离心式风机的主要部件

离心式风机的主要部件
离心式风机的主要部件

离心式风机的主要部件

离心风机的主要部件与离心泵类似。气体由进气箱引入,通过导流器调节进风量,然后经过集流器引人叶轮吸入口。流出叶轮的气体由蜗壳汇集起来经扩压器升压后引出。不宜采用多级叶轮。离心式风机输送气体时,一般的增压范围在9.807kPa(1000mmH2O)以下。下面仅结合风机本身的特点进行论述。

1)叶轮

叶轮是离心泵风机传递能量的主要部件,它由前盘、后盘、叶片及轮毂等組成(见图2-2)。叶片有后向式、径向式和前向式等如图4-21所示,后向式叶片形状又分为机翼型和圆弧型等。机翼型叶片具有良好的空气动力特性,效率高、强度好、刚性大,但制造工艺复杂,输送含尘浓度高的气体时,叶片容易磨损。圆弧型叶片如对空气动力特性能进行优化,其效率会接近机翼型叶片。还有一种后向平板叶片,其制造简单,但流动特性较差,效率低。在后向叶片中,对于大型离心风机多采用机翼形叶片,而对于中、小型离心风机,则以采用圆弧形和平板形叶片为宜。

图4-21离心式风机叶轮型式

(a)前向叶型叶轮(b)多叶前向叶型叶轮(c)圆弧型叶轮

(d)径向弧形叶轮(e)径向直叶式叶轮(f)机翼型叶轮

叶轮前盘的形式有平直前盘、锥形前盘和弧形前盘三种,如图4-22所示。平直前盘制造简单,但气流进口后分离损失较大,因而风机效率低。弧形前盘制造工艺复杂,但气流进口后分离损失较小,因而风机效率高。锥形前盘介于两者之间。高效离心风机前盘采用弧形前盘。

(a)(b)(c)

图4-22前盘形式

(a)平直前盘(b)锥形前盘(c)弧形前盘

2)集流器

风机在叶轮前装置进口集流器,集流器的作用是保证气流能均勻地分布在叶轮入口断面,达到进口所要求的速度值,并在气流损失最小的情况下进入叶轮。集流器形式有圆柱形,圆锥形,弧形,锥柱形,弧筒形和锥弧形等,如图4-23所示。弧形,锥弧形性能好,被大型风机所采用以提髙风机效率,高效风机基本上都采用锥弧形集流器。吸入口形状应尽可能符合叶轮进口附近气流的流动状况,以避免漏流及引起的损失。

图4-23集流器形式

(a)圆柱形(b)圆锥形(c)弧形(d)锥柱形(e)弧筒形(f)锥弧形

3)机壳

机壳作用是汇集叶轮出口气流并引向风机出口,与此同时将气流的一部分动能转化为压能。机壳外形以对数螺旋线或阿基米德螺旋线为最佳,具有最高效率。机壳剖面为矩形,并且宽度不变。

机壳出口处气流速度仍然很大,为了有效利用气流的能量,在涡壳出口装扩压器,由于机壳出口气流受惯性作用向叶轮旋转方向偏斜,因此扩压器一般作成沿偏斜方向扩大,其扩散角通常为6°~8°,如图4-24所示。

离心风机机壳出口部位有舌状结构,一般称为蜗舌(见图4-24)。蜗舌可以防止气体在机壳内循环流动。一般有蜗舌的风机效率,压力均高于无舌的风机。

机壳可以用钢板、塑料板、玻璃钢等材料制成,其断面有方形和圆形两种,一般中、低压风机多呈方形,高压风机则呈圆形。目前研制生产的新型风机的机壳能在一定的范围内转动,以适应用户对出风口方向的不同需要。

4)进气箱

气流进人集流器有三种方式。一种是自由进气;另一种是吸风管进气,该方式要求保证足够长的轴向吸风管长度;再一种是进气箱进气,当吸风管在进口前需设弯管变向时,要求在集流器前装设进气箱进气,以取代弯管进气,可以改善进风的气流状况。进气箱见图4-25所示。

进气箱的形状和尺寸将影响风机的性能,为了使进气箱给风机提供良好的进气条件,对

其形状和尺寸有一定要求。

(1)进气箱的过流断面应是逐渐收缩的,使气流被加速后进人集流器。进气箱底部应与进风口齐平,防止出现台阶而产生涡流(见图4-25)。

(2)进气箱进口断面面积A i与叶轮进口断面面积A0之比不能太小,太小会使风机压力和效率显著下降,一般A i/A0≮1.5;最好应为A i/A0=1.75~2.0。

图4-24涡壳图4-25进气箱(3)进气箱与风机出风口的相对位置以90°为最佳,即进气箱与出风口呈正交,而当两者平行呈180°时,气流状况最差。

5)人口导叶

在离心式风机叶轮前的进口附近,设置一组可调节转角的导叶(静导叶),以进行风机运行的流量调节。这种导叶称为人口导叶或人口导流器,或前导叶。常见的人口导叶有轴向导流器和简易导流器两种,人口导叶调节方式在离心风机中有广泛的应用,改变人口导叶叶片的角度,能扩大风机性能、使用范围和提高调节的经济性。

离心风机结构形式

离心风机 离心叶轮的进风方向与出风方向呈90°,离心叶轮可分为前弯叶轮、后倾叶轮、后弯叶轮。 1、前弯叶轮:气流方向与叶片的线速度方向夹角为锐角。 特点:低转速,大风量,低静压(相对后倾,后弯叶轮),成型工艺简单,成本低。 前弯叶轮转速过高会造成电机过载,所以使用前弯叶轮的风机不允许空载运行。 2、后倾叶轮:气流方向与叶片的线速度方向的夹角为钝角,叶片为直板形式。 特点:高转速,转速范围宽,风量小,高静压,不过载,效率高。(相对前弯叶轮做比较) 3、后弯叶轮:气流方向与叶片的线速度方向的夹角为钝角,叶片为曲面形式。 特点:高转速,较大风量(比后倾叶轮大),更高静压,更高效率,不过载。后弯叶轮的风机性能与后倾叶轮的风机性能非常相似,但后弯叶轮的效率更高,性能也更稳定,加工工艺更困难,在高压风机领域应用广泛。 结构型式 (1)传动型式 :离心通风机的传动型式通常有电动机直联、带轮、联轴器等三种 型式。各种传动型式的代表符号与结构说明见表与图。 离心通风机传动型式代表符号与结构说明

