掌握新知识. (1)飞机穿过云朵后留下痕迹表明; (2)用棉线“切”豆腐表明; (3)旋转壹元硬币时看到“小球”表明. 4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来. 5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?

初中数学几何图形综合题(供参考)

初中数学几何图形综合题 必胜中学2018-01-30 15:15:15 题型专项几何图形综合题 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.

类型1操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC;

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

《几何图形初步》练习题

《几何图形初步》复习学案 知识点一: 余角与补角的概念(思考什么叫互为余角,什么叫互为补角) 1.★若∠α=79°25′,则∠α的补角就是() A. 100°35′ B. 11°35′ C. 100°75′ D. 101°45′ 2 ★已知∠α与∠β互余,若∠α=43°26′,则∠β的度数就是() A. 56°34′ B. 47°34′ C. 136°34′ D. 46°34′ 3 ★已知α=25°53′,则α的余角与补角各就是 4★★已知 ∠1=30°21’,则∠1的余角的补角的度数就是() 知识点二从正面、上面、左面瞧立体图形 1★画出从正面、上面、左面三个方向瞧到的立体图的形状 2★从正面、上面、左面瞧圆锥得到的平面图形就是() A.从正面、上面瞧得到的就是三角形,从左面瞧得到的就是圆 B.从正面、左面瞧得到的就是三角形,从上面瞧得到的就是圆 C.从正面、左面瞧得到的就是三角形,从上面瞧得到的就是圆与圆心 D.从正面、上面瞧得到的就是三角形,从左面瞧得到的就是圆与圆心 3★★下列四个几何体中,从正面、上面、左面瞧都就是圆的几何体就是() A 圆锥B圆柱C球D正方体 4★★一个几何体从正面、上面、左面瞧到的平面图形 如右图所示,这个几何体就是() A 圆锥B圆柱C球D正方体 5★★观察下列几何体,,从正面、上面、左面瞧都就是长方形的就是() 6★★从正面、左面、上面瞧四棱锥,得到的3个图形就是() ABC 7★★★如下图,就是一个几何体正面、左面、上面瞧得到的平面图形,下列说法错误的就是() A.这就是一个棱锥 B.这个几何体有4个面 C.这个几何体有5个顶点 D.这个几何体有8条棱 8★★★如图就是由几个小立方块所搭成的几何体的俯视图,小正方形体的数 字表示该位置小立方块的个数,则从正面瞧该几何体的图形就是() 1

初中数学几何基本图形

432 1F E D C B A 432 1F E D C B A F E D C B A H G F E D C B A c b a C B A D C B A F E D C B A C B A 初中数学几何基本图形 1. 平行线的性质: ∵A B ∥CD (已知) ∴∠1=∠2(两直线平行,同位角相等。) ∴∠1=∠3(两直线平行,内错角相等。) ∴∠1+∠4=180° (两直线平行,同旁内角互补。) 2. 平行线的判定: (1)∵∠1=∠2(已知) ∴A B ∥CD (同位角相等,两直线平行。) (2)∵∠1=∠3(已知) ∴A B ∥CD (内错角相等,两直线平行。) (3)∵∠1+∠4=180o (已知) ∴A B ∥CD (同旁内角互补,两直线平行。) 3. 平行线的传递性: ∵A B ∥CD ,A B ∥EF (已知) ∴C D ∥EF (如果两条直线都与第三条直线平行, 那么这两条直线也互相平行。) 4. 两条平行线间距离: ∵A B ∥CD ,EF ⊥CD ,GH ⊥CD (已知) ∴EF=GH (平行线间距离处处相等。) 5. 三角形的性质: (1)∠A+∠B+∠C=180o (三角形内角之和为180o 。) (2)a+b >c ,∣a-b ∣<c (三角形任意两边之和大于第三边, 三角形任意两边之差小于第三边。) (3)∠ACD=∠A+∠B (三角形一个 外角等于与它不相邻的两个外角之和。) 6.三角形中重要线段: (1)∵AD 是△ABC 边BC 上的高(已知) ∴AD ⊥BC 即∠ADC=900(三角形高的意义) (2)∵BF 是△ABC 边AC 上的中线(已知) ∴AF=FC=12 AC (AC=2AF=2FC )(三角形中线的意义) (3)∵CE 是△ABC 的∠ACB 的角平分线(已知) ∴∠ACE=∠BCE= 1 2 ∠ACB (∠ACB=2∠ACE=2∠BCE )(三角形角平分线的意义) 6. 等腰三角形的性质和判定: (1)∵AB=AC (已知)∴∠B=∠C (等边对等角) (2)∵∠B=∠C (已知)∴AB=AC (等角对等边)

