大学物理标准答案第11章

大学物理标准答案第11章
大学物理标准答案第11章

第十一章恒定磁场

11-1两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小

r R B B 、满足( )

(A )r R B B 2=(B )r R B B = (C )r R B B =2(D )r R B B 4=

分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比

2

1

==R r n n r R 因而正确答案为(C ).

11-2一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )

(A )B r 2π2 (B )B r 2

π (C )αB r cos π22

(D )αB r cos π2

题 11-2 图

分析与解作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;

S B ?=m Φ.因而正确答案为(D ).

11-3下列说法正确的是( )

(A )闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B )闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C )磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零

(D )磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).

11-4在图(a)和(b)中各有一半径相同的圆形回路L1、L2,圆周内有电流I1、I2,其分布相同,且均在真空中,但在(b)图中L2回路外有电流I3,P 1、P 2为两圆形回路上的对应点,则( )

(A )?

??=?2

1

L L d d l B l B ,21P P B B =

(B )?

??≠?2

1

L L d d l B l B ,21P P B B =

(C )?

?

?=?2

1

L L d d l B l B ,21P P B B ≠

(D )?

??≠?2

1

L L d d l B l B ,21P P B B ≠

题 11-4 图

分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).

11-5半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1--(B )()r I μr π2/1- (C )r I μr π2/-(D )r μI r π2/

分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).

11-6北京正负电子对撞机的储存环是周长为240m 的近似圆形轨道,当环中电子流强度为8mA 时,在整个环中有多少电子在运行?已知电子的速率接近光速.

分析一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由l

Nec I =,可解出环中的电子数.

解通过分析结果可得环中的电子数

10104?==

ec

Il

N 11-7已知铜的摩尔质量M =63.75g·mol -1

,密度ρ=8.9g · cm

-3

,在铜导线里,假设每一

个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度

26.0A mm m j -=?,求此时铜线内电子的漂移速率v d ;(2)在室温下电子热运动的平均速

率是电子漂移速率v d 的多少倍?

分析一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ可以推算出铜的原子数密度

m ρn /=

根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v =.从而可解得电子的漂移速率v d .

将电子气视为理想气体,根据气体动理论,电子热运动的平均速率

e

m kT

π8=

v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.

解 (1)铜导线单位体积的原子数为

M ρN n A /=

电流密度为j m 时铜线内电子的漂移速率

14A s m 1046.4--??===

e

N M j ne j m m d ρv (2)室温下(T =300K)电子热运动的平均速率与电子漂移速率之比为

81042.2π81?≈=e

d d m kT

v v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.

11-8有两个同轴导体圆柱面,它们的长度均为20m ,内圆柱面的半径为3.0mm ,外圆柱面的半径为9.0mm.若两圆柱面之间有10μA 电流沿径向流过,求通过半径为6.0mm 的圆柱面上的电流密度.

题 11-8 图

分析如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据

恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得

rl

I j π2=

解由分析可知,在半径r =6.0mm 的圆柱面上的电流密度

2m A μ3.13π2-?==

rl

I

j 11-9如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5

T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?

解设赤道电流为I ,则由教材第11-4节例2知,圆电流轴线上北极点的磁感强度

()

R

I

R

R IR B 24202

/322

2

0μμ=

+=

因此赤道上的等效圆电流为

A 1073.12490

?==

μRB

I 由于在地球地磁场的N极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.

题 11-9 图

11-10如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.

题 11-10 图

分析根据叠加原理,点O 的磁感强度可视作由ef 、b e 、fa 三段直线以及ac b 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而b e 、fa 两段直线的延长线通过点O ,由于0Idl r ?=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为

21101π4r l I μB =

,2

2

202π4r

l I μB = 其中l 1、l 2分别是圆弧ac b 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧ac b 、a d b 又构成并联电路,故有

2211l I l I =

将21B B 、叠加可得点O 的磁感强度B . 解由上述分析可知,点O 的合磁感强度

0π4π42

2

20211021=-=

-=r l I μr l I μB B B 11-11如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多

少?

题 11-11 图

分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i

B B 0.

解 (a)长直电流对点O 而言,有0d =?r l I ,因此它在点O 产生的磁场为零,则点O 处

总的磁感强度为1/4圆弧电流所激发,故有

R

I

μB 800=

B 0的方向垂直纸面向外.

(b)将载流导线看作圆电流和长直电流,由叠加原理可得

R

I

μR I μB π22000-

=

B 0的方向垂直纸面向里.

(c )将载流导线看作1/2圆电流和两段半无限长直电流,由叠加原理可得

R

I

μR I μR I μR I μR I μB 4π24π4π4000000+=++=

B 0的方向垂直纸面向外.

11-12载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .

题 11-12 图

分析由教材11-4节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度

R

α

I μB π40=

,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度R I

μB π40=,磁感强度的方向依照右手定则确定.

点O 的磁感强度O B 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加. 解根据磁场的叠加 在图(a)中,

k i k k i B R

I μR I μR I μR I μR I μπ24π4π44000000--=---

= 在图(b)中,

k i k i i B R

I μR I μR I μR I μR I μπ41π14π44π4000000-??? ??+-=---

= 在图(c )中,

k j i B R

I

μR I μR I μπ4π4830000---

= 11-13如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.

