labview信号与系统

labview信号与系统
labview信号与系统

信号与系统课程设计周期三角波的合成设计与实现

目录

引言 (3)

2虚拟仪器开发软件LabVIEW8.6入门 (4)

2.1LabVIEW8.6介绍 (4)

2.1.1LabVIEW的定义: (4)

2.1.2LabVIEW的用途: (4)

2.1.3LabVIEW的发展历程: (4)

2.2利用LabVIEW8.6编程完成的一些习题设计 (5)

3利用LabVIEW8.6实现周期性三角波信号的叠加的设计 (22)

3.1 周期性三角波信号的叠加的基本原理 (22)

3.2 周期性三角波信号的叠加的编程设计及实现 (23)

结论 (28)

参考文献 (29)

引言

“最初只存在机器语言,计算机的世界里一片黑暗。可是不久,汇编语言问世了,给计算机的世界投下了一缕曙光。后来,Fortran 的出现带来了光明。”LabVIEW 图形化编程语言的出现终于把人们——尤其是工程师和科学家们从繁杂的编程工作中解放出来,使他们能够真正专心于自己所关注的事情。

虚拟仪器系统是由计算机、应用软件和仪器硬件三大要素构成的。计算机与仪器硬件又称为VI 的通用仪器硬件平台。

传统仪器 虚拟仪器 能厂商定义功能 用户定义功能

关键字:虚拟仪器 LabVIEW 图形化 计算机

P R O C E S S O R B U S C o

n d i t i o n i n g T i m

i n g

A /

D D /A

D I

/O T I /O

DISPLAY AND CONTROL

488 P O R T 礟

M a t h

M E M O R Y

礟R O M

2虚拟仪器开发软件LabVIEW8.6入门

2.1LabVIEW8.6介绍

2.1.1LabVIEW的定义:

LabVIEW(Lab oratory V irtual I nstrument E ngineering W orkbench)是一种用图标代替文本行创建应用程序的图形化编程语言。传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,而LabVIEW则采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。它用图标表示函数,用连线表示数据流向。

LabVIEW程序被称为VI(Virtual Instrument),即虚拟仪器。

LabVIEW的核心概念就是“软件即是仪器”,即虚拟仪器的概念。

LabVIEW还包含了大量的工具与函数用于数据采集、分析、显示与存储等。

2.1.2LabVIEW的用途:

LabVIEW在测试、测量和自动化等领域具有最大的优势,因为LabVIEW提供了大量的工具与函数用于数据采集、分析、显示和存储。用户可以在数分钟内完成一套完整的从仪器连接、数据采集到分析、显示和存储的自动化测试测量系统。它被广泛地应用于汽车、通信、航空、半导体、电子设计生产、过程控制和生物医学等各个领域。LabVIEW不仅可以用来快速搭建小型自动化测试测量系统,还可以被用来开发大型的分布式数据采集与控制系统

2.1.3LabVIEW的发展历程:

2.2利用LabVIEW8.6编程完成的一些习题设计

1)写一个类似于下图的正弦波发生器,要求频率和幅度可调。

前面板:

程序框图:

2)新建一个VI,进行如下练习:

?任意放置几个控件在前面板,改变它们的位置、名称、大小、颜色等等。

?在VI前面板和后面板之间进行切换

?并排排列前面板和后面板窗口

前面板:

程序框图:

3)编写一个VI求三个数的平均值,如右图所示。

1.要求对三个输入控件等间隔并右对齐,对应的程序框图控件对象也要求如此对齐。

2.添加注释。

3.分别用普通方式和高亮方式运行程序,体会数据流向。

4.单步执行一遍。

前面板:

程序框图:

4)写一个VI判断两个数的大小,如下图所示:当A>B时,指示灯亮。

前面板:

程序框图:

5)写一个VI获取当前系统时间,并将其转换为字符串和浮点数。这在实际编程中会经常遇到。

前面板:

程序框图:

6)利用局部变量向与它联系的前面板上的电流控件写数据,也可以从电流控件读数据。前面板:

程序框图:

7)写一个温度监测器,如下图所示,当温度超过报警上限,而且开启报警时,报警灯点亮。温度值可以由随即数发生器产生。添加一个While循环和定时器,实现连续的温度采集监测。

前面板:

程序框图:

8)给定任意x , 求如下表达式的值

前面板:

x

e

x

x y cos 5

+=

程序框图:

9)计算学生三门课(语文,数学,英语)的平均分,并根据平均分划分成绩等级。要求输出等级A,B,C,D,E。90分以上为A,80~89为B,70~79为C,60~69为D,60分以下为E。

前面板:

程序框图:

10)将一些字符串和数值转换成一个新的输出字符串,输出的字符串是一个GPIB命令字符串,他可以用来与串口仪器进行通信,如图

前面板:

程序框图:

11)用FOR循环创建一个数组,并用图形显示输出的数组。如下图所示:

前面板:

程序框图

13)利用簇模拟汽车控制,如下图所示,控制面板可以对显示面板中的参量进行控制。

油门控制转速,转速=油门*100,档位控制时速,时速=档位*40,油量随VI运行时间减少。

前面板:

程序框图:

14)利用随机数发生器仿真一个0到5V的采样信号,每200ms采一个点,利用实时趋势曲线实时显示采样结果。再增加1路电压信号采集,此路电压信号的范围为5到10V。

前面板:

程序框图:

15)利用随机数发生器仿真一个0到5V的采样信号,每200ms采一个点,共采集50个点,再增加1路电压信号采集,此路电压信号的范围为5到10V,采样间隔是50ms,共采100个点。采样完成后,将两路采样信号显示在同一个Waveform Graph中。

前面板:

程序框图:

利用labview进行信号的时域分析

利用labview进行信号的时域分析 信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。信号的特征值分为幅值特征值、时间特征值和相位特征值。 用于信号时域分析的函数,VIs,Express VIs主要位于函数模板中的Signal Processing子模板中,其中多数对象位于Waveform Measurements子模板,如图所示 LabVIEW8.0中用于信号分析的Waveform Measurements子模板 基本平均值与均方差VI 基本平均值与均方差VI-------Basic Averaged DC—RMS.vi用于测量信号的平均以及均方差。计算方法是在信号上加窗,即将原有信号乘以一个窗函数,窗函数的类型可以选择矩形窗、Haning窗、以及Low side lob窗,然后计算加窗后信号的均值以及均方差值。 演示程序的前面板和后面板如下图所示 Basic Averaged DC—RMS演示程序的前面板

Basic Averaged DC—RMS演示程序的后面板 平均值与均方差值 平均值与均方差值VI------Averaged DC—RMS.vi同样也是用于计算信号的平均值与均方差值,只是Averaged DC—RMS.vi的输出是一个波形函数,这里我们可以看到加窗截断后,正弦信号的平均值和均方差随时间变化的波形。 编写程序演示Average DC----Averaged—RMS.vi的使用方法,程序的后面板和前面板如下图所示 Averaged DC—RMS演示程序的后面板

基于labview的语音信号采集系统

电气与自动化工程学院《LabVIEW编程实训》评分表课程名称:LabVIEW编程实训 题目:基于labview的语音信号采集系统设计 班级:1601131自动化学号:160113113姓名:刘德旺 指导老师: 年月日

常熟理工学院电气与自动化工程学院《LabVIEW编程实训》技术报告题目:基于LabVIEW的语音信号采集系统设计 姓名:刘德旺 学号:160113113 班级:自动化131 指导教师:陈飞 起止日期:2016年6月20日-7月8日

LabVIEW编程实训答辩记录 自动化专业 1601131班级答辩人刘德旺 题目基于LabVIEW的语音信号采集系统设计 说明:主要记录答辩时所提的问题及答辩人对所提问题的回答

目录 1.任务书 (1) 2.基于LABVIEW的数据采集系统概述 (3) 2.1虚拟仪器概念与传统仪器概念主要区别 (3) 2.1.1LabVIEW虚拟仪器简介 (3) 2.1.2LabVIEW虚拟仪器特点 (3) 2.2 LabVIEW图形化程序的组成与特点 (4) 2.2.1前面版 (4) 2.2.2程序框图 (4) 2.2.3图标和连接器 (5) 3.语音信号采集总体设计方案与硬件配置 (6) 3.1语音信号采集系统的功能分析 (6) 3.2语音信号采集系统的总体构成 (6) 3.3语音信号采集系统的硬件配置 (6) 4.语音信号采集系统的软件设计与功能实现 (11) 4.1语音信号采集系统的软件前面板设计 (11) 4.1.1语音信号采样信息界面 (11) 4.1.2语音采集控制按钮界面 (11) 4.1.3时域波形和频域波形显示界面 (11) 4.2语音信号采集系统的软件程序框图设计 (12) 5.语音信号采集系统的运行与分析 (18) 6.收获与体会 (21) 参考文献 (23)

实验一-LabVIEW中的信号分析与处理

实验一 LabVIEW中的信号分析与处理 一、实验目的: 1、熟悉各类频谱分析VI的操作方法; 2、熟悉数字滤波器的使用方法; 3、熟悉谐波失真分析VI的使用方法。 二、实验原理: 1、信号的频谱分析是指用独立的频率分量来表示信号;将时域信号变换到频域,以显示在时域无法观察到的信号特征,主要是信号的频率成分以及各频率成分幅值和相位的大小,LabVIEW中的信号都是数字信号,对其进行频谱分析主要使用快速傅立叶变换(FFT)算法:·“FFT Spectrum(Mag-Phase).vi”主要用于分析波形信号的幅频特性和相频特性,其输出为单边幅频图和相频图。 ·“FFT.vi”以一维数组的形式返回时间信号的快速傅里叶运算结果,其输出为双边频谱图,在使用时注意设置FFT Size为2的幂。 ·“Amplitude and Phase Spectrum .vi”也输出单边频谱,主要用于对一维数组进行频谱分析,需要注意的是,需要设置其dt(输入信号的采样周期)端口的数据。 2、数字滤波器的作用是对信号进行滤波,只允许特定频率成份的信号通过。滤波器的主要类型分为低通、高通、带通、带阻等,在使用LabVIEW中的数字滤波器时,需要正确设置滤波器的截止频率(注意区分模拟频率和数字频率)和阶数。 3、“Harmonic Distortion Analyzer .vi”用于分析输入的波形数据的谐波失真度(THD),该vi还可分析出被测波形的基波频率和各阶次谐波的电平值。 三、实验容: (1) 时域信号的频谱分析 设计一个VI,使用4个Sine Waveform.vi(正弦波形)生成频率分别为10Hz、30Hz、50Hz、100Hz,幅值分别为1V、2V、3V、4V的4个正弦信号(采样频率都设置为1kHz,采样点数都设置为1000点),将这4个正弦信号相加并观察其时域波形,然后使用FFT Spectrum(Mag-Phase).vi对这4个正弦信号相加得出的信号进行FFT频谱分析,观察其幅频和相频图,并截图保存。