连接方式AMCA标准连接方式 中国标准 说明 ARR1 无ARR1安装形式:皮带传动,风机不带底座与皮带轮,电机由用户自己安装。 ARR3 E型ARR3安装形式:皮带传动,轴承位于风机两侧。例 如:ICC ARR4 A型ARR4安装形式:直联传动,电机轴与风机叶轮直接 连接。例如:CFD/CBD ARR8 D型ARR8安装形式:直联传动,电机与风机轴通过连轴 器传动。 ARR9 C1型ARR9安装形式:皮带传动,电机位于电机支撑板侧 面。 ARR10 C3型ARR10安装形式:皮带传动,电机位于风机轴正下 方。例如:CUS ARR12 C2型ARR12安装形式:皮带传动,轴承位于叶轮同一侧,电机置于风机底座上。例如:BCSD、BCSL 直联传动优点:节省部件(皮带轮、轴、轴承、皮带等)易损部件少,可靠性高; 缺点:转速固定,其转速就等于电机转速;

射流风机的选用及特点

射流风机的选用及特点 参考资料:中国环保网(https://www.360docs.net/doc/9c7316950.html,/trade/supply/index--1000100410021009--.htm ) 1.每组风机之间的纵向间隔 若是地道中每组风机之间具有满足的间隔,则喷发气流会有充沛的逐步减速,若是喷发气流减速不完全,将会影响到下一级风机的任务功能。普通状况下,每组风机之间的纵向间隔取为地道截面水力当量直径的10倍或10倍以上,也可以取风机空气动压(Pa)的十分之一作风机纵向间隔(m),同一组风机之间的中间隔至少取为风机直径的2倍。地道中的射流风机安置并不必定具有同一间隔,只需风机之间具有满足的纵向间隔,则风机可以尽能够地安置在挨近地道洞口的方位;若是风机轴向装置方位答应存在必定歪斜,则风机之间的纵向间隔可以削减,然后可以进步装置系数。 2.地道中空气流速、风机与壁面及拱顶的挨近度 风机推力是在空气停止条件下,依据风机的空气动量的改变而测定的。若是风机进口的空气处于运动状况,则风机中空气动量的改变值必定减小。若是射流风机的装置方位挨近地道壁面或拱顶,则空气射流与壁面或与拱顶之间必定发生附加冲突丢失。 3.风机尺度 射流风机耗电量与推力之比与风机出口风速有关,关于给定的推力恳求,出口风速越高,耗电量越大。因而,为了下降工作本钱,应尽能够选用大直径、低转速或叶片视点小的风机。关于给定的风机尺度,若是下降其推力,必定招致风机数量的添加,然后添加风机自身的出资,但此刻风机出口风速也随之下降,使得消声器得以撤销或减小其长度。 4.可逆工作风机 可逆工作风机与单向风机比较,功率略低,且噪声稍高,但此类风机可以使地道的运营具有较大的挑选性。如在稀奇需求的状况下,单向地道可以用作双向运营,在着火时,风机可以回转排烟。 便携式射流风机技能特点: 1. 功能规模宽,最大一种风机推力可达2100 牛顿,用户有更大的挑选地步。 2. 进步的气动描绘使得风机具有功率高、推力大和噪音低的长处。 3. 叶片与轮毂均由铝合金压力铸造产成,经金相剖析、X 光射线探伤查验,有满足的强度。准确平衡的叶轮,使风机工作平稳,契合高速工作的恳求。 4. 特别描绘的消声器有效地操控了风机噪声;思索到用户的异样恳求,有1D 长度与2D 长度两种规范的消声器可供用户选用。 5. 可配用双速电机,用户可依据地道内的车流密度等状况取定风机的工作状况,同到达下降风机工作本钱和节省电能的意图。 6. 配有专用电动机,在-25 C~50 C 的环境下可长时间牢靠工作。其间电机轴承寿数按L10 规范核算可达20,000 小时同上。 7. 风机叶轮描绘时已思索高温下的热膨胀系的和强度恳求,专用电机可包管风机在火灾高温下牢靠工作。 8. 结结牢靠、、便、合理,易易、易装,便利用户保护保保。

射流风机使用说明

目录 安全规则---------------------------------------------------------1 1.概述-----------------------------------------------------------1 2.风机整套组件---------------------------------------------------2 3.风机供货状态---------------------------------------------------2 4.风机吊装-------------------------------------------------------2 5.风机储存-------------------------------------------------------3 6.长期保存的风机安装前须知---------------------------------------3 7.风机整机安装---------------------------------------------------4 8.风机调试说明---------------------------------------------------7 9.风机运行说明---------------------------------------------------7 10.风机运行时常见的故障分析--------------------------------------8 11.风机运行时故障的排除方法--------------------------------------8 12.风机维护、保养说明--------------------------------------------9 附录1 固定螺栓的负载确定计算说----------------------------------10 附录2 风机改变(调整)叶片角度的方法----------------------------11 金盾风机浙江金盾冈机风冷没备有限公司 SDS 、SDS(R)系列射流风机 安装、调试、运行、维护说明书 安全规则 本说明书包含各种警示标语,这些警示标语是为了说明造成或可能造成人员受伤的各种事故风险。按照事故后果的概率和严重性,事故风险分“危险”、“警告”、“重要”三类。 技术上的警示标语是为了说明故障或事故的风险。 ▲危险! “危险”表示:如果不遵照安全规则会发生事故。引起的事故会导致人员严重受伤,甚至死亡,或者严重损伤设备。