题 11-13 图

分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x ,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为

x l x

I

d π2d d 0μ=

?=ΦS B

矩形平面的总磁通量

ΦΦ?=d

解由上述分析可得矩形平面的总磁通量

?=

=Φ2

1

1

2

00ln

π

2d π2d d

d d Il

x l x

I

μμ 11-14已知10mm 2

裸铜线允许通过50A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.

题 11-14 图

分析可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.

解围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有

∑?=?=?I μB 0

πr 2d l B

在导线内r <R ,222

2

ππR

Ir r R I I ==∑,因而 2

02πR

Ir

μB =

在导线外r >R ,

I I =∑,因而

r

I

μB 2π0=

磁感强度分布曲线如图所示.

11-15有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1)r <R 1;(2)R 1<r <R 2;(3)R 2<r <R 3;(4)r >R 3.画出B -r 图线.

题 11-15 图

分析同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,

πr 2d ?=??B l B ,利用安培环路定理∑?=?I μ0

d l B ,可解得各区域的磁感强度.

解由上述分析得 r <R 1

22

1

1ππ1

2πr R μr B =? 2

1

012πR Ir

μB =

R 1<r <R 2

I μr B 022π=?

r

I

μB 2π02=

R 2<r <R 3

()()??

?

???---=?I R R R r I μr B 2

2232203ππ2π 2

2

232

23032πR R r R r I μB --= r >R 3

()02π04=-=?I I μr B

04=B

磁感强度B (r )的分布曲线如图(b).

11-16如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.

题 11-16 图

分析根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而

πr 2d ?=??B l B

依照安培环路定理∑?

=?I μ0

d l B ,可以解得螺线管内磁感强度的分布.

解依照上述分析,有

∑=?I μr B 02π

r <R 1

02π1=?r B 01=B

R 2>r >R 1

NI μr B 022π=?

r

NI

μB 2π02=

r >R 2

02π3=?r B 03=B

在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<-和R 2,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()122

1

R R R +=

,则环内的磁感强度近似为 R

NI

μB 2π0≈

11-17电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所

示剖面的磁通量.

题 11-17 图

分析由题11-14可得导线内部距轴线为r 处的磁感强度

()2

02πR Ir

μr B =

在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ?

=r Φ来求解.沿轴线方

向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量

?=S

r B Φd

解由分析可得单位长度导线内的磁通量

d 2π00

2

0I

μr R Ir μΦR

==?

11-18已知地面上空某处地磁场的磁感强度4

0.410T B -=?,方向向北.若宇宙射线中有一速率7

1

5.010m s -=?v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2)洛伦兹力的大小,并与该质子受到的万有引力相比较.

题 11-18 图

解 (1)依照B F ?=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示. (2)因B ⊥v ,质子所受的洛伦兹力

N 102.316-?==B F v q L

在地球表面质子所受的万有引力

N 1064.126p -?==g m G

因而,有10

1095.1/?=G F L ,即质子所受的洛伦兹力远大于重力. 11-19霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两

侧分别安装电极并加以磁场.设血管直径为d =2.0mm ,磁场为B =0.080T ,毫伏表测出血管上下两端的电压为U H =0.10mV ,血流的流速为多大?

题 11-19 图

分析血流稳定时,有

H qE B q =v

由上式可以解得血流的速度. 解依照分析

m/s 63.0===

dB

U B E H

H v 11-20带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5cm 的圆弧径迹,测得磁感强度为0.20T,求此质子的动量和动能.

解根据带电粒子回转半径与粒子运动速率的关系有

m /s kg 1012.121??===-ReB m p v

keV 35.222==m

p E k

11-21从太阳射来的速度为0.80×108

m /s的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0×10-7

T,此电子回转轨道半径为多大?若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0×10-5

T,其轨道半径又为多少? 解由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径

m 101.131

1?==

eB m R v

地磁北极附近的回转半径

m 232

2==eB m R v

11-22如图(a)所示,一根长直导线载有电流I 1=30A ,矩形回路载有电流I 2=20A .试计算作用在回路上的合力.已知d =1.0cm , b =8.0cm ,l =0.12m .

题 11-22图

分析矩形上、下两段导线受安培力F 1和F 2的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3和F 4大小不同,且方向相反,因此线框所受的力为这两个力的合力.

解由分析可知,线框所受总的安培力F 为左、右两边安培力F 3和F 4之矢量和,如图(b)所示,它们的大小分别为

d

l

I I μF π22103=

()

b d l

I I μF +=

π22104

故合力的大小为

()

N 1028.1π2π2321021043-?=+-=

-=b d l

I I μd l I I μF F F 合力的方向朝左,指向直导线.

11-23一直流变电站将电压为500k V 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10

-11

F·m -1

,若导线间的静电力与安培力正好

抵消.求:(1)通过输电线的电流;(2)输送的功率.

分析当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度d

I

μB π20=

,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度d

ελ

E 0π2=

,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即

0=+E B F F

从中可解得输电线中的电流.

解 (1)由分析知单位长度导线所受的安培力和静电力分别为

d

I μBI F B π22

0==

d

εU C λE F E 02

2π2=

= 由0=+E B

F F 可得

d

εU C d I μ02

220π2π2=

解得

A 105.430

0?==

μεCU

I (2)输出功率

W 1025.29?==IU N

11-24在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为

m 1029.5110-?=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634??-

分析根据电子绕核运动的角动量

π

20h a m L =

=v

可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流

v

/π20a e T e i ==

在圆心处,即质子所在处的磁感强度为

02a i μB =

解由分析可得,电子绕核运动的速率

π2ma h

=

v

其等效圆电流

20

20π4/π2ma he

v a e i ==

该圆电流在圆心处产生的磁感强度

T 5.12π8220

2000===

ma he

μa i μB 11-25如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1)空间各区域内的磁感强度和磁化强度;*(2)磁介质表面的磁化电流.