基于LabVIEW的数据采集与信号处理系统的设计_杜娟

基于L a b V I E W 的数据采集与信号处理系统的设计 杜 娟1,邱晓晖1,赵 阳2,颜 伟2,缪 飞1 (1.南京邮电大学通信与信息工程学院,江苏南京210003;2.南京师范大学电气与自动化工程学院,江苏南京210042) [摘要] 介绍了虚拟仪器领域中最具代表性的图形化编程开发平台L a b V I E W,并对基于L a b V I E W 编程环境实现数据采集进 行了研究,设计实现了一种基于L a b V I E W 8.5环境,以E M I 噪声分析仪为下位机的数据采集与信号处理系统的设计方法.该设 计方法主要实现了以R S 232为代表的串口通讯,数组转换及频谱分析等功能,结果表明应用该设计方法设计出的系统具有简 洁友好的人机界面,可直接在前面板上完成各种操作与观测.该设计方案较之目前大多数的设计方法相比有效地降低了程序的 运算量,节省了运算时间,成功实现了实时无差错的采集到由下位机发来的完整数据. [关键词] L a b V I E W,串口通讯,数组转换 [中图分类号]T M 461;T N 713+.7 [文献标识码]A [文章编号]1672-1292(2010)03-0007-04 D a t a A c q u i s i t i o n a n dS i g n a l P r o c e s s i n g S y s t e m B a s e do nL a b V I E W D u J u a n 1,Q i u X i a o h u i 1,Z h a o Y a n g 2,Y a n We i 2,Mi a o F e i 1 (1.C o l l e g e o f C o m m u n i c a t i o na n dI n f o r m a t i o nE n g i n e e r i n g ,N a n j i n g U n i v e r s i t y o f P o s t a n dC o m m u n i c a t i o n s ,N a n j i n g 210003,C h i n a ; 2.S c h o o l o f E l e c t r i c a l a n dA u t o m a t i o nE n g i n e e r i n g ,N a n j i n g N o r m a l U n i v e r s i t y ,N a n j i n g 210042,C h i n a )A b s t r a c t :L a b V I E W i s i n t r o d u c e di n t h i s p a p e r a s a k i n d o f m o s t r e p r e s e n t a t i v e g r a p h i c a l p r o g r a m m i n g p l a t f o r m s i n V i r - t u a l i n s t r u m e n t f i e l d ,a n dr e a l i z i n g d a t a a c q u i s i t i o n b a s e do n L a b V I E W p r o g r a m m i n g e n v i r o n m e n t i s s t u d i e d ,t h e n a d e - s i r e m e t h o d o f D a t a a c q u i s i t i o n a n dS i g n a l p r o c e s s i n g s y s t e m u s e dE M I n o i s e a n a l y z e r a s t h en e x t b i t m a c h i n e b a s e d o n l a b v i e w 8.5i s i n t r o d u c e d .T h es y s t e m r e a l i z e dR S 232s e r i a l c o m m u n i c a t i o n ,a r r a yc o n v e r s i o na n ds p e c t r a l a n a l y s i s f u n c t i o n s .T h e r e s u l t s h o w s t h a t t h e s y s t e m d e s i g n e d b y t h i s m e t h o d h a s a s i m p l e a n df r i e n d l y i n t e r f a c e ,a n d t h a t u s e r s c a n d o e v e r y o p e r a t i o na n do b s e r v a t i o n i n t h e f r o n t p a n e l d i r e c t l y .T h i s s c h e m e r e d u c e s t h e c a l c u l a t i o n p r o c e d u r e e f f e c - t i v e l y a n d s a v e t i m e ,a c h i e v e s t h e r e a l -t i m e a n d e r r o r -f r e e c o l l e c t e d t h e d a t a i n t e g r i t i l y . K e yw o r d s :l a b v i e w ,s e r i a l c o m m u n i c a t i o n ,a r r a y c o n v e r s i o n  收稿日期:2010-06-02. 基金项目:中国博士后基金(20080431126)、毫米波国家重点实验室开放基金(K 200903)、江苏省博士后基金(0702033B )、江苏省自然科 学基金(B K 2008429). 通讯联系人:邱晓晖,博士,副教授,研究方向:现代信号处理.E -m a i l :q i u x h @n j u p t .e d u .c n L a b V I E W (L a b o r a t o r y V i r t u a l I n s t r u m e n t E n g i n e e r i n g W o r k b e n c h )是基于图形编译G (G r a p h i c s )语言的虚拟仪器软件开发平台,具有数据采集、数据分析、信号发生、信号处理、输入输出控制等功能,是公认的标准数据采集和仪器控制软件.在L a b v i e w 环境下开发的应用程序称为V I (V i r t u a l I n s t r u m e n t ).一个完整的L a b V I E W 程序主要由前面板、程序框图和图标/连接端口3部分组成[1],前面板是交互式图形化用户界面,用于设置输入数值和观察输出量;程序框图是定义V I 功能的图形化源代码,包括前面板上没有但编程必须有的对象,如函数、结构和连线等,利用图形语言对前面板的控制量和指示量进行控制;图标/连接端口是用于把程序定义成一个子程序,以便在其他程序中加以调用.L a b V I E W 中自带450多个内置函数,专门用于从采集到的数据中挖掘有用的信息,用于分析测量数据及处理信号. 1 系统硬件结构部分 传导电磁干扰综合测量与分析系统可以对被测设备进行噪声诊断与抑制,包括硬件部分和软件部分[2,3].硬件部分的原理图如图1所示.系统硬件又分为模拟部分和数字部分,模拟部分由中心控制模块、第10卷第3期2010年9月 南京师范大学学报(工程技术版)J O U R N A LO FN A N J I N GN O R M A LU N I V E R S I T Y (E N G I N E E R I N GA N DT E C H N O L O G YE D I T I O N ) V o l .10N o .3S e p t ,2010

基于LabView的语音信号分析系统

学号:14112203211 毕业设计(论文) 题目: 基于LabVIEW的语音信号分析系统的设计 作者贾邦稳届别2015 届 院别信息与通信工程学院专业电子信息工程 指导教师彭仕玉职称副教授 完成时间2015 年 5 月