射流风机使用说明

目录安全规则 ---------------------------------------------------------1 1.概述 -----------------------------------------------------------1 2.风机整套组件 ---------------------------------------------------2 3.风机供货状态 ---------------------------------------------------2 4.风机吊装 -------------------------------------------------------2 5.风机储存 -------------------------------------------------------3 6.长期保存的风机安装前须知 ---------------------------------------3 7.风机整机安装 ---------------------------------------------------4

8.风机调试说明 ---------------------------------------------------7 9.风机运行说明 ---------------------------------------------------7 10.风机运行时常见的故障分析 --------------------------------------8 11.风机运行时故障的排除方法 --------------------------------------8 12.风机维护、保养说明--------------------------------------------9 附录1 固定螺栓的负载确定计算说 ----------------------------------10 附录2 风机改变(调整)叶片角度的方法----------------------------11 金盾风机浙江金盾冈机风冷没备有限公司 SDS 、SDS(R)系列射流风机 安装、调试、运行、维护说明书 安全规则 本说明书包含各种警示标语,这些警示标语是为了说明造成或可能造成人员受伤的各种事故风 险。按照事故后果的概率和严重性,事故风险分“危险”、“警告”、“重要”三类。 技术上的警示标语是为了说明故障或事故的风险。 ▲危险! “危险”表示:如果不遵照安全规则会发生事故。引起的事故会导致人员严重受伤,甚至死亡,

风机工作原理

风机是依靠输入的机械能,提高气体压力从而引导气体流动的机械,它是一种从动的流体机械。风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 风机根据气流进入叶轮后的流动方向分为:轴流式风机、离心式风机和斜流(混流)式风机。 1.离心风机 气流进入旋转的叶片通道,在离心力作用下气体被压缩并沿着半径方向流动。 离心风机(图1) 离心风机是根据动能转换为势能的原理,利用高速旋转的叶轮将气体加速,然后减速、改变流向,使动能转换成势能(压力)。在单级离心风机中,气体从轴向进入叶轮,气体流经叶轮时改变成径向,然后进入扩压器。在扩压器中,气体改变了流动方向造成减速,这种减速作用将动能转换成压力能。压力增高主要发生在叶轮中,其次发生在扩压过程。在多级离心风机中,用回流器使气流进入下一叶轮,产生更高压力。 2.轴流风机 气流轴向进入风机叶轮后,在旋转叶片的流道中沿着轴线方向流动的风机。相对于离心风机,轴流风机具有流量大、体积小、压头低的特点,用于有灰尘和腐蚀性气体场合时需注意。

轴流风机(图2) 当叶轮旋转时,气体从进风口轴向进入叶轮,受到叶轮上叶片的推挤而使气体的能量升高,然后流入导叶。导叶将偏转气流变为轴向流动,同时将气体导入扩压管,进一步将气体动能转换为压力能,最后引入工作管路。 3.斜流式(混流式)风机 在风机的叶轮中,气流的方向处于轴流式之间,近似沿锥流动,故可称为斜流式(混流式)风机。这种风机的压力系数比轴流式风机高,而流量系数比离心式风机高。

斜流式(混流式)风机(图3) 当叶轮旋转时,气体从进风口轴向进入叶轮,贝雷梁受到叶轮上叶片的推挤而使气体的能量升高,然后流入导叶。导叶将偏转气流变为轴向流动,同时将气体导入扩压管,进一步将气体动能转换为压力能,最后引入工作管路。

诱导风机工作原理

诱导风机的工作原理 2008-03-23 18:21:06| 分类:环保废气| 标签:|字号大中小订阅 摘要简要介绍了智能型诱导通风系统的基本原理、特性、以及设计中应考虑的因素,并结合工程实 例介绍了其在地下汽车库中的应用。 关键词地下汽车库智能型诱导通风系统换气次数气流主干线 1 引言 1.1 目前,随着我国汽车工业的飞速发展和国民汽车拥有量的大幅增长,汽车库尤其是地下汽车库也正在大量涌现,因此与之相应的汽车库通风换气问题也越来越受到人们的重视。就地下汽车库的通风设计而言,设计人员一方面需要选择合理的通风方式,使汽车库内产生的有害气体能及时排出,达到良好的通风换气效果;这是因为如果通风系统设计不良,挥发的油气容易聚集而引起火灾或爆炸,并且汽车产生的CO等废气也会影响库内人员的身体健康。另一方面,为避免过大的土方开挖费用,地下车库的层高一般都较低,层高的控制非常严格,要求通风设计人员采取措施,尽可能少的占用有效空间。 1.2 在《汽车库建筑设计规范》JGJ 100-98和《汽车库、修车库、停车场设计防火规范》GB50067-97中规定地下汽车库的排风和排烟均按6/h-1计算,在以往的通风系统设计中,较常采用的通风方式为排风和排烟合用系统,一般是上下均设排风口,平时上下各排1/2风量。火灾时,将下排风口用防火阀或电动阀自动关闭,用上排风口作为排烟口实现排烟。下排风口的作用主要是排除含铅汽油产生的密度较大的含铅废气,但现在低标号的含铅汽油已被禁止使用,再加上汽车库层高一般较小,汽车运动产生的扰动使车库内有害气体分层的可能性较小,下排风已失去意义。这种合用排风系统存在着操作和管理不够灵活,单项式固定风管空气局部流动,容易出现死角等问题,尤其是这种系统占有较大的层高而增加土建投资。例如对于一个层高3.0m面积2000m2 的地下汽车库,6/h-1 的换气次数需36000m3/h的排风量,如管内风速按8m/s,主排风道的尺寸为2500*500(H)mm,所占高度为550mm。由于以上原因,另一种通风方式:诱导通风系统由于能较好的弥补以上不足而得到了越来越广泛的应用。 2 智能诱导通风系统简介 2.1诱导通风系统的原理 诱导通风系统又称活塞式换气系统,各喷嘴诱导的气流,形成一面活塞式的气墙,向前推进。诱导通风系统的主要运用理论来自于空气动力学中高速喷流的扰动特性,利用喷出的少量气体来诱导及扰拌周围大量空气,并将其带至特定的目标方向。喷流中心速度由喷嘴出口点起逐渐减低,但是喷流宽度逐渐增加,所诱导的周围的空气量也逐渐增加。一方面稀释室内有害气体,另一方面带动室内空气流动,沿着预设的空气流道行进至排风机处,由机房内的排风机排走,从而实现车库内的良好换气。 2.2智能诱导通风系统的主要设备和元件 智能诱导通风系统的主要设备和元件有:主排风机、诱导风机、喷口、程序控制器、电磁接触器、变压器、污染物质感受器、网线。每台诱导通风机所负担的车库面积约为100m2~130m2,喷嘴的最大旋转角度为36°。诱导风机、喷口、程序控制器、电磁接触器、变压器、污染物质感受器组合为智能诱导器。 2.3设计中应考虑的因素 2.3.1设置主干线:为设置出稳定的诱导空间,需先设置主干线,再设置辅助喷嘴对空气进行搅拌。