题 11-25 图

分析电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有

??=?r H d π2l H ,利用安培环路定理

?∑=?f

I

d l H

求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再

由磁化电流的电流面密度与磁化强度的关系求出磁化电流.

解 (1)取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有

∑=f

π2I r H

对r <R 1

2

2

1

f ππr R I I =

∑ 得

2

1

12πR Ir

H =

忽略导体的磁化(即导体相对磁导率μr =1),有

01=M ,2

1012πR Ir

μB =

对R 2>r >R 1

I I

=∑f

r

I H 2π2=

填充的磁介质相对磁导率为μr ,有

()

r I μM r 2π12-=,r

I μμB r 2π02= 对R 3>r >R 2

(

)

()

2

223

2

23ππR r R R I I I

f

-?--

=∑ 得

(

)

(

)

2

2

232

2332πR R r r R I H --= 同样忽略导体的磁化,有

03=M ,()()

2

2

232

23032πR R r r R I μB --= 对r >R 3

0=-=∑I I I

f

04=H ,04=M ,04=B

(2)由r M I s 2π?=,磁介质内、外表面磁化电流的大小为

()()I μR R M I r si 12π112-=?= ()()I μR R M I r se 12π222-=?=

对抗磁质(1r μ<),在磁介质内表面(r =R 1),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c )所示.

大学物理实验(最终)

大学物理实验 一、万用表的使用 1、使用万用表欧姆档测电阻时,两只手握住笔的金属部分在与电阻两端接触进行测量时,对结果有无影响?为什么? 有影响,会使测量值偏小 因为人体本身有电阻,两只手握住笔的金属部分在与电阻两端接触相当于并联 2、用万用表测电阻时,通过电阻的电流是由什么电源供给的?万用表的红表笔和黑表笔哪一个电位高? 电源内部电路提供(万用表的内部电池供给的) 黑笔 3、用万用表欧姆档判别晶体二极管的管脚极性时,若两测量得到阻值都很小或都很大,说明了什么? 两测量得到阻值都很小,说明二极管已被击穿损坏 两测量得到阻值都很大,说明二极管内部断路 4、能否用万用表检查一回路中电阻值?为什么? 不能,因为通电电路中测量电阻值会造成万用表的损坏。

【数据处理】(要求写出计算过程) 1.1R = Ω 2.2R = Ω 3.U = V 21 1 ()(1)k U i i U U k σ==-=-∑ V = =2 ?仪最小分度值 V 22U U U σ=+?仪= V U U U U =±=( ± )V 100%U U U E U = ?= % 二、用模拟法测绘静电场 1、出现下列情况时,所画的等势线和电力线有无变化?(电源电压提高1倍;导电媒质的导电率不变,但厚度不均匀;电极边缘与导电媒质接触不良;导电媒质导电率不均匀) 有,电势线距离变小,电力线彼此密集 无任何变化 无法测出电压,画不出等势线、电力线 等势线、电力线会变形失真 2、将电极之间电压正负接反,所作的等势线和电力线是否有变化? 等势线和电力线形状基本不变,电力线方向相反

3、此实验中,若以纯净水代替自来水,会有怎样的结果? 实验无法做,因为纯净水不导电 4、本实验除了用电压表法外还可以用检流计法(电桥法)来测量电势。试设计测量电路。两种方法各有何优缺点? 电压表法优点:简单 缺点:误差大 电桥法优点:测量精度高 缺点:复杂 5、能否根据实验测出的等势线计算场中某点的电场强度?为什么? 不能,因为等势线是定性的线条,相邻等势线的间隔表示的电势差相等,等势线间隔小的地方电场线强,电场强度大只能说明,无法定量表达 三、迈克尔逊干涉仪 1、为什么有些地方条纹粗,有些地方条纹细?能指出什么地方条纹最粗吗? 相邻条纹间距与两平面镜到分光板近距离之差d成反比,与各条纹对应干涉光束和中心轴夹角成反比。d越小、条纹间距越大,条纹分布越疏,条纹越粗。当d一定时,θ越小,条纹间距越大,即离圆心近处条纹最粗 2、光屏上显现等倾花纹后,改变镜面M1的位置,干涉花纹的中心位置发生位移,分析产生此种现象的原因。 光镜面M1的位置被改变,M1与M2的垂直状态发生改变,M1与M2之间有一定的夹角,从而让干涉花纹的中心位置发生移动。