摘要 虚拟仪器与传统仪器相比,实现了仪器的智能化、模块化、多样化等功能,体现出多功能、低成本等操作优点,应用前景广阔。随着计算机的出现及计算机技术的快速发展,语音信号处理技术更是得到了飞速发展,得到了广泛的应用,如语音合成技术、语音压缩编码和语音识别技术。 本设计利用虚拟仪器软件平台LabVIEW 设计了一个语音信号分析系统。先介绍了四种采集语音信号的方法,并选择采用录音机录制的方法采集语音信号,然后设计基于LabVIEW的时域信号的FFT分析模块,接着设计截止频率为3000Hz的Butterworth低通滤波器对语音信号进行滤波去噪,最后根据以上设计进行语音信号的时频分析、特性分析等。 关键词:虚拟仪器;LabVIEW;语音信号;时频分析;数字滤波器

Abstract Compared with traditional instruments, virtual instruments achieve the intelligent, modularity, diversity and other functions of the instrument, and reflect the operating advantages, such as multi-purpose, low cost, etc. So it has broad application prospect. With the advent of computers and the rapid development of computer technology, speech signal processing technology has been develop rapidly, and used widely, such as speech synthesis technology, speech coding and speech recognition technology. This design projects a speech signal analysis system based on the virtual instrument software platform LabVIEW. The first step is to introduce the methods of four kinds of voice signal acquisition, and select the method of recording voice signal by recorder . The second step is to design FFT analysis of time-domain signals which based on LabVIEW. Then design Butterworth low pass filter to realize the filtration of speech signals which cutoff frequency is 3000hz. Finally it is to achieve time-frequency analysis and characteristic analysis according to the the above designs. Key words:Virtual instruments;LabVIEW;Speech signal;time-frequency analysis;digital filter.

基于LabVIEW的信号与系统实验平台的设计

2012年第05期 吉林省教育学院学报 No.05,2012 第28卷JOURNAL OF EDUCATIONAL INSTITUTE OF JILIN PROVINCE Vol .28(总305期) Total No .305 收稿日期:2012—03—01 作者简介:满江红(1971—),男,吉林长春人。中国网通集团有限公司长春分公司网络建设部,技术主管,研究方向:综合通信技术。 基于LabVIEW 的信号与系统实验平台的设计 满江红 (中国网通集团有限公司长春分公司,吉林长春130000) 摘要:近年来,随着电子、计算机和网络技术的发展及其在测量仪器上的应用,产生了一种新的测试理论和方法———虚拟仪器(VirtualInstrument ,VI )。所谓虚拟仪器,就是指用户通过计算机平台,根据自己的需求设计仪器的测试功能。虚拟仪器的出现打破了人们对仪器的传统观念,在测试系统和仪器设计中用户可以尽量用软件代替硬件,而无需购买大量的、昂贵的实验仪器设备。 关键词:LabVIEW ;信号与系统实验平台;设计中图分类号:TN911.6 文献标识码:A 文章编号:1671—1580(2012)05—0153—02 基于Lab VIEW 构建虚拟实验室正逐渐被越来越多的高校所采用, 本课题能避开硬件系统的不足,巧妙地运用软件来仿真硬件才能实现的实验结果, 大大降低了实验设备要求,节约了人力和财力,而且有很多的库函数可以在实验时直接调用,避免了用硬件做实验的局限性,可以更方便地做信号系统实验。 一、 LabVIEW 简介LabVIEW 是一种用图标代替文本行创建应用程序的图形化编程语言,采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。LabVIEW 提供很多外观与传统仪器(如示波器、信号发生器等)类似的控件,可以方便地创建用户界面。通过使用图标和连线编程对前面板上的对象进行控制,这就是图形化源代码,又称“G 代码”或 “程序框图代码”。LabVIEW 的核心是VI 。VI 有一个人机对话的用户界面— ——前面板(FrontPanel )和相当于源代码功能的框图程序(Diagram ),前面板接受来自框图程序的指令。LabVIEW 还包含了大量的工具与函数用于数据采集、分析、显示与存储等 二、整体设计该信号与系统实验台的整体设计方案是:根据LabVIEW 自上而下的设计思想,构建出整个实验平台的系统结构框图,先设计系统的主界面,再设计各 个实验子界面和实验模块,最后通过调用子VI 程序 来实现链接。主界面包括运行按钮, 停止按钮和三个实验模块选项栏,实验模块包括初级实验、中级实 验和高级实验。 (一 ) 平台系统结构图平台系统结构图如下所示: 图1平台系统结构图 (二)人机界面 点击运行按钮就出现操作界面,界面上包括初级实验、中级实验、高级实验等三部分,当点击相应实验就会出现各个实验题目,然后点击进入就可以进行相应实验了,实验完成点击停止按钮就可以结束本次实验。人机界面如下图所示: 3 51

labview信号处理完美版

第一章系统开发平台 1.1硬件平台 硬件平台是虚拟仪器的物理基础,所以为了完成虚拟仪器的设计,首先必须要选择合适的硬件平台。本文设计的系统,硬件平台主要由两部分组成:数据采集卡(DAQ)、PC机。硬件平台的结构如图1-1所示。 图1-1 硬件结构平台 1.1.1数据采集卡的选取 由于计算机所能识别的信号是数字信号,振动、温度、湿度等信号经过传感器和放大器可以输出为模拟电信号,必须经过离散化和数字化才能被计算机所识别,数据采集卡就是实现这一转换功能,为整个后续对信号处理中起到了乘前启后的关键作用。一般常用的数据采集卡(DAQ)的结构如图1-2 所示。 图1-2(a)共用一个A/D

