数学竞赛平面几何定理

数学竞赛平面几何定理
数学竞赛平面几何定理

E

D

C

B A

平面几何

一、知识点金

1.梅涅劳斯定理:若直线l 不经过ABC ?的顶点,

并且与ABC ?的三边,,BC CA AB 或它们的延长线

分别交于,,P Q R ,则1BP CQ AR PC QA RB

??=注:梅涅劳斯定理的逆定理也成立

(用同一法证明)

2.塞瓦定理:设,,P Q R 分别是ABC ?的三边,,BC CA AB 或它们的延长线上的点,

若,,AP BQ CR 三线共点,则

1BP CQ AR PC QA RB

??=注:塞瓦定理的逆定理也成立3.托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ?+?≥?,并且当且仅当四边形ABCD ()

ABCD E BAE CAD ABE ACD

AB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC AD

AB CD AD BC AC BE ED AB CD AD BC AC BD

E BD A B C D ∠=∠∠=∠??∴

=??=?=∠=∠∴??∴=??=?∴?+?=?+∴?+?≥? 证:在四边形内取点,使,则:和相似又且和相似且等号当且仅当在上时成立,即当且仅当、、、四点共圆时成立;

注:托勒密定理的逆定理也成立

4.

西姆松定理:若从ABC ?外接圆上一点P 作,,BC AB CA 的垂线,

垂足分别为,,D E F ,则,,D E F 三点共线。

西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。若,,D E F 三点共线,则点P 在ABC ?的外接圆上。5.蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦

AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中

点。

证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,连接OX ,OY ,OM ,SM ,MT 。∵△AMD ∽△CMB ∴AM/CM=AD/BC

∵AS=1/2AD ,BT=1/2BC ∴AM/CM=AS/CT

又∵∠A=∠C ∴△AMS ∽△CMT

∴∠MSX=∠MTY

∵∠OMX=∠OSX=90°∴∠OMX+∠OSX=180°

∴O ,S ,X ,M 四点共圆

同理,O ,T ,Y ,M 四点共圆

∴∠MTY=∠MOY ,∠MSX=∠MOX

∴∠MOX=∠MOY ,∵OM ⊥PQ ∴XM=YM

注:把圆换成椭圆、抛物线、双曲线蝴蝶定理也成立

6.坎迪定理:设AB 是已知圆的弦,M 是AB 上一点,弦,CD EF

过点M ,连结,CF ED ,分别交AB 于,L N ,则1111LM MN AM MB

-=-。7.斯特瓦尔特定理:设P 为ABC ?的BC 边上任一点,则有

2222PC BP BP PC AP AB AC BC BC BC BC BC

=?+?-??。注:斯特瓦尔特定理的逆定理也成立

8.张角定理:设,,A C B 顺次分别是平面内一点P 所引三条射线,,AB AP AC 上的点,线段,AC CB 对点P 的张角分别为,αβ,且180αβ+< ,则,,A C B 三点共线的充要条件是:

sin()sin sin PC PB PA

αβαβ+=+

9.九点圆定理:三角形的三条高的垂足、三边的中点,以及垂心与顶点的三条连接线段的中点,共九点共圆。此圆称为三角形的九点圆,或称欧拉圆。ABC ?的九点圆的圆心是其外心与垂心所

连线段的中点,九点圆的半径是ABC ?的外接圆半径的12

。证明:ABC ?的九点圆与ABC ?的外接圆,以三角形的垂心为外位似中心,又以三角形的重心为内位似中心。位似比均为1:2。

10.欧拉线:ABC ?的垂心H ,

重心G ,外心O 三点共线。此线称为欧拉线,且有关系:2HG GO =11

R 和r ,则这两圆的圆心距

OI =。由此可知,2R r ≥。

证明:设外心为O ,内心为I ,连结OI ,延长交外接圆于,N P 两点,令d OI =,AI 交外接

圆于L ,则()()2sin 22sin 2A r R d R d NI IP LI IA LB IA R Rr A -+=?=?=?=?=12.笛沙格定理;在ABC ?和A B C '''?中,若,,AA BB CC '''相交于一点O ,则AB 与A B '',BC 与

B C '',AC 与A C ''的交点,,F D E 共线。证明:OBC ?和梅尼线B C D '',1OB BD CC B B DC C O ''??='';OAB ?和梅尼线A B F '',1OA AF BB A A FB B O ''??='';OAC ?和梅尼线A C E '',1OC CE AA C C EA A O ''??='',三式相乘,得1BD CE AF DC EA FB

??=。得证13.牛顿(Newton )定理1:

圆的外切四边形的对角线的交点和以切点为顶点的四边形对角线交点重合。

证法1:设四边形ABCD 的边AB,BC,CD,DA 与内切圆分别切于点E,F,G,H.