SDS系列射流式通风机

SDS系列射流式通风机 1用途SDS系列射流风机规格自Φ630㎜~Φ1600㎜,分单向运转轴流风机和可逆式(双向)运转轴流风机二大类,最大推力达到3500N,对于绝大部分负荷和工况均可选择此类高效、低噪声风机。 SDS系列射流风式通风机采用先进的工艺取得良好的质量保证,风机外壳经过机床旋压翻边成形,叶轮段内壁经金加工,既保证机壳的同轴度和强度,又保证叶片径向间隙,外表经过特殊处理外形美观,防腐性能优良。经公路隧道、铁路隧道、水利大坝工程等用户实际使用证明,该风机各项性能指标及耐腐蚀、可靠性、经济性等技术、质量要求和经济指标完全能适应各类隧道、地铁的使用。 2型号说明 说明: 单项式风机型号为SDS 可逆式风机型号为SDS(R) 例:SDS-6.3-2P-4-18°表示直径为630mm的射流风机,转速2900r/min,4叶片,安装角度18°。 SDS(R)-6.3-4-18°表示直径为630mm的可逆式射流风机,转速2900r/min,4叶片,安装角度18°。

隧道式通风机分为带消声器和不带消声器[进出口加集(散)流器]的两种规格,又分单向射流风机(SDS)和双向射流风机【SDS(R)】两种通风形式。 风机外壳、集(散)流器、消声器、支撑脚采用钢板数控自动焊接和机制成形,叶轮经过热浸镀锌或热镀锌后加干膜环氧树脂处理,以保证强度和耐腐蚀。为满足隧道通风的噪声要求,消声器通常为风机直径的一倍,当噪声要求高时也可以取风机长度的两倍,消声器与风机本体用螺栓固定。 SDS系列射流式通风机配套专用电机,绝缘等级为H级,防腐等级为IP55,电动机引出电缆可接至风机本体机壳上的接线盒,安装方便。 安装维护运行 射流风机的安装质量特别重要,应严格要求埋设预埋件,安装时不得磕碰及损坏风机,不得对风机施焊。 安装风机,除满足隧道限界要求外,还应保证风机轴线与隧道的中心线平行,否则,将增加风机的损失。 射流风机启动时,为减少对电网的冲击,应逐台启动,即上一台风机达到额定转速后,再接通下一台风机的电源。如直接启动一般间隔120秒。 射流风机正风与反风换向时,应待叶轮完全停止,再接通电源。 风机无须特殊的维护保养工作,为了保持风机清洁,可根据污染情况,定期擦拭风机外表面。

风机工作原理

风机工作原理 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

风机是依靠输入的机械能,提高气体压力从而引导气体流动的机械,它是一种从动的流体机械。风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 风机根据气流进入叶轮后的流动方向分为:轴流式风机、离心式风机和斜流(混流)式风机。 1.离心风机 气流进入旋转的叶片通道,在离心力作用下气体被压缩并沿着半径方向流动。 离心风机(图1) 离心风机是根据动能转换为势能的原理,利用高速旋转的叶轮将气体加速,然后减速、改变流向,使动能转换成势能(压力)。在单级离心风机中,气体从轴向进入叶轮,气体流经叶轮时改变成径向,然后进入扩压器。在扩压器中,气体改变了流动方向造成减速,这种减速作用将动能转换成压力能。压力增高主要发生在叶轮中,其次发生在扩压过程。在多级离心风机中,用回流器使气流进入下一叶轮,产生更高压力。 2.轴流风机 气流轴向进入风机叶轮后,在旋转叶片的流道中沿着轴线方向流动的风机。相对于离心风机,轴流风机具有流量大、体积小、压头低的特点,用于有灰尘和腐蚀性气体场合时需注意。

轴流风机(图2) 当叶轮旋转时,气体从进风口轴向进入叶轮,受到叶轮上叶片的推挤而使气体的能量升高,然后流入导叶。导叶将偏转气流变为轴向流动,同时将气体导入扩压管,进一步将气体动能转换为压力能,最后引入工作管路。 3.斜流式(混流式)风机 在风机的叶轮中,气流的方向处于轴流式之间,近似沿锥流动,故可称为斜流式(混流式)风机。这种风机的压力系数比轴流式风机高,而流量系数比离心式风机高。

泵与风机的部件结构

泵的部件结构 一、离心泵的主要部件 (一心泵的主要部件 尽管离心泵的类型繁多,但由于作用原理基本相同,因而它们的主要部件大体类同。现在分别介绍如下: 出液口 叶以挡水圈 養位套泵轴 轴承盖 B型离心泵分解动画 1、叶轮(imp eller) 叶轮是将原动机输入的机械能传递给液体,提高液体能量的核心部件。叶轮有开式(open impeller)、半开式(semi-open impeller) 及闭式叶轮(closed impeller) 三种,如图所示。开式叶轮没有前盘和后盘而只有叶片,多用于输送含有杂质的液体,如污水泵的叶轮就是采用开式叶轮的。半开式叶轮只设后盘。闭式叶轮既有前盘也有后盘。清水泵的叶轮都是闭式叶轮。离心式泵的叶轮都采用后向叶型。(左:开式叶轮;中:半开式;右:全封闭)