图1-2(b)多个A/D 一般数据采集设备的两个主要指标: 1.采样率 对数据采集设备来说,采样率是A/D芯片转换的速率,不同的设备具有不同 的采样率,进行测试系统设计时应该根据测试信号的类型选择适当的采样率,盲 目提高采样率,会增加测试系统的成本。 2.分辨率 分辨率是数据采集设备的精度指标,用A/D转换的数字位数表示。如果把数 据采集设备的分辨率看作尺子上的刻度,同样长度的尺子上刻度线越多,测量就 越精确。同样的,数据采集设备A/D转换的位数越多,把模拟信号划分得就越细, 可以检测到的信号变化量也就越小。在图1-3所示中用一3位的A/D转换芯片去转换振幅为5V的正弦信号,它将峰—峰为10V的电压分成32=8段,则每次采样的模拟信号转换为其中的一个数字段,用000~111之间的码来表示。而用它得到 正弦波的数字图象是非常粗糙的。若改用16位的A/D转换芯片,则将10V电压2=65536段,经过A/D转换之后的数字图象是相当精细,完全能反映出原分成16 始的模拟信号。 图1-3 A/D芯片的位数对反映原始信号的影响

基于LabVIEW的数据处理和信号分析

基于LabVIEW的数据处理和信号分析 Liu Y an Y ancheng Institute of Technology, Y ancheng, 224003, China E-mail: yanchengliu@https://www.360docs.net/doc/9c9219003.html, ·【摘要】虚拟仪器技术是一种数据采集和信号分析的方法,它包括有关硬件,软件和它的函数库。用虚拟仪器技术进行数据采集和信号分析包括数据采集,仪器控制,以及数据处理和网络服务器。本文介绍了关于它的原则,并给出了一个采集数据和信号分析的例子。结果表明,它在远程数据交流方面有很好的表现。 【关键词】虚拟仪器,信号处理,数据采集。 ·Ⅰ.引言 虚拟仪器是一种基于测试软硬件的计算机工作系统。它的功能是由用户设计的,因为它灵活性和较低的硬件冗余,被广泛应用于测试及控制仪器领域,。与传统仪器相比,LabVIEW 广泛应用于虚拟仪器与图形编程平台,并且是数据收集和控制领域的开发平台。它主要应用于仪器控制,数据采集,数据分析和数据显示。不同于传统的编程,它是一种图形化编程类程序,具有操作方便,界面友好,强大的数据分析可视化和工具控制等优点。用户在LabVIEW 中可以创建32位编译程序,所以运行速度比以前更快。执行文件与LabVIEW编译是独立分开的,并且可以独立于开发环境而单独运行。 虚拟仪器有以下优点: A:虚拟仪表板布局使用方便且设计灵活。 B:硬件功能由软件实现。 C:仪器的扩展功能是通过软件来更新,无需购买硬件设备。 D:大大缩短研究周期。 E:随着计算机技术的发展,设备可以连接并网络监控。 这里讨论的是该系统与计算机,数据采集卡和LabVIEW组成。它可以分析的时间收集信号,频率范围:时域分析包括显示实时波形,测量电压,频率和期刊。频域分析包括幅值谱,相位谱,功率谱,FFT变换和过滤器。另外,自相关工艺和参数提取是实现信号的采集。 ·II.系统的设计步骤 软件是使用LabVIEW的AC6010Shared.dll。包中的三个功能被使用。分别用AC6010- AD.VI,与AC6010- DI.VI和AC0610- DO.VI实现数据采集,数据输入和数据输出。测试范围的选择,对测试通道和测试时间的设置是由与AC6010- AD.VI完成的。在这里,测试范围为3-5V电压。由于LabVIEW的强大,一些额外的功能可以被添加到系统中。用户必须做几个步骤:

实验一-LabVIEW中的信号分析与处理

实验一LabVIEW中的信号分析与处理 一、实验目的: 1、熟悉各类频谱分析VI的操作方法; 2、熟悉数字滤波器的使用方法; 3、熟悉谐波失真分析VI的使用方法。 二、实验原理: 1、信号的频谱分析是指用独立的频率分量来表示信号;将时域信号变换到频域,以显示在时域无法观察到的信号特征,主要是信号的频率成分以及各频率成分幅值和相位的大小,LabVIEW中的信号都是数字信号,对其进行频谱分析主要使用快速傅立叶变换(FFT)算法: ·“FFT Spectrum(Mag-Phase).vi”主要用于分析波形信号的幅频特性和相频特性,其输出为单边幅频图和相频图。 ·“FFT.vi”以一维数组的形式返回时间信号的快速傅里叶运算结果,其输出为双边频谱图,在使用时注意设置FFT Size为2的幂。 ·“Amplitude and Phase Spectrum .vi”也输出单边频谱,主要用于对一维数组进行频谱分析,需要注意的是,需要设置其dt(输入信号的采样周期)端口的数据。 2、数字滤波器的作用是对信号进行滤波,只允许特定频率成份的信号通过。滤波器的主要类型分为低通、高通、带通、带阻等,在使用LabVIEW中的数字滤波器时,需要正确设置滤波器的截止频率(注意区分模拟频率和数字频率)和阶数。 3、“Harmonic Distortion Analyzer .vi”用于分析输入的波形数据的谐波失真度(THD),该vi还可分析出被测波形的基波频率和各阶次谐波的电平值。 三、实验内容: (1) 时域信号的频谱分析 设计一个VI,使用4个Sine Waveform.vi(正弦波形)生成频率分别为10Hz、30Hz、50Hz、100Hz,幅值分别为1V、2V、3V、4V的4个正弦信号(采样频率都设置为1kHz,采样点数都设置为1000点),将这4个正弦信号相加并观察其时域波形,然后使用FFT Spectrum(Mag-Phase).vi对这4个正弦信号相加得出的信号进行FFT频谱分析,观察其幅频和相频图,并截图保存。

基于Labview的虚拟信号发生器的设计(毕设)