大学物理3第11章习题分析与解答

习 题 解 答 11-1 在双缝干涉实验中,若单色光源S 到两缝21S S 、距离相等,则观察屏上中央明纹位于图中O 处。现将光源S 向下移动到示意图中的S '位置,则( ) (A )中央明条纹也向下移动,且条纹间距不变 (B )中央明条纹向上移动,且条纹间距不变 (C )中央明条纹向下移动,且条纹间距增大 (D )中央明条纹向上移动,且条纹间距增大 解 由S 发出的光到达21S S 、的光成相等,它们传到屏上中央O 处,光程差 0=?,形成明纹,当光源由S 向下移动S '时,由S '到达21S S 、的两束光产生了 光程差,为了保持原中央明纹处的光程差为0,它将上移到图中O '处,使得由S '沿21S S 、传到O '处的两束光的光程差仍为0.而屏上各级明纹位置只是向上平移,因此条纹间距不变。故选B 11-2 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如附图所示,若薄膜厚度为e , 且n 1<n 2,n 3<n 2, λ1为入射光在n 1中的波长,则两束反射光的光程为( ) (A )e n 22 (B )1 1222n e n λ- (C )2 2112λn e n - (D )2 2122λn e n - 习题11-2图 解 由于n 1〈n 2,n 3〈n 2,因此光在表面上的反射光有半波损失,下表面的反射光没有半波损失,所以他们的光程差2 22λ-=?e n ,这里λ是光在真空中的波 3 n S S ’ O O ’

长,与1λ的关系是11λλn =。 故选C 11-3 如图所示,两平面玻璃板构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将发生( )变化 (A )干涉条纹间距增大,并向O 方向移动 (B )干涉条纹间距减小,并向B 方向移动 (C )干涉条纹间距减小,并向O 方向移动 (D )干涉条纹间距增大,并向B 方向移动 解 空气劈尖干涉条纹间距θ λ sin 2n l = ?,劈尖干涉又称为等厚干涉,即k 相同的同一级条纹,无论是明纹还是暗纹,都出现在厚度相同的地方. 当A 板与B 板的夹角θ增大时,△l变小. 和原厚度相同的地方向顶角方向移动,所以干涉条纹向O 方向移动。 故选C 11-4 如图所示的三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为( ) (A )全明 (B )全暗 (C )右半部明,左半部暗 (D )右半部暗,左半部明 习题11-4图 解 牛顿环的明暗纹条件(光线垂直入射0=i ) ??? ??? ? ???=? ??=+=?) (,2,1,0,,2,1,0,2)12(明纹(暗纹)k k k k λλ 在接触点P 处的厚度为零,光经劈尖空气层的上下表面反射后的光程差主要由此处是否有半波损失决定. 当光从光疏介质(折射率较小的介质)射向光密的介质(折射率较大的介质)时,反射光有半波损失. 结合本题的条件可知右半部有一次半波损失,所以光程差是2 λ ,右半部暗,左半部有二次半波损失,光程差是零,左半部明。 故选D .162 .A θ B O 习题11-3图

大学物理稳恒磁场习题及答案

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ =v v ,单位是:安培每平方米(A/m 2) 。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S v 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + = 。 4、一磁场的磁感强度为 (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ??v v ?=____μ0I __; 对环路b :d B l ??v v ?=___0____; 对环路c :d B l ??v v ? =__2μ0I __。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B v 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2?r 2B B.??r 2B C. 0 D. 无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. B. C. D. ( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外 C .方向在环形分路所在平面内,且指向a D .为零

大学物理实验答案.doc

实验7 分光计的调整与使用 ★1、本实验所用分光计测量角度的精度是多少?仪器为什么设两个游标?如何测量望远镜转过的角度? 本实验所用分光计测量角度的精度是:1'。为了消除因刻度盘和游标盘不共轴所引起的偏心误差,所以仪器设两个游标。望远镜从位置Ⅰ到位置Ⅱ所转过的角度为2 )_()('1'212?????+-= ,注:如越过刻度零点,则必须按式)(120360??--来计算望远镜的转角。 ★2、假设望远镜光轴已垂直于仪器转轴,而平面镜反射面和仪器转轴成一角度β,则反射的小十字像和平面镜转过1800后反射的小十字像的位置应是怎样的?此时应如何调节?试画出光路图。 反射的小十字像和平面镜转过180o 后反射的小十字像的位置是一上一下,此时应该载物台下螺钉,直到两镜面反射的十字像等高,才表明载物台已调好。光路图如下: ★3、对分光计的调节要求是什么?如何判断调节达到要求?怎样才能调节好? 调节要求:①望远镜、平行光管的光轴均垂直于仪器中心转轴;②望远镜对平行光聚焦(即望远调焦于无穷远);③平行光管出射平行光;④待测光学元件光学面与中心转轴平行。 判断调节达到要求的标志是:①望远镜对平行光聚焦的判定标志;②望远镜光轴与分光计中心转轴垂直的判定标志;③平行光管出射平行光的判定标志;④平行光管光轴与望远镜光轴共线并与分光计中心轴垂直的判定标志。 调节方法:①先进行目测粗调;②进行精细调节:分别用自准直法和各半调节法进行调节。 4、在分光计调节使用过程中,要注意什么事项? ①当轻轻推动分光计的可转动部件时,当无法转动时,切记不能强制使其转动,应分析原因后再进行调节。旋转各旋钮时动作应轻缓。②严禁用手触摸棱镜、平面镜和望远镜、平行光管上各透镜的光学表面,严防棱镜和平面镜磕碰或跌落。③转动望远镜时,要握住支臂转动望远镜,切忌握住目镜和目镜调节手轮转动望远镜。④望远镜调节好后不能再动其仰角螺钉。 5、测棱镜顶角还可以使用自准法,当入射光的平行度较差时,用哪种方法测顶角误差较小? ?2 1=A 的成立条件是入射光是平行的,当入射光的平行度较差时,此公式已不再适用,应用自准直法测三棱镜的顶角,用公式?-=1800 A 来计算,误差较小。