2、轴和轴承(shaftbearing) 轴是传递扭矩的主要部件。轴径按强度、刚度及临界转速定。中小型泵刚度和临 界转速确定多采用水平轴,叶轮滑配在轴上,叶轮间距离用轴套定位。近代大型 泵则采用阶梯轴,不等孔径的叶轮用热套法装在轴上,并利用渐开线花键代替过 去的短 键。此种方法,叶轮与轴之间没有间隙,不致使轴间窜水和冲刷,但拆装 困难。 叶轮的运行方式:(以开式为例) 敞式叶址

轴承一般包括两种形式:滑动轴承(Sleeve bearing)和滚动轴承(Ball bearing)。滑动轴承用油润滑。一种润滑系统包括一个贮油池和一个油环,后者在轴转动时在轴表面形成一个油层使油和油层不直接接触。另一种系统就是利用浸满油的填料包来润滑。大功率的泵通常要用专门的油泵来给轴承送油。(如图所示)。 滚动轴承通常用冷冻油润滑,有些电机轴承是密封而不能获得润滑的。滚动轴承通常用于小型泵。较大型泵可能即有滑动轴承又有滚动轴承。而滑动轴承由于运行噪音低而被推荐用于大型泵。

诱导射流设备在地铁通风中的应用

诱导射流设备在地铁通风中的应用 郑晋丽 (上海市隧道工程轨道交通设计研究院,200070,上海//高级工程师) 摘 要 地铁车站与连接车站的区间形成一个四通八达的网络,气流流向非常复杂。要想在事故区间形成有效通风,单靠设在车站或风井内的大型隧道风机往往达不到通风效果。此时,若能适时采用诱导射流设备,往往能起到事半功倍的效果。结合地铁通风设计,介绍了射流风机和诱导风机系统这两种常用的诱导射流设备的特点、局限性,以及诱导射流设备的选用,探讨诱导射流设备在地铁中的应用。关键词 地铁,隧道通风,射流风机,诱导风机系统中图分类号 U 231+.5 The Application of Impulse F an System in Metro V entilation Zheng Jinli Abstract Mechanical ventilation systems are generally ar 2ranged near stations to ensure appropriate temperature or air ve 2locity in subway system.Since stations and tunnels of subway connect with each other and form a network rediating to all di 2rections ,the air flow is very complex.Impulse fan and jet fan ,with the capability to produce longitudinal airflows ,have an ad 2vantage over conventional mechanical system ,and therefore a better control of tunnel airflows can be achieved by using im 2pulse fan and jet fan.This paper mainly discusses the application of impulse fan and jet fan in subway system. K ey w ords subway ,tannel ventilation ,jet fan ,impulse fan system Author ’s address Shanghai Tunnel Engineering &Rail Tran 2sit Design and Research Institute ,200070,Shanghai ,China 1 诱导射流设备的应用背景 地铁通常由若干个车站以及与车站相连的区间 构成,上、下行区间通过车站、区间之间的联络通道 或区间配线互相连通,构成一个复杂的气流流通网络。地铁的这种网络结构,使其系统的通风与普通建筑通风有很大的不同,通风设计的难度也较高。目前,通常的设计是结合车站在区间隧道的两端设置隧道风机系统,为区间隧道事故或通风时服务。图1为一典型的由2站3区间构成的地铁气流通道网络图。 区间事故时,向滞留列车区间提供一定的通风量是地铁隧道通风系统的重要任务。一般列车阻塞在区间时,要保证列车空调的正常运行,而区间火灾时则需控制烟气流向。通常6节编组的列车总长达140m 。当一列车滞留在区间时,该区间140m 长 度受列车阻挡,阻挡面积约占隧道横断面积的40%~50%,大大增加了区间阻力。也正是由于列车的阻挡,彻底改变了地下局部通风网络的阻力分布,从而极大地改变了机械通风时气流在网络中的分配,使需要加强通风的区段得不到有效的风,通风的效率非常低,而非控制区域却气流量较大。 图2为空区间时,机械通风的风量分布状况。图3为列车阻滞在区间时机械通风风量分布状况。若想使阻滞区间通过一定风量(如不小于40m 3/s 的风量),通常有3种方案: (1)加大风机的风量 该方案不改变风机风量的分配比例,仅通过增加风机的绝对风量来增加阻滞区间的通风量,达到通风目的。采用该方案理论上可行, 但通常要求风 图1 典型地铁气流通道网络图 ? 04?  城市轨道交通研究2005年

离心风机的选型与设计

摘要 离心式通风机的设计包括气动设计计算,结构设计和强度计算等内容。离心式通风机 的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。 而理论设讲方法用于设计新系列的通风机。本文在了解离心通风机的基本组成,工作原理以 及设计的一般方法的基础上,设计了一种离心通风机。 关键字:离心式通风机工作原理设计方法 ABSTRACT The design of Centrifugal fan includes the calculation of aerodynamic and the structure etc. The aerodynamic design of Centrifugal fan has two kinds of methods: one is the likeness designs, the other is theoretical designs. Based on above, this article designed a Centrifugal fan based on above. Key words: Centrifugal fan; working principle; design method

1.引言…………………………………………………………………… .(1) 2.离心式通风机的结构及原理 (3) 2.1离心式风机的基本组成 (3) 2.2离心式风机的原理 (3) 2.3离心式风机的主要结构参数 (4) 2.4离心式风机的传动方式 (5) 3离心风机的选型的一般步骤 (5) 4.离心式通风机的设计 (5) 4.1通风机设计的要求 (5) 4.2设计步骤 (6) 4.2.1叶轮尺寸的决定 (6) 4.2.2离心通风机的进气装置 (13) 4.2.3蜗壳设计 (14) 4.2.4参数计算 (20) 4.3离心风机设计时几个重要方案的选择 (24) 5.结论 (25) 附录 (25)