课题名称基于LabVIEW8.0的虚拟函数信号发生器的设计 指导教师姓名肖俊生 学生姓名刘增辉 专业自动化 学号 0967106205

基于LabVIEW的虚拟函数信号发生器的设计 摘要 本文实现了基于LabVIEW8.5的虚拟正弦波、方波、三角波、锯齿波以及任意信号波形的信号发生。操作人员可以根据需要,改变波形的频率、幅值、相位、偏移量等参数,并可保存波形的分析参数到指定文件。本论文首先简介了虚拟函数信号发生器的开发平台,及虚拟信号发生器的设计思路,并且给出了基于LabVIEW的虚拟信号发生器的前面板和程序设计流程图,讲述了功能模块的设计步骤,提供了虚拟发生器的前面板。本仪器系统操作简便,设计灵活,具有很强的适应性。 【关键词】:虚拟仪器,LabVIEW,信号发生器 第一章虚拟仪器(Virtual Instrument) 1.1 虚拟仪器概念 虚拟仪器的起源可追溯到20世纪70年代。“虚拟”的含义主要是强调了软件在这类仪器中的作用,体现了虚拟仪器与主要通过硬件实现各种功能的传统仪器的不同。由于虚拟仪器结构形式的多样性和适用领域的广泛性,目前对于虚拟仪器的概念还没有统一的定义。美国国家仪器公司(National Instruments Corporation,NI)认为,虚拟仪器是由计算机硬件资源、模块化仪器硬件和用于数据分析、过程通信及图形用户界面的软件组成的测控系统,是一种计算机操纵的模块化仪器系统。 虚拟仪器主要由通用的计算机资源(例如微处理器、内存、消声器)、应用软件和仪器硬件(例如A/D\、D/A、数字I/O、定时器、信号调理等)等构成。使用者利用应用软件将计算机资源和仪器硬件结合起来,通过友好的图形界面来操作计算机,完成对测试信号的采集、分析、判断、显示和数据处理等功能。虚拟仪器中的硬件主要用于解决信号的调理以及输入、输出问题。而软件主要用于实现对数据的提取、分析处理、显示以及对硬件的控制等功能,这些功能在传统电子仪器中往往通过硬件来实现。图1-1给出了一种利用数据采集卡实现的虚拟

labview信号与系统

信号与系统课程设计周期三角波的合成设计与实现

目录 引言 (3) 2虚拟仪器开发软件LabVIEW8.6入门 (4) 2.1LabVIEW8.6介绍 (4) 2.1.1LabVIEW的定义: (4) 2.1.2LabVIEW的用途: (4) 2.1.3LabVIEW的发展历程: (4) 2.2利用LabVIEW8.6编程完成的一些习题设计 (5) 3利用LabVIEW8.6实现周期性三角波信号的叠加的设计 (22) 3.1 周期性三角波信号的叠加的基本原理 (22) 3.2 周期性三角波信号的叠加的编程设计及实现 (23) 结论 (28) 参考文献 (29)

引言 “最初只存在机器语言,计算机的世界里一片黑暗。可是不久,汇编语言问世了,给计算机的世界投下了一缕曙光。后来,Fortran 的出现带来了光明。”LabVIEW 图形化编程语言的出现终于把人们——尤其是工程师和科学家们从繁杂的编程工作中解放出来,使他们能够真正专心于自己所关注的事情。 虚拟仪器系统是由计算机、应用软件和仪器硬件三大要素构成的。计算机与仪器硬件又称为VI 的通用仪器硬件平台。 传统仪器 虚拟仪器 能厂商定义功能 用户定义功能 关键字:虚拟仪器 LabVIEW 图形化 计算机 P R O C E S S O R B U S C o n d i t i o n i n g T i m i n g A / D D /A D I /O T I /O DISPLAY AND CONTROL 488 P O R T 礟 M a t h M E M O R Y 礟R O M

2虚拟仪器开发软件LabVIEW8.6入门 2.1LabVIEW8.6介绍 2.1.1LabVIEW的定义: LabVIEW(Lab oratory V irtual I nstrument E ngineering W orkbench)是一种用图标代替文本行创建应用程序的图形化编程语言。传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,而LabVIEW则采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。它用图标表示函数,用连线表示数据流向。 LabVIEW程序被称为VI(Virtual Instrument),即虚拟仪器。 LabVIEW的核心概念就是“软件即是仪器”,即虚拟仪器的概念。 LabVIEW还包含了大量的工具与函数用于数据采集、分析、显示与存储等。 2.1.2LabVIEW的用途: LabVIEW在测试、测量和自动化等领域具有最大的优势,因为LabVIEW提供了大量的工具与函数用于数据采集、分析、显示和存储。用户可以在数分钟内完成一套完整的从仪器连接、数据采集到分析、显示和存储的自动化测试测量系统。它被广泛地应用于汽车、通信、航空、半导体、电子设计生产、过程控制和生物医学等各个领域。LabVIEW不仅可以用来快速搭建小型自动化测试测量系统,还可以被用来开发大型的分布式数据采集与控制系统 2.1.3LabVIEW的发展历程:

基于labview的心电信号分析解读

信号与线性系统课程设计 报告 课题名称:基于LABVIEW的心电信号的分 析 班级:通信102班 姓名:杨成方 学号:102140 成绩: 指导教师:王宝珠 日期:2012.12.30