大学物理第11章习题答案(供参考)

第11章 电磁感应 11.1 基本要求 1理解电动势的概念。 2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。 3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。 4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。 5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。 6理解互感现象和互感系数的定义及物理意义,能计算简单导体回路间的互感系数。 7理解磁能(磁场能量)和磁能密度的概念,能计算一些简单情况下的磁场能量。 8了解位移电流的概念以及麦克斯韦方程组(积分形式)的物理意义。 11.2 基本概念 1电动势ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即 W q ε= 2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。 3感生电场k E :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电 场线是闭合的,所以感生电场也称有旋电场。 4感生电动势:仅由磁场变化而产生的感应电动势。 5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。 自感系数L ://m L I N I =ψ=Φ 6自感电动势L ε:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。

7互感系数M :2112 12 M I I ψψ= = 8互感电动势12ε:当线圈2的电流2I 发生变化时,在线圈1中所产生的感应电动势。 9磁场能量m W :贮存在磁场中的能量。 自感贮存磁能:212 m W LI = 磁能密度m w :单位体积中贮存的磁场能量22111 222 m B w μH HB μ=== 10位移电流:D d d I dt Φ= s d t ?=??D S ,位移电流并不表示有真实的电荷在空 间移动。但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。 11位移电流密度:d t ?=?D j 11.3 基本规律 1电磁感应的基本定律:描述电磁感应现象的基本规律有两条。 (1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。楞 次定律是判断感应电流方向的普适定则。 (2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路 中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即 m i d dt εΦ=- 2动生电动势:()B B K A A i εd d ==???E l v B l ,若0i ε>,则表示电动势方向由A B →;若 0i ε<,则表示电动势方向B A → 3感生电动势:m K l s i d Φd εd d dt dt = ?=- =-? ?B E l S (对于导体回路) B K A i εd =?E l (对于一段导体) 4自感电动势:L dI εL dt =- 5互感电动势:12212d ΨdI εM dt dt =-=- 6麦克斯韦方程组

(完整版)大学物理实验报告答案大全

大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的(1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理根据欧姆定律, I R = U ,如测得U 和I 则可计算出R。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置待测电阻两只,0~5mA 电流表1 只,0-5V 电压表1 只,0~50mA 电流表1 只,0~10V 电压表一 只,滑线变阻器1 只,DF1730SB3A 稳压源1 台。 实验步骤本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第2 章中的第2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录U 值和I 值。对每一个电阻测量3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 测量次数1 2 3 U1 /V 5.4 6.9 8.5 I1 /mA 2.00 2.60 3.20 R1 / Ω 2700 2654 2656

测量次数1 2 3 U2 /V 2.08 2.22 2.50 I2 /mA 38.0 42.0 47.0 R2 / Ω 54.7 52.9 53.2 (1) 由. % max ΔU =U ×1 5 ,得到U 0.15V , 1 Δ = U 0 075V Δ 2 = . ; (2) 由. % max ΔI = I ×1 5 ,得到I 0.075mA, 1 Δ = I 0 75mA Δ 2 = . ; (3) 再由2 2 3 3 ( ) ( ) I I V u R U R Δ Δ = + ,求得9 10 Ω 1Ω 2 1 1 = × = R R u , u ; (4) 结果表示= (2.92 ± 0.09)×10 Ω, = (44 ±1)Ω 2 3 1 R R 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长

大学物理课后答案第十一章

第十一章 机械振动 一、基本要求 1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。 2. 掌握描述简谐运动的运动方程)cos( 0?ω+=t A x ,理解振动位移,振幅,初位相,位相,圆频率,频率,周期的物理意义。能根据给出的初始条件求振幅和初位相。 3. 掌握旋转矢量法。 4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。 二、基本内容 1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。如果物体振动的位置满足)()(T t x t x +=,则该物体的运动称为周期性运动。否则称为非周期运动。但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。 一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。 2. 简谐振动 简谐振动是一种周期性的振动过程。它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。 (1)简谐振动表达式)cos(0?ω+=t A x 反映了作简谐振动的物体位移随时间的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。但是简谐振动表达式更多地用来揭示描述一个简谐运动必须

涉及到的物理量A 、ω、0?(或称描述简谐运动的三个参量),显然三个参量确定后,任一时刻作简谐振动的物体的位移、速度、加速度都可以由t 对应地得到。 )2 cos()sin(00π ?ωω?ωω+ +=+-=t A t A v )c o s ()c o s (0202π?ωω?ωω±+=+-=t A t A a (2)简谐运动的动力学特征为:物体受到的力的大小总是与物体对其平衡位置的位移成正比、而方向相反,即kx F -=,它是判定一个系统的运动过程是否作简谐运动的动力学根据,只要受力分析满足动力学特征的,毫无疑问地系统的运动是简谐运动。这里应该注意,F 系指合力,它可以是弹性力或准弹性力。 (3)和简谐运动的动力学特征相一致的是简谐运动的运动学特征:作简谐 运动物体的加速度大小总是与其位移大小成正比、而方向相反,即x dt x d 222ω-=, 它也是物体是否作简谐运动的判据之一。只要加速度与位移大小成正比、而方向恒相反,则该物理量的变化过程就是一个简谐运动的过程。在非力学量,例如电量、电流和电压等电学量,就不易用简谐振动的动力学特征去判定,而LC 电路中的电量q 就满足q LC dt q d 1 22-=,故电量q 的变化过程就是一个简谐振荡的过程,显然用运动学的特征来判定简谐运动更具有广泛的意义。 3. 简谐振动的振幅、周期、频率和相位 (1)振幅A 是指最大位移的绝对值。A 是由初始条件来决定的,即 2 20 2 ω v + = x A 。 (2)周期T 是指完成一次完整的振动所用时间。ω π 2=T ,式中ω是简谐振 动的圆频率,它是由谐振动系统的构造来决定的,即m k =ω,ω也称为固有圆频率。对应的T 称为固有周期。v T 1 = ,式中v 称为频率(即固有频率),它与圆频率的关系2v ωπ=,是由系统本身决定的。