SDS系列射流式通风机

SDS系列射流式通风机 1用途 SDS系列射流风机规格自Φ630㎜~Φ1600㎜,分单向运转轴流风机和可逆式(双向)运转轴流风机二大类,最大推力达到3500N,对于绝大部分负荷和工况均可选择此类高效、低噪声风机。 SDS系列射流风式通风机采用先进的工艺取得良好的质量保证,风机外壳经过机床旋压翻边成形,叶轮段内壁经金加工,既保证机壳的同轴度和强度,又保证叶片径向间隙,外表经过特殊处理外形美观,防腐性能优良。经公路隧道、铁路隧道、水利大坝工程等用户实际使用证明,该风机各项性能指标及耐腐蚀、可靠性、经济性等技术、质量要求和经济指标完全能适应各类隧道、地铁的使用。 2型号说明 说明: 单项式风机型号为SDS 可逆式风机型号为SDS(R) 例:°表示直径为630mm的射流风机,转速2900r/min,4叶片,安装角度18°。 SDS(R)-6.3-4-18°表示直径为630mm的可逆式射流风机,转速2900r/min,4叶片,安装角度18°。

隧道式通风机分为带消声器和不带消声器[进出口加集(散)流器]的两种规格,又分单向射流风机(SDS)和双向射流风机【SDS(R)】两种通风形式。 风机外壳、集(散)流器、消声器、支撑脚采用钢板数控自动焊接和机制成形,叶轮经过热浸镀锌或热镀锌后加干膜环氧树脂处理,以保证强度和耐腐蚀。为满足隧道通风的噪声要求,消声器通常为风机直径的一倍,当噪声要求高时也可以取风机长度的两倍,消声器与风机本体用螺栓固定。 SDS系列射流式通风机配套专用电机,绝缘等级为H级,防腐等级为IP55,电动机引出电缆可接至风机本体机壳上的接线盒,安装方便。 安装维护运行 射流风机的安装质量特别重要,应严格要求埋设预埋件,安装时不得磕碰及损坏风机,不得对风机施焊。 安装风机,除满足隧道限界要求外,还应保证风机轴线与隧道的中心线平行,否则,将增加风机的损失。 射流风机启动时,为减少对电网的冲击,应逐台启动,即上一台风机达到额定转速后,再接通下一台风机的电源。如直接启动一般间隔120秒。 射流风机正风与反风换向时,应待叶轮完全停止,再接通电源。 风机无须特殊的维护保养工作,为了保持风机清洁,可根据污染情况,定期擦拭风机外表面。

风机叶片原理和结构

风机叶片得原理、结构与运行维护 潘东浩 第一章风机叶片报涉及得原理 第一节风力机获得得能量 一.气流得动能 E=mv2=ρSv3 式中m—--———气体得质量 S-—-—--—风轮得扫风面积,单位为m2 v--—---—气体得速度,单位就是m/s ρ------空气密度,单位就是kg/m3 E—-———-—-—-气体得动能,单位就是W 二、风力机实际获得得轴功率 P=ρSv3C p 式中P--—----—风力机实际获得得轴功率,单位为W; ρ-———-—空气密度,单位为kg/m3; S————-—--风轮得扫风面积,单位为m2; v------——上游风速,单位为m/s、 Cp -—----—-—风能利用系数 三。风机从风能中获得得能量就是有限得,风机得理论最大效率 η≈0。593 即为贝兹(Betz)理论得极限值。 第二节叶片得受力分析 一。作用在桨叶上得气动力 上图就是风轮叶片剖面叶素不考虑诱导 速度情况下得受力分析。在叶片局部剖面 上,W就是来流速度V与局部线速度U得矢量 与。速度W在叶片局部剖面上产生升力dL 与阻力dD,通过把dL与dD分解到平行与垂直风轮旋转平面上,即为风轮得轴向推力dFn与旋转切向力dFt。轴向推力作用在风力发电机组塔架上,旋转切向力产生有用得旋转力矩,驱动风轮转动。 上图中得几何关系式如下: Φ=θ+α

dFn=dDsinΦ+dLcosΦ dFt=dLsinΦ-dDcosΦ dM=rdFt=r(dLsinΦ-dDcosΦ) 其中,Φ为相对速度W与局部线速度U(旋转平面)得夹角,称为倾斜角; θ为弦线与局部线速度U(旋转平面)得夹角,称为安装角或节距角; α为弦线与相对速度W得夹角,称为攻角。 二。桨叶角度得调整(安装角)对功率得影响。(定桨距) 改变桨叶节距角得设定会影响额定功率得输出,根据定桨距风力机得特点,应当尽量提高低风速时得功率系数与考虑高风速时得失速性能、定桨距风力发电机组在额定风速以下运行时,在低风速区,不同得节距角所对应得功率曲线几乎就是重合得。但在高风速区,节距角得变化,对其最大输出功率(额定功率点)得影响就是十分明显得。事实上,调整桨叶得节距角,只就是改变了桨叶对气流得失速点。根据实验结果,节距角越小,气流对桨叶得失速点越高,其最大输出功率也越高。这就就是定桨距风力机可以在不同得空气密度下调整桨叶安装角得根据、 不同安装角得功率曲线如下图所示: 第三节 叶片得基本概念 1、叶片长度:叶片径向方向上得最大长度,如图1所示。 图1 叶片长度 2、叶片面积

射流风机使用说明

安全规则------------------------------------------------------------- 1 1.概述 -------------------------------------------------------------- 1 2.风机整套组件 ------------------------------------------------------ 2 3.风机供货状态 ------------------------------------------------------ 2 4.风机吊装 ---------------------------------------------------------- 2 5.风机储存 ---------------------------------------------------------- 3 6.长期保存的风机安装前须知 ------------------------------------------ 3 7.风机整机安装 ------------------------------------------------------ 4 8.风机调试说明 ------------------------------------------------------ 7 9.风机运行说明 ------------------------------------------------------ 7 10.风机运行时常见的故障分析 ----------------------------------------- 8 11.风机运行时故障的排除方法 ----------------------------------------- 8 12.风机维护、保养说明 ----------------------------------------------- 9 附录1固定螺栓的负载确定计算说-------------------------------------- 10 附录2风机改变(调整)叶片角度的方法11