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

初一上几何图形初步测试题

第四章 几何图形初步 一、选择题(每小题6分,共36分) 1.下列说法中正确的是( ). A.射线AB 和射线BA 是同一条射线 B. 延长线段AB 和延长线段BA 的含义是相同的 C. 延长直线AB D.经过两点可以画一条直线,并且只能画一条直线 2.如图,下列说法不正确的是( ). A.∠1与∠AOB 是同一个角 B.B. ∠AOC 也可用∠O 来表示 C. 图中共有三个角:∠AOB, ∠AOC, ∠BOC D. ∠ 与∠BOC 是同一个角 3.甲看乙的方向为北偏东30°,那么乙看甲的方向是( ). A. 南偏东60° B.南偏西60° C. 南偏西30° D.南偏东30 ° 4.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是( ). 5.下面四个图形中,经过折叠能围成如图所示的几何图形的是( ) 6.一个角的度数为54°11′23〞,则这个角的余角和补角的度数分别为( ). A. 35°48′37〞, 125°48 ′37〞 B. 35°48′37〞, 144°11′23〞 C. 36°11′23〞, 125°48′37〞 D. 36°11′23〞, 144°11′23〞 二、填空题(每小题6分,共24分) 7.如图,从学校A 到书店B 最近的路线是①号路线,得到这个结论的根据是: . β1O C B A (第2题) (第4题) (A ) (B ) (C ) (D ) (第5题) (A ) (B ) (C ) (D ) (第7题)

8.如图,各图中的阴影部分绕着直线l 旋转360°,所形成的立体图形分别是 . 9. 如图,以图中的A ,B ,C ,D ,E 为端点的线段共有 条. 10.如图所示,两个直角三角形的直角顶点重合,如果∠AOB=128°,那么∠BOC= °. 三、解答题(每小题10分,共40分) 11.如图,若CB=4㎝,DB=7㎝,且D 是AC 的中点,求线段DC 和AB 的长度. 12.借助一副三角尺画出15°,105°,120°,135°的角. 13.直线AB ,CD 相交于点O ,OE 平分∠AOD ,∠FOC=90°,∠1=40°,求∠2与∠3的度数. 14.虚线对折得图③,然后用剪刀沿图③中的虚线剪去一个角再打开,请你画出打开后的几何图形. E D C B A D C O B A D C B A (第8题) (第9题) (第10题) (第11题) (第14题) ① ② ③

初中数学平面几何图形

第四课时几何图形初步 LYX 1、几何图形 ①几何图形:我们把从实物中抽象出的各种图形统称为几何图形。 ②平面图形:几何图形(如线段、角、三角形、长方形等)的各部分都在同一平面内。 常见平面图形: ③立体图形:有些几何图形的各部分不都在同一平内,这样的几何图形叫做立体图形。 ⑴常见立体图形:⑵常见立体图形的归类: ★画立体图形时,看得见的棱线画成实线,看不见的棱线画成虚线。 ④展开图:有些立体图形是由平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 例1、圆锥由_______面组成,其中一个是_______面 ,另一个是_______面. 例2、如图所示,一个三边相等的三角形,三边的中点用虚线连接,如果将三角形沿虚线 向上折叠,得到的立体图形是(). (A)三棱柱(B)三棱锥(C)正方体(D)圆锥 例3、分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()

例4、下列各图形,都是柱体的是() 例5、下列四个图形中,经过折叠能围成如图所示的几何图形的是() 2、点、线、面、体 ①点动成线,分为直线和曲线; ②线动成面线运动生成的有平面、曲面; ③面运动成体;(直角三角板绕它的一边旋转,形成了什么图形?长方形绕着它的一边旋转,形成了什么图形?) 总结: ⑴几何图形是由点、线、面、体组成。点是构成图形的基本元素。 ⑵点无大小,线有直线和曲线,面有平的面和曲的面。 ⑶点动成线,线动成面,面动成体。 ⑷体由面围成,面与面相交成线,线与线相交成点。 3、直线、射线、线段 ①两点确定一条直线:经过两点有一条直线,并且只有一条直线。 ⑴因为两点确定一条直线,所以除了用一个小写字母表示直线(直线)外,还经常用一条直线上的两点来表示这个直线; ⑵一个点在直线上,也可以说这条直线经过这个点;一个点在直线外,也可以说直线不经过这个点; ⑶当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 ②线段的表示方法 ③射线的表示方法 ★用数学符号表示直线、线段、射线?