(完整版)大学物理实验理论考试题及答案汇总

一、 选择题(每题4分,打“ * ”者为必做,再另选做4题,并标出选做记号“ * ”,多做不给分,共40分) 1* 某间接测量量的测量公式为4 3 23y x N -=,直接测量量x 和y 的标准误差为x ?和y ?,则间接测 量量N 的标准误差为?B N ?=; 4322 (2)3339N x x y x x x ??-==?=??, 3334(3)2248y N y y y y x ??==-?=-??- ()()[]21 23 2 289y x N y x ?+?=? 2* 。 用螺旋测微计测量长度时,测量值=末读数—初读数(零读数),初读数是为了消除 ( A ) (A )系统误差 (B )偶然误差 (C )过失误差 (D )其他误差 3* 在计算铜块的密度ρ和不确定度ρ?时,计算器上分别显示为“8.35256”和“ 0.06532” 则结果表示为:( C ) (A) ρ=(8.35256 ± 0.0653) (gcm – 3 ), (B) ρ=(8.352 ± 0.065) (gcm – 3 ), (C) ρ=(8.35 ± 0.07) (gcm – 3 ), (D) ρ=(8.35256 ± 0.06532) (gcm – 3 ) (E) ρ=(2 0.083510? ± 0.07) (gcm – 3 ), (F) ρ=(8.35 ± 0.06) (gcm – 3 ), 4* 以下哪一点不符合随机误差统计规律分布特点 ( C ) (A ) 单峰性 (B ) 对称性 (C ) 无界性有界性 (D ) 抵偿性 5* 某螺旋测微计的示值误差为mm 004.0±,选出下列测量结果中正确的答案:( B ) A . 用它进行多次测量,其偶然误差为mm 004.0; B . 用它作单次测量,可用mm 004.0±估算其误差; B =?==? C. 用它测量时的相对误差为mm 004.0±。 100%E X δ = ?相对误差:无单位;=x X δ-绝对误差:有单位。

大学物理答案第11章

第十一章恒定磁场 11-1两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( ) (A )r R B B 2=(B )r R B B = (C )r R B B =2(D )r R B B 4= 分析与解在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比 2 1==R r n n r R 因而正确答案为(C ). 11-2一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( ) (A )B r 2π2 (B )B r 2 π (C )αB r cos π22(D )αB r cos π2 题 11-2 图 分析与解作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ?=m Φ.因而正确答案为(D ). 11-3下列说法正确的是( ) (A )闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B )闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C )磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零

(D )磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ). 11-4在图(a)和(b)中各有一半径相同的圆形回路L1、L2,圆周内有电流I1、I2,其分布相同,且均在真空中,但在(b)图中L2回路外有电流I3,P 1、P 2为两圆形回路上的对应点,则( ) (A )? ??=?21L L d d l B l B ,21P P B B = (B )?? ?≠?21L L d d l B l B ,21P P B B = (C )? ??=?21L L d d l B l B ,21P P B B ≠ (D )? ??≠?21L L d d l B l B ,21P P B B ≠ 题 11-4 图 分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). 11-5半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr(μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1--(B )()r I μr π2/1- (C )r I μr π2/-(D )r μI r π2/ 分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ). 11-6北京正负电子对撞机的储存环是周长为240m 的近似圆形轨道,当环中电子流强度为8mA 时,在整个环中有多少电子在运行?已知电子的速率接近光速.

大学物理3第11章习题分析与解答

大学物理3第11章习题分析与解答 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

习 题 解 答 11-1 在双缝干涉实验中,若单色光源S 到两缝21S S 、距离相等,则观察屏上中央明纹位于图中O 处。现将光源S 向下移动到示意图中的S '位置,则( ) (A )中央明条纹也向下移动,且条纹间距不变 (B )中央明条纹向上移动,且条纹间距不变 (C )中央明条纹向下移动,且条纹间距增大 (D )中央明条纹向上移动,且条纹间距增大 解 由S 发出的光到达21S S 、的光成相等,它们传到屏上中央O 处,光程差0=?,形成明纹,当光源由S 向下移动S '时,由S '到达21S S 、的两束光产生了光程差,为了保持原中央明纹处的光程差为0,它将上移到图中O '处,使得由S '沿21S S 、传到O '处的两束光的光程差仍为0.而屏上各级明纹位置只是向上平移,因此条纹间距不变。故选B 11-2 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如附图所示,若薄膜厚度为e , 且n 1<n 2,n 3<n 2, λ1为入射光在n 1中的波长,则两束反射光的光程为( )(A )e n 22 (B )1 1222n e n λ- 3 n S S ’ O O ’