离心通风机叶轮的设计方法简述

离心通风机叶轮的设计方法简述 如何设计高效、工艺简单的离心通风机一直是科研人员研究的主要问题,设计高效叶轮叶片是解决这一问题的主要途径。 叶轮是风机的核心气动部件,叶轮内部流诱导风机动的好坏直接决定着整机的性能和效率。因此国内外学者为了了解叶轮内部的真实流动状况,改进叶轮设计以提高叶轮的性能和效率,作了大量的工作。 为了设计出高效的离心叶轮, 科研工作者们从各种角度来研究气体在叶轮内的流动规律, 寻求最佳的叶轮设计方法。最早使用的是一元设计方法[1] ,通过大量的统计数据和一定的理论分析,获得离心通风机各个关键截面气动和结构参数的选择规律。在一元方法使用的初期,可以简单地通过对风机各个关键截面的平均速度计算,确定离心叶轮和蜗壳的关键参数,而且一般叶片型线采用简单的单圆弧成型。这种方法非常粗糙,设计的风机性能需要设计人员有非常丰富的经验,有时可以获得性能不错的风机,但是,大部分情况下,设计的通风机效率低下。为了改进,研究人员对叶轮轮盖的子午面型线采用过流断面的概念进行设计[2-3] ,如此设计出来的离心叶轮的轮盖为两段或多段圆弧,这种方法设计的叶轮虽然比前一种一元设计方法效率略有提高,但是该方法设计的风机轮盖加工难度大,成本高,很难用于大型风机和非标风机的生产。另外一个重要方面就是改进叶片设计,对于二元叶片的改进方法主要为采用等减速方法和等扩张度方法等[4] ,还有采用给定叶轮内相对速度W 沿平均流线m 分布[5] 的方法。等减速方法从损失的角度考虑,气流相对速度在叶轮流道内的流动过程中以同一速率均匀变化,能减少流动损失,进而提高叶轮效率;等扩张度方法是为了避免局部地区过大的扩张角而提出的方法。给定的叶轮内相对速度W 沿平均流线m 的分布是柜式风机通过控制相对平均流速沿流线m 的变化规律,通过简单几何关系,就可以得到叶片型线沿半径的分布。以上方法虽然简单,但也需要比较复杂的数值计算。 随着数值计算以及电子计算机的高速发展,可以采用更加复杂的方法设计离心通风机叶片。苗水淼等运用“全可控涡”概念[6] , 建立了一种采用流线曲率法在叶轮流道的子午面上进行叶轮设计的设计方法, 该方法目前已经推广至工程界, 并已经取得了显著效果[7] 。但是此方法中决定叶轮设计成功与否的关键, 即如何给出子午流面上叶片涡的合理分布。这一方面需要具有较丰富的设计经验;另一方面也需要在设计过程中对设计结果不断改进以消防风机符合叶片涡的分布规律, 以期最终设计出高效率的叶轮机械。对于整个子午面上可控涡的确定,可以采用rCu 沿轮盘、轮盖的给定,可以通过线性插值的方法确定rCu 在整个子午面上的分布[8-9] ,也可以通过经验公式确定可控涡的分布[10] ,也有利用给定叶片载荷法[11] 设计离心通风机的叶片。以上方法都是采用流线曲率法,设计出的是三元离心叶片,对于二元离心通风机叶片还不能直接应用。但数值计算显示,离心通风机的二元叶片内部流动的结构是更复杂的三维流动。因此,如何利用三维流场计算方法进一步来设计高效二元离心叶轮是提高离心通风机设计技术的关键。 随着计算技术的不断发展,三维粘性流场计算获得了非常大的进步,据此,有一些研究

射流曝气技术简介

射流曝气技术简介 1. 1射流器的结构 射流曝气系统的核心设备是射流器。射流器是利用射流紊动扩散作用来传递能量和质量的流体机械和混合反应设备, 它由喷嘴、吸气室、喉管及扩散管等部件构成[ 2 ] 。图1 是一个典型的单喷嘴射流器结构,也是废水生化处理中常用的曝气用射流器。 图1射流器结构 1. 喷嘴; 2. 吸气室; 3. 喉管; 4. 扩散管; 5. 尾管 1. 2射流曝气的基本原理 射流器采用文丘里喷嘴, 工作水泵出水通过射流器的喷嘴,随着喷嘴直径变小,液体以极高的速度从喷嘴喷射出来,高速流动的液体穿过吸气室进入喉管,在喉管形成局部真空,通过导气管吸入(或压入)的大量空气进入喉管后, 在喷水压力的作用下被分割成大量微小的气泡, 与水形成混合体。气液混合体通过扩散管向外排出, 其速度减慢, 压力增强,形成强力喷射流,对废水搅拌充氧。气泡经多次切割,喷射扰动后, 变成无数的细小气泡, 其表面积很大,使空气中的氧更易快速溶解于水中。由于气泡直径小,上升速度缓慢,从而延长了大气中氧气溶解于水的时间,促使废水和氧气充分混合接触,氧化废水中的还原性物质,杀灭大部分还原菌和其它一些厌氧菌,进而达到处理废水的目的[ 3 ] 。 1. 3废水生物处理中射流曝气的独特作用 射流曝气作为一种曝气充氧方法, 它的作用不仅仅是作为一种气泡扩散充氧装置(如鼓风曝气中的各种空气扩散装置) , 也不能单纯看作是一种机械曝气设备,而是介于两者之间,利用气泡扩散和水力剪切两个作用达到曝气和混合的目的[ 4 ] 。实际上,在活性污泥法废水处理系统中,由于通常采用废水与活性污泥的混合物作为工作介质, 当吸入(或压入)空气后在射流器的喉管内发生相当剧烈的混合作用。这一混合作用一方面进行着气- 液- 固(活性污泥) 之间的紊动扩散与能量交换及气-液- 固三相间的转移过程, 还有更加突出的是发生在被高速剧烈紊动“切割”得非常细微的气泡、活性污泥的微小颗粒以及废水(液相)中有机物这三者之间的生物学上的作用。因此, 要评价射流曝气用于活性污泥法的作用,如果仅仅作为曝气充氧装置来理解就没有充分反映这一综合过程的全部机理。 这一综合过程的机理应当理解为在活性污泥微生物存在的条件下,发生在射流器喉管部分的高速紊动过程中的生物学特性与三相间物理力学特性的综合过程。气体经高速水流吸入后经喉管压缩,气、液相剧烈混合,此时气泡刚形成, 吸氧率高; 气泡进一步在管道中受剧烈揽动,粉碎成细微气泡, 使气、液接触面积增大,也提高吸氧率。尤其是当工作介质为废水与活性污泥混合物时, 喉管的紊动搅拌作用不只限于微小气泡对废水的充氧作用, 同时还发生气- 固、液- 固间等多方面的作用,特别是当活性污泥被“切割”成非常细小的颗粒,无疑将大大增加活性污泥的表面更新率与吸附表面积,从而使活性污泥的细小絮状体能与气泡中的氧及废水中的有机物有充分的接触吸附作用, 使吸附能力大大提高。这是其它类型曝气设备所不能达到的[ 4 ] 。 1. 4射流曝气技术的主要性能特点