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

几何图形初步基础测试题含答案

几何图形初步基础测试题含答案 一、选择题 1.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是() A.20°B.22°C.28°D.38° 【答案】B 【解析】 【分析】 过C作CD∥直线m,根据平行线的性质即可求出∠2的度数. 【详解】 解:过C作CD∥直线m, ∵∠ABC=30°,∠BAC=90°, ∴∠ACB=60°, ∵直线m∥n, ∴CD∥直线m∥直线n, ∴∠1=∠ACD,∠2=∠BCD, ∵∠1=38°, ∴∠ACD=38°, ∴∠2=∠BCD=60°﹣38°=22°, 故选:B. 【点睛】 本题考查了平行线的计算问题,掌握平行线的性质是解题的关键. 2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是

A.(0,0)B.(0,1)C.(0,2)D.(0,3) 【答案】D 【解析】 【详解】 解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′, 此时△ABC的周长最小, ∵点A、B的坐标分别为(1,4)和(3,0), ∴B′点坐标为:(-3,0),则OB′=3 过点A作AE垂直x轴,则AE=4,OE=1 则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE, ∵C′O∥AE, ∴∠B′C′O=∠B′AE, ∴∠B′C′O=∠EB′A ∴B′O=C′O=3, ∴点C′的坐标是(0,3),此时△ABC的周长最小. 故选D. ⊥,从A地测得B地在A地的北偏东43?3.如图,有A,B,C三个地点,且AB BC 的方向上,那么从B地测得C地在B地的() A.北偏西43?B.北偏西90?C.北偏东47?D.北偏西47?

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

七年级几何图形初步单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难) 1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8 (1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点, (2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离. 【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3. (2)MN= 【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可; (2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值. 2.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE (1)若∠COF=20°,则∠BOE=________° (2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系 (3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由. 【答案】(1)40 (2)解:∵ ∴ ∴ (3)解:存在.理由如下: ∵ 设 ∴ ∵

∴ ∴ ∴ ∴ 【解析】【解答】⑴ ∴ ∵OF平分∠AOE, ∴ ∴ ∴ 故答案为:40。 【分析】(1)根据,∠EOF=∠COE-∠COF=40°,再由角平分线的定义得出∠AOF=∠EOF=40°,最后∠BOE=∠AOB?∠AOE=120°?80°=40°. (2)由角平分线的定义得出∠AOE=2∠EOF,再利用等量代换得∠A OE=120°?∠BOE=2(60°?∠COF) , 整理得∠BOE=2∠COF; (3)∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α ,∠AOF=∠EOF=2α ,根据∠AOD+∠BOD=120°,构建一个含α的方程,5α+70°=120°求出α,进而求出∠DOF和∠COF. 3.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D. (1)若,,求∠D的度数;

新初中数学几何图形初步技巧及练习题

新初中数学几何图形初步技巧及练习题 一、选择题 1.如图,已知ABC ?的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ?的面积是( ) A .25米 B .84米 C .42米 D .21米 【答案】C 【解析】 【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可. 【详解】 连接OA ∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD = ∴点O 到AB 、AC 、BC 的距离为4 ∴ABC AOC OBC ABO S S S S =++△△△△ ()142 AB BC AC =??++ 14212 =?? 42=(米) 故答案为:C . 【点睛】 本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.

2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=() A.35°B.45°C.55°D.65° 【答案】A 【解析】 【分析】 【详解】 解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A. 【点睛】 本题考查余角、补角的计算. 3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是() A.B.C. D. 【答案】D 【解析】 解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形. 故选D. 首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可. 4.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