(C )2 2112λn e n - (D )221 22λn e n - 习题11-2图 解 由于n 1〈n 2,n 3〈n 2,因此光在表面上的反射光有半波损失,下表面的反射光没有半波损失,所以他们的光程差222λ-=?e n ,这里λ是光在真空中的波 长,与1λ的关系是11λλn =。 故选C 11-3 如图所示,两平面玻璃板构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将发生( )变化 (A )干涉条纹间距增大,并向O 方向移动 (B )干涉条纹间距减小,并向B 方向移动 (C )干涉条纹间距减小,并向O 方向移动 (D )干涉条纹间距增大,并向B 方向移动 解 空气劈尖干涉条纹间距θ λ sin 2n l = ?,劈尖干涉又称为等厚干涉,即k 相同的同一级条纹,无论是明纹还是暗纹,都出现在厚度相同的地方. 当A 板与B 板的夹角θ增大时,△l变小. 和原厚度相同的地方向顶角方向移动,所以干涉条纹向O 方向移动。 故选C 11-4 如图所示的三种透明材料构成的牛顿环装置中,用单色光垂直照 射,在反射光中看到干涉条纹,则在接触点P (A )全明 (B )全暗 (C )右半部明,左半部暗 (D )右半部暗,左半部明 习题11-4图 解 牛顿环的明暗纹条件(光线垂直入射0=i ) .162 .A θ B O 习题11-3图

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

大学物理电磁场练习题含答案

大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案 1-5 CADBC 6-8 CBC 三、稳恒磁场习题 1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二 者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ ] 2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]

4. 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布, 则空间各处的B 的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ] 5. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导 线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0. (D) B ≠ 0,因为虽然021 ≠+B B ,但B 3 ≠ 0. [ ]

大学物理实验答案完整版

大学物理实验答案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

实验一 物体密度的测定 【预习题】 1.简述游标卡尺、螺旋测微器的测量原理及使用时的注意事项。 答:(1)游标卡尺的测量原理及使用时的注意事项: 游标卡尺是一种利用游标提高精度的长度测量仪器,它由主尺和游标组成。设主 尺上的刻度间距为y ,游标上的刻度间距为x ,x 比y 略小一点。一般游标上的n 个刻度间距等于主尺上(n -1)个刻度间距,即y n nx )1(-=。由此可知,游标上的刻度间距与主尺上刻度间距相差n 1,这就是游标的精度。 教材P33图1-2所示的游标卡尺精度为 mm 501,即主尺上49mm 与游标上50格同长,如教材图1-3所示。这样,游标上50格比主尺上50格(50mm )少一格(1mm ),即游标上每格长度比主尺每格少1÷50 = 0.02(mm), 所以该游标卡尺的精度为0.02mm 。 使用游标卡尺时应注意:①一手拿待测物体,一手持主尺,将物体轻轻卡住,才 可读数。②注意保护量爪不被磨损,决不允许被量物体在量爪中挪动。③游标卡尺的外量爪用来测量厚度或外径,内量爪用来测量内径,深度尺用来测量槽或筒的深度,紧固螺丝用来固定读数。 (2)螺旋测微器的测量原理及使用时的注意事项: 螺旋测微器又称千分尺,它是把测微螺杆的角位移转变为直线位移来测量微小长 度的长度测量仪器。螺旋测微器主要由固定套筒、测量轴、活动套筒(即微分筒)组成。

如教材P24图1-4所示,固定套管D上套有一个活动套筒C(微分筒),两者由高精度螺纹紧密咬合,活动套筒与测量轴A相联,转动活动套筒可带动测量轴伸出与缩进,活动套筒转动一周( 360),测量轴伸出或缩进1个螺距。因此,可根据活动套筒转动的角度求得测量轴移动的距离。对于螺距是0.5mm螺旋测微器,活动套筒C的周界被等分为50格,故活动套筒转动1 格,测量轴相应地移动0.5/50=0.01mm,再加上估读,其测量精度可达到0.001 mm。 使用螺旋测微器时应注意:①测量轴向砧台靠近快夹住待测物时,必须使用棘轮而不能直接转动活动套筒,听到“咯、咯”即表示已经夹住待测物体,棘轮在空转,这时应停止转动棘轮,进行读数,不要将被测物拉出,以免磨损砧台和测量轴。②应作零点校正。 2.为什么胶片长度可只测量一次? 答:单次测量时大体有三种情况:(1)仪器精度较低,偶然误差很小,多次测量读数相同,不必多次测量。(2)对测量的准确程度要求不高,只测一次就够了。(3)因测量条件的限制,不可能多次重复测量。本实验由对胶片长度的测量属于情况(1),所以只测量1次。

大学物理答案第11章

第十一章 恒定磁场 11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( ) (A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4= 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比 2 1 ==R r n n r R 因而正确答案为(C ). 11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( ) (A )B r 2π2 (B ) B r 2 π (C )αB r cos π22 (D ) αB r cos π2 题 11-2 图 分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量; S B ?=m Φ.因而正确答案为(D ). 11-3 下列说法正确的是( ) (A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零

(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ). 11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) (A ) ???=?2 1 L L d d l B l B ,21 P P B B = (B ) ???≠?2 1 L L d d l B l B ,21 P P B B = (C ) ???=?2 1 L L d d l B l B ,21 P P B B ≠ (D ) ???≠?2 1 L L d d l B l B ,21 P P B B ≠ 题 11-4 图 分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). 11-5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/ 分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ). 11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行 已知电子的速率接近光速.