基于LABVIEW的心电信号的分析 摘要: 心电信号分析系统是读取心电信号文件,并对其做一定的数字信号处理,以及进行频谱分析等。 Labview是一种带有图形控制流结构的数据流模式,程序执行是由数据驱动,同时也是一种图形化的编程语言。本设计采用Labview综合运用其丰富的VI库来实现心电信号的读取、线性插值、滤波、谱分析。该课题利用VI库中索引数组、数组子集、字符串--数值转换、While循环、For循环、chebyshev滤波器等,得到了简单的读取、插值、滤波、谱分析等功能,对心电信号做简单的数字信号处理。 关键词:Labview,心电信号,VI库,谱分析 1课程设计的目的、意义 本课题主要研究基于Labview的数字心电信号初步分析及其各种滤波器的应用。通过完成本课题的设计,了解基于LabVIEW虚拟仪器的特点和使用方法,熟悉并掌握LabVIEW的使用及练习使用其不同的功能,了解人体心电信号的时域特征和频谱特征,通过对心电信号的滤波处理、频谱分析,进一步了解数字信号的分析方法,进一步加深对各种滤波器(巴特沃斯、切比雪夫、反切比雪夫)的理解。此外,通过本课题的设计,培养运用所学知识分析和解决实际问题的能力。 心电信号分析是一门比较实用的电子工程的专业课程。当今社会,心血管疾病是发病率和死亡率最高、对人类生命威胁最大的疾病。心电信号预处理就是对心电信号的时域特征、频域特征进行了解,以便以后对心电信号的自动识别起到一定的基础作用。另外,Labview具有强大的虚拟仪器功能和软件开发功能,运行速度快、兼容性和移植性好、方便易用,适合于课程设计短期内完成。 2 设计任务及技术指标 课题所用信号是美国麻省理工学院提供的MIT-BIH数据库(一个权威性的国际心电图检测标准库),近年来应用广泛,为我国的医学工程界所重视。MIT-BIH 数据库共有48个病例,每个病例数据长30min,总计约有116000多个心拍,包含有正常心拍和各种异常心拍,内容丰富完整。 为了读取简单方便,采用其txt格式的数据文件作为我们的源心电信号数据。利用labvIEW提供的文件I/O函数,读取txt数据文件中的信号,并且还原实际波形。 2.1设计任务 设计一个基于虚拟仪器的简单的心电信号分析系统,对原始心电信号做输入

第七章 labview信号分析与处理

第七章信号分析与处理 7.1概述 LabVIEW 6i版本中,有两个子模板涉及信号处理和数学,分别是Analyze子模板和Methematics子模板。这里主要涉及前者。 进入Functions模板Analyze》Signal Processing子模板。 其中共有6个分析VI库。其中包括: ①.Signal Generation(信号发生):用于产生数字特性曲线和波形。 ②.Time Domain(时域分析):用于进行频域转换、频域分析等。 ③.Frequency Domain(频域分析): ④.Measurement(测量函数):用于执行各种测量功能,例如单边FFT、频谱、比例加窗以及泄漏频谱、能量的估算。 ⑤.Digital Filters(数字滤波器):用于执行IIR、FIR 和非线性滤波功能。 ⑥.Windowing(窗函数):用于对数据加窗。 在labview\examples\analysis目录中可找到一些演示程序。 7.2信号的产生 本节将介绍怎样产生标准频率的信号,以及怎样创建模拟函数发生器。参考例子见examples\analysis\sigxmpl.llb。 信号产生的应用主要有: ●当无法获得实际信号时,(例如没有DAQ板卡来获得实际信号或者受限制无法访 问实际信号),信号发生功能可以产生模拟信号测试程序。 ●产生用于D/A转换的信号 在LabVIEW 6i中提供了波形函数,为制作函数发生器提供了方便。以Waveform>>Waveform Generation中的基本函数发生器(Basic Function Generator.vi)为例,其图标如下: 其功能是建立一个输出波形,该波形类型有:正弦波、三角波、锯齿波和方波。这个VI会

利用LabVIEW实现信号处理

利用LabVIEW实现信号处理 摘要 信号处理几乎涉及到所有的工程技术领域,而频谱分析正是信号处理中的一个非常重要的分析手段。一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员携带。而基于LabVIEW设计的虚拟频谱分析仪,用软件代替硬件,价格低,便于工程技术人员完成现场信号的采集、处理及频谱分析。 现今最有代表性的图形化编辑软件——LabVIEW,用之模拟从DAQ板卡中采集到一路带有均匀白噪声的正弦信号,显示其波形,并分析、显示其幅频特性曲线以及相频特性曲线。另外本文还根据LabVIEW中的子程序,实现了语音信号的录音与播放。 关键词虚拟仪器数据采集总线 LabVIEW 1.1 LabVIEW简介 LabVIEW (laboratory virtual instrument engineering wokbench——实验室虚拟仪器工程平台)的概念,是直观的前面板与流程图式的编程方法的结合,是构建虚拟仪器的理想工具。LabVIEW和仪器系统的数据采集、分析、显示部分一起协调工作, 是简化了而又更易于使用的基于图形化编程语言G的开发环境。 LabVIEW集成了很多仪器硬件库,如GPIB/VXI/PXI/基于计算机的仪器、RS232/485协议、插入式数据采集、模拟/数字/计数器I/O、信号调理、分布式数据采集、图像获取和机器视觉、运动控制、PLC/数据日志等。 与传统的编程方式相比,使用LabVIEW设计虚拟仪器,可以提高效率4~10倍。同时,利用其模块化和递归方式,用户可以在很短的时间构建、设计和更改自己的虚拟仪器系统。1.2用LabVIEW设计虚拟仪器的步骤 LabVIEW编程一般要经过以下几个步骤。 1、总体设计:根据用户需求,进行VI总体结构设计,确定面板布局与程序流程,并保证所使用的虚拟仪器硬件在LabVIEW函数库中有相应的驱动程序。 2、前面板设计:在LabVIEW的前面板编辑窗口,利用工具模板和控件模板进行VI前面板的设计。 3、方框图编程:在LabVIEW的方框图编辑窗口,利用工具模板和函数模板进行方框