几种鼓风机的工作原理比较

鼓风机(罗茨、回转、离心、轴流) 风机分类大致如下: 从几种鼓风机的工作原理比较: 1、罗茨风机、罗茨鼓风机的工作原理 罗茨风机为定容积式风机,输送的风量与转数成比例,三叶型叶轮每转动一次由2个叶轮进行3次吸、排气,与二叶型相比,气体脉动变少,负荷变化小,机械强度高,噪声低,振动也小。在2根平相行的轴上设有2个三叶型叶轮,轮与椭圆形机箱内孔面及各叶轮三者之间始终保持微小的间隙,由于叶轮互为反方向匀速旋转,使箱体和叶轮所包围着的一定量的气体由吸入的一侧输送到排出的一侧。各支叶轮始终由同步齿轮保持正确的相位,不会出现互相碰触现象,因而可以高速化,不需要内部润滑,而且结构简单,运转平稳,性能稳定,适应多种用途,已运用于广泛的领域。 2、离心式鼓风机的工作原理(同离心泵) 当电机转动带动风机叶轮旋转时,叶轮中叶片之间的气体也跟着旋转,并在离心力的作用下甩出这些气体,气体流速增大,使气体在流动中把动能转换为静压能,然后随着流体的增压,使静压能又转换为速度能,通过排气口排出气体,而在叶轮中间形成了一定的负压,由于入口呈负压,使外界气体在大气压的作用下立即补入,在叶轮连续旋转作用下不断排出和补入气体,从而达到连续鼓风的目的。同等功率下,风压和风量一般呈反比。同等功率下,风压高,风量就会相对低,而风量大,风压就会低些,这样才能充分利用电机的功效率。 3、回转式鼓风机结构与工作原理: 鼓风机压力范围:0.1-0.5kgf/cm2 回转式鼓风机结构精巧,主要由下列六部分组成:电机、空气过渡器、鼓风机本体、空气室、底座(兼油箱)、滴油嘴。鼓风机靠汽缸内偏置的转子偏心运转,并使转子槽中的4支叶片之间的容积变化

射流风机技术介绍

射 流 风 机 技 术 介 绍 南海市南方风机厂

概述 射流风机是一种特殊的轴流风机,主要用于公路、铁路及地铁等隧道的纵向通风系统中,提供全部的推力;也可用于半横向通风系统或横向通风系统中的敏感部位,如隧道的进、出口,起诱导气流或排烟等作用。射流风机是一种开放进、出口的特殊轴流风机,在这种工作条件下风机被设计为具有最高效率(大于运行于具有一定静压的工作点)。射流风机对空气的作用力,即通常所说的——推力,与风机支承受到的力“等大、反向”。 风机一般悬挂在隧道顶部或两侧,不占用交通面积,不需另外修建风道,土建造价低;风机容易安装,运行、维护简单,是一种很经济的通风方式。 一. 射流风机的原理 射流风机运行时,将隧道内的一部分空气从风机的一端吸入,经叶轮加速后,由风机的另一端高速射出。这部分带有较高动能的高速气流将能量传送给隧道内的其它气体,量传送给隧道内力的压气,从产推动隧道内的空气顺风机喷射气流方向流动。当流动速度衰减到一定程度时,下一组风机继续工作。这样,就实现了从隧道的一端吸入新鲜空气,从另一端排出污浊空气的目的。 图一为隧道内射流风机的工作原理图(为清晰产夸大),图中: ——隧道内的气流速度 V 1 ——射流风机的出口气流速度 V 2 ——隧道内绕过风机外的气流速度 V 3

图一.隧道内射流风机的工作原理图 图中,静压线和全压线保持一个斜率,这个斜率(压力降梯度)与保持送给隧道空气流动的摩擦内力的梯度相一致。 由图可知:在射流风机安装处,V 3及其引起的动压——P V3 肯定小于V 1 及 其引起的动压——P V1 。当隧道内的部分气流被射流风机吸入,只存在较小的能量损失,隧道内的全压 P t(tunnel)通常保持不变。这就意味着隧道内此 处的静压必然要气高。其气高值——ΔP S ,就是隧道内气体压气的第一个有效部分。 图中虚线部分展示了这样一个过程:射流风机喷射出的高速气流与隧道内的气流充分混合,喷射气流的全压转化为隧道内气体全压,推动隧道内气体流动的过程。虚的全压线的降低,表明射流风机出口的能量因风机出口气流的紊流衰减产损失的过程。Pt(fan)是经过风机叶轮的全压气,

相关文档
最新文档