大学物理实验作业答案(全部)

教育技术专业《大学物理实验》课后部份习题答案 控制电路的研究(PASCO 综合性实验) 1.在限流和分压实验中,当连接完电路准备通电前,应使滑动头C 移到哪一端?为什么?(P191思考题) 答:如图1所示,在限流实验中,当连接完电路准备通电前,应使滑动头C 移到B 端,使限流有效电阻最大,可让回路中电流从小变到大。 如图2所示,在分压实验中,当连接完电路准备通电前,应使滑动头C 移到A 端,使分压有效电阻最小,可控制电压从小变到大。 2. 有人说,分压电路是用来控制电压,限流电路是用来控制电路电流的,你认为这种说法对吗?(P191 思考题) 答:这种说法太片面。因为,分压电路控制范围:V 是0E →,I 是0 0E R → 。限流电路控制范围:V 是 00R E E R R →+,I 是 00 E E R R R → +。所以,无论是分压还是限流控制电流,都能进行控制电路的电压和电 流,只是在具体电路中,控制程度不同。 霍尔效应效应及其磁场的测量 1、什么是霍尔效应?采用霍尔效应测量磁场时,要测量哪些物理量? 答:①导体或半导体薄膜材料在外加电场作用下,载流子产生定向运动,运动的电荷在磁场中受到洛仑兹 力作用使电荷产生横向的偏转,由于样品有边界,所以偏转的载流子将在边界积累起来,产生一个横向电场,这种现象就是霍尔效应。 ②霍尔电压B I K U S H H =,对于一定的霍尔元件,其灵敏度H K 是一个常量,已测量;因此,采用霍尔效应测量磁场时,需要测量霍尔电流S I 和对应的磁感应强度B 两个物理量。 2、使用霍尔效应测量磁场时,如何消除其副效应的影响? 答: 使用霍尔效应测量磁场时,可以采用对称测量法消除副效应的影响。选择电流和磁场的四种取向组 合),(S I B ++、),(S I B -+、),(S I B --、),(S I B +-测得四组电压值1U 、2U 、3U 、4U ,再根据下 式算出霍尔电压值4 4 321U U U U U H -+-=。 磁阻效应 1、什么叫做磁阻效应?磁阻效应是怎样产生的? 答:①一定条件下,导电材料的电阻值R 随磁感应强度B 变化的现象成为磁阻效应; ②当导体或半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生 图1 图2

大学物理3第08章习题分析与解答

习题8-6图 I O R 第八章 恒定磁场 8-1 均匀磁场得磁感强度B 垂直于半径为r得圆面.今以该圆周为边线,作一半球面S ,则通过S 面得磁通量得大小为[ ]。 (A) (B) (C) 0 (D ) 无法确定 分析与解 根据高斯定理,磁感线就是闭合曲线,穿过圆平面得磁通量与穿过半球面得磁通量相等。正确答案为(B ). 8-2 下列说法正确得就是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流得代数与必定为零 (C ) 磁感强度沿闭合回路得积分为零时,回路上各点得磁感强度必定为零 (D) 磁感强度沿闭合回路得积分不为零时,回路上任意点得磁感强度必定为零 分析与解 由磁场中得安培环路定理,磁感强度沿闭合回路得积分为零时,回路上各点得磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路得电流代数与一定为零。正确答案为(B)。 8-3 磁场中得安培环路定理说明稳恒电流得磁场就是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场 分析与解 磁场得高斯定理与安培环路定理就是磁场性质得重要表述,在恒定磁场中B 得环流一般不为零,所以磁场就是涡旋场;而在恒定磁场中,通过任意闭合曲面得磁通量必为零,所以磁场就是无源场;静电场中E 得环流等于零,故静电场为保守场;而静电场中,通过任意闭合面得电通量可以不为零,故静电场为有源场。正确答案为(B )。 8—4 一半圆形闭合平面线圈,半径为R ,通有电流I,放在磁感强度为B 得均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) (B ) (C) (D ) 0 分析与解 对一匝通电平面线圈,在磁场中所受得磁力矩可表示为,而且对任意形状得平面线圈都就是适用得。正确答案为(B)。 8—5 一长直螺线管就是由直径d=0、2mm得漆包线密绕而成。当它通以I =0。5A 得电流 时,其内部得磁感强度B =_____________.(忽略绝缘层厚度,μ0=4π×10-7N /A 2) 分析与解 根据磁场中得安培环路定理可求得长直螺线管内部得磁感强度大小为,方向由右螺旋关系确定。正确答安为(). 8—6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处得磁感强度大小为_____________,方向为_____________ 。 分析与解 根据圆形电流与长直电流得磁感强度公式,并作矢量叠加,可得圆心O 点得总得磁感强度.正确答案为(,向里)。 8-7 如图所示,平行得无限长直载流导线A 与B , 电流强度均为I,垂直纸面向外,两根载流导线之间相距为a ,则(1)AB 中点得磁感应强度BP=_____________。 (2)磁感应强度沿图中环路l得线积分_____________. 分析与解 根据长直电流得磁感强度公式与电流分 布得对称性,P点得磁感强度就是两电流产生得磁感强度 习题8-7图

相关文档
最新文档