基于LabVIEW的振动信号测试与系统的开发

第5期(总第174期) 2012年10月机械工程与自动化 MECHANICAL ENGINEERING & AUTOMATIONNo.5 Oct. 文章编号:1672-6413(2012)05-0040-0 2基于LabVIEW的振动信号测试与分析系统的开发 何政军,王晓龙,庞尔军 (华北电力大学机械工程系,河北 保定 071003 )摘要:以图形化编程语言LabVIEW作为开发平台,设计并搭建了虚拟振动测试分析系统,介绍了各功能模块可以实现的功能,配合必要的硬件设备,实现了对简支梁振动信号的采集、处理和分析。关键词:LabVIEW;振动测试;信号中图分类号:TP273 文献标识码:A 收稿日期:2012-05-14;修回日期:2012-05-2 5作者简介:何政军(1988-) ,男,浙江衢州人,在读硕士研究生,研究方向:数字化设计制造与虚拟仪器。0 引言 虚拟仪器是由美国国家仪器公司(National Instruments,NI)最早提出的概念,由于其具有开发周期短、 可扩展、性价比高等优点,使得虚拟仪器逐渐取代了传统仪器[1 ]。本文充分利用虚拟仪器技术、数据采集和信号分析处理技术,搭建了振动测试分析系统。1 振动测试分析系统硬件构成 振动测试分析系统硬件结构框图如图1所示。系统硬件由9101压电式加速度传感器、YE5852电荷放大器和NI9234数据采集卡及装有LabVIEW软件的计算机组成。 图1 振动测试分析系统硬件结构框图 NI9234采集卡有4个模拟信号输入通道和1个 模拟信号输出通道,精度均为24位, 并且其增益可由软件控制,采样速率最高可达51.2kS/s ,对于双极性信号,输入电压信号范围在±5V之间。YE5852电荷放大器增益为0.01mV/pC~1 000mV/pC,精度为±1%。9101压电式加速度传感器为通用型宽频带传感 器,其电荷灵敏度为30pC/ms2 ,频率范围为0.2kHz~ 10kHz,谐振频率为27kHz,输出电压为±10V。2 振动测试分析系统软件设计由于LabVIEW基于模块化程序设计思想,因此在振动测试系统的开发过程中也基本上遵循这一思 想, 在总体方案确定后,根据所需的不同功能分别组建各种功能模块,最后再进行集成和调试。 根据振动测试的需要和层次化及面向对象的编程思想,把整个系统分成数据采集、信号预处理、时域分 析、频域分析和频响分析5个模块。系统软件设计的总体方案如图2所示。 测试分析系统的前面板包括数据分析处理结果显示、 模块选择和数据采集参数设置3部分。在前面板中可以通过点击右侧下拉列表和转动旋钮来设置数据采集过程的采样点数、采样频率、采样电压和保存实测数据的文件路径;点击左侧的模块选择标签可以切换 不同的分析处理结果, 包括激励信号、响应信号和滤波信号的显示以及信号的相关性分析、功率谱分析、FFT 变换、频响分析和统计分析的结果。 图2 系统软件设计的总体方案 程序框图是完成程序功能的图形化原代码,包括 前面板上控件的连线端子以及连线编写程序等。通过指定程序框图中输入、输出的信号数据,可以完成对虚拟仪器的操作与控制,实现其具有的信号采集、数据分析处理等功能。 3 实际振动信号的采集与分析 配合测试系统所需的必要硬件,利用搭建的振动测试分析系统采集由LC130力锤激励简支梁(固有频率50Hz左右) 产生的振动信号,其中采样频率为2  048Hz,对采集的振动信号进行分析处理,并进一步说明各模块可实现功能的划分。

LabVIEW的数据采集与信号处理

LabVIEW的数据采集与信号处理 摘要: 针对虚拟仪器技术具有性能高, 易于实现硬件和软件集成等特点, 将虚拟仪器技术和LabvIEW 应用于测试领域。以计算机和NI 9201 数据采集卡为硬件, 以LabVIEW8. 6 软件作为开发平台, 构建了数据采集与信号处理的虚拟测试系统。系统由信号源和信号处理模块组成。 关键词:虚拟仪器; LabVIEW; 数据采集; 信号处理 虚拟仪器是指以通用计算机作为系统控制器, 由软件来实现人机交互和大部分仪器功能的一种计算机仪器系统。NI 公司开发的LabVIEW 是目前最为成功的虚拟仪器软件之一, 它是一种基于G 语言的32 位编译型图形化编程语言, 其图形化界面可以方便地进行虚拟仪器的开发, 并在测试测量、数据采集、仪器控制、数字信号处理等领域得到了广泛的应用。 1虚拟仪器测试系统的结构 以美国国家仪器公司N I 的LabV IEW8. 6 作为开发平台, 配合NI 公司的N I 9201 数据采集卡作为硬件实现该测试系统的设计。该系统可实现单、双通道的模拟信号的采集、虚拟信号的产生, 同时完成对信号的分析与处理, 测试系统的核心是前端数据采集和后续信号处理。虚拟仪器测试系统的结构框图如图1 所示。 图1 虚拟仪器测试系统的结构框图 2 程序设计模块 该测试系统体现了NI公司提出的软件即是仪器的思想, 以LabVIEW8.6为平台, 设计的虚拟仪器能够完成对数据采集卡采集的模拟信号进行分析与处理, 同时, 利用LabVIEW 的强大功能, 开发了虚拟信号发生器模块, 使得该虚拟仪器对仿真信号进行分析与处理。也即该测试系统的信号源包括: 数据采集卡采集的模拟信号; 虚拟信号发生器模块产生的仿真信号。据采集与信号处理系统的结构框图如图2 所示。 图2数据采集及信号处理系统的结构框图 2. 1. 1 数据采集卡采集的模拟信号 以NI 公司的NI 9201 数据采集卡作为硬件, 实现该数据采集系统的设计。NI 9201 提供8 个

相关文档
最新文档