几何图形初步基础练习题

图形认识初步基础练习题 一判断下列说法是否正确 ①直线AB与直线BA不是同一条直线();②用刻度尺量出直线AB的长度(); ③直线没有端点,且可以用直线上任意两个字母来表示();④线段AB中间的点叫做线段AB的中点(); ⑤取线段AB的中点M,则AB-AM=BM();⑥连接两点间的直线的长度,叫做这两点间的距离() ⑦一条射线上只有一个点,一条线段上有两个点() 二填空题 1.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC为_______ 2.如图,线段AC∶CD∶DB=3∶4∶5,M,N分别是CD,AB的中点,且MN=2cm,则AB的长为________ 3.如图,四点A、B、C、D在一直线上,则图中有______条线段,有_______条射线;若AC=12cm,BD=8cm,且AD=3BC,则AB=______,BC=______,CD=_ ___ 4.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________ 5.如图,若C为线段AB的中点,D在线段CB上,DA=6,DB=4,则CD=_____ 6.C为线段AB上的一点,点D为CB的中点,若AD=4,则AC+AB的长为________ 7.把一条长24cm的线段分成三段,使中间一段的长为6cm,则第一段与第三段中点的距离为________ 8.如图,点C在线段AB上,E是AC的中点,D是BC的中点,若ED=6,则AB的长为________ 9.如图,已知∠AOB=2∠BOC,且OA⊥OC,则∠AOB=_________0 10.如图,已知OE⊥OF直线AB经过点O,则∠BOF—∠AOE=__________若∠AOF=2∠AOE,则∠BOF=___________ 11.如图,OC平分∠AOB,∠BOC=20°,则∠AOB=_______ 12.如图,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有_______条线段,________条射线, ________个小于平角的角 13.如图,∠AOB=600,OD 、OE分别平分∠BOC、∠AOC,那么∠EOD=0 14.已知有共公顶点的三条射线OA、OB、OC,若∠AOB=1200,∠BOC=300,则∠AOC=_________ 15.2点30分时,时钟与分钟所成的角为度 16.40038′14′′的余角是,106024′48′′的补角是 17.一个角为n0(n<90),则它的余角为,补角为 18.∠α和∠β都是∠AOB的补角,则∠α∠β; 19.如果∠1+∠2=900,∠1+∠3=900,则∠2与∠3的关系是,理由是 20.102°43′32″+77°16′28″=_____ ___;98°12′25″÷5=___ __ 三选择题 1.互为余角的两个角之差为35°,则较大角的补角是() A.117.5° B.11 2.5° C.125° D.127.5° 2.如图,∠AOE=∠BOC,OD平分∠COE,那么图中除∠AOE=∠BOC外,相等的角共有() A.1对 B.2对 C.3对 D.4对 3.如图,由A到B的方向是() A.南偏东30° B.南偏东60° C.北偏西30 D.北偏西60° 4.某测绘装置上一枚指针原来指向南偏西550,把这枚指针按逆时针方向旋转800,则结果指针的指向() A.南偏东35° B.北偏西35° C.南偏东25° D.北偏西25° 5.甲看乙的方向为南偏西25°,那么乙看甲的方向是() A.北偏东75° B.南偏东75° C.北偏东25° D.北偏西25°

初中数学几何图形初步技巧及练习题

初中数学几何图形初步技巧及练习题 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是() A.主视图B.俯视图C.左视图D.一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C. 2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是 A.(0,0)B.(0,1)C.(0,2)D.(0,3) 【答案】D 【解析】 【详解】 解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′, 此时△ABC的周长最小,

∵点A 、B 的坐标分别为(1,4)和(3,0), ∴B ′点坐标为:(-3,0),则OB′=3 过点A 作AE 垂直x 轴,则AE=4,OE=1 则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE , ∵C ′O ∥AE , ∴∠B ′C ′O=∠B ′AE , ∴∠B ′C ′O=∠EB ′A ∴B ′O=C ′O=3, ∴点C ′的坐标是(0,3),此时△ABC 的周长最小. 故选D . 3.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( ) A .8 B .9 C .10 D .11 【答案】C 【解析】 【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可. 【详解】 解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小 ∵四边形ABCD 是正方形 B D ∴、关于A C 对称 PB PD =∴

第11讲阿氏圆最值模型(解析版) 2020年中考数学几何模型能力提升篇(全国通用)

中考数学几何模型11:阿氏圆最值模型 名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. B P O

【模型建立】 如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=2 5 OB, 连接PA、PB,则当“PA+2 5 PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段OB 上截取OC使OC=2 5 R,则可说明△BPO与△PCO相似,则有 2 5 PB=PC。 故本题求“PA+2 5 PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、 P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算PA k PB +g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得PA k PB +g的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值 典题探究 启迪思维 探究重点 例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12 PA PB +的最小值为__________. E A B C D P 【分析】这个问题最大的难点在于转化12 PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,

相关文档
最新文档