首先证明,直线AC,EG,FH 交于一点.设EG,FH 分别交AC 于点I,I'.

显然∠AHI‘=∠BFI ’,因此易知AI'*HI'/FI'*CI'=S(AI'H)/S(CI'F)=AH*HI'/CF*FI'故AI'/CI'=AH/CF.

同样可证:AI/CI=AE/CG 又AE=AH,CF=CG.故AI/CI=AH/CF=AI'/CI'.

从而I,I'重合.即直线AC,EG,FH 交于一点.

同理可证:直线BD,EG,FH 交于一点.因此直线AC,BD,EG,FH 交于一点。

证法2:外四边形为ABCD ,对应内切四边形为EFGH 。连接EG ,FH 交于P 。

下面证明BD 过P 即可。

过D 座EG 的平行线交BA 与S ,过D 做FH 的平行线交BC 于T 。由于弦切角及同位角,角BEG=角CGE=角CDS=角BSD 。所以SEGD 四点共圆,且为等腰梯形。设此圆为圆M ,圆M 与圆O ,内切圆交于EG ,所以其根轴为EG ,同理对圆N ,DHFT ,与圆O 交于HF 。HF 为此两圆的根轴。由根轴定理,只需证明BD 为圆M 与圆N 的根轴即可证明BD ,EG ,HF 共于点P 。

D 在圆M 和圆N 上,所以其为根轴一点。由于SEGD ,和DHFT 为等腰梯形,所以ES=DG ,DH=FT 。由切线长定理,DH=DG ,BE=BF ;所以BE=BF ,ES=FT ,BS=BT 。若B 为圆M 与圆N 的根轴上一点,则BE*BS=BF*BT ,其为割线长。明显等式成立。所以BD 为圆M 与圆N 的根轴,则BD ,EG ,HF 共于点P 。同理AC ,EG ,HF 共于点P 。命题得证。

14.牛顿(Newton)定理2:圆外切四边形的两条对角线的中点,

只需证△BEI与△DEI面积相等。

证明:四边形ABCD,AB∩CD=E,AD∩BC=F,BD中点M,AC中点L,EF中点N取BE 中点P,BC中点R,PN∩CE=Q

R,L,Q共线,QL/LR=EA/AB;M,R,P共线,RM/MP=CD/DE;

N,P,Q共线,PN/NQ=BF/FC。

三式相乘得:QL/LR*RM/MP*PN/NQ=EA/AB*CD/DE*BF/FC

QL/LR*RM/MP*PN/NQ=1

PQR

及梅尼线LMN,

由梅涅劳斯定理的逆定理知L,M,N三点共线。

16.布利安双定理:设一六角形外切于一条圆锥曲线,那么它的三双对顶点的连线共点。在此,提供用初等几何证明外切于圆的情形。

记六边形为ABCDEF外切于圆O,AB,BC,CD,DE,EF,FA上的切点分别是G,H,I,J,K,L.设AB,DC 交于X,AF,DE交于Y.则四边形AXDY外切于圆O,切点分别是G,I,J,L。圆外切四边形对边切点连线与主对角线交于一点,有AD,GJ,LI共点(记为点P)。同理,BE,GJ,KH共点(记为点r),CF,LI,KH 共点(记为点q则命题可转为证明DP,BR,FQ共点。

17.拿破仑定理:若在任意三角形的各边向外作正三角形。则它们的中心构成一个正三角形。

证明:设等边△ABD的外接圆和等边△ACF的外接圆相交于O;连AO、CO、BO。

∴∠ADB=∠AFC=60°;∵A、D、B、O四点共圆;A、F、C、O四点共圆;

∴∠AOB=∠AOC=120°;∴∠BOC=120°;∵△BCE是等边三角形

∴∠BEC=60°;∴B、E、C、O四点共圆;∴这3个等边三角形的外接圆共点。

设等边△ABD的外接圆⊙N,等边△ACF的外接圆⊙M,等边△BCE的外接圆⊙P相交于O;连AO、CO、BO。∵A、D、B、O四点共圆;A、F、C、O四点共圆,B、E、C、O四点共圆,∠AFC=∠ADB=∠BEC=60°;∴∠AOB=∠AOC=∠BOC=120°;

∵NP、MP、MN是连心线;BO、CO、AO是公共弦;∴BO⊥NP于X;CO⊥MP 于Y;AO⊥NM于Z。

∴X、P、Y、O四点共圆;Y、M、Z、O四点共圆;Z、N、X、O四点共圆;

∴∠N=∠M=∠P=60°;即△MNP是等边三角形。

18.帕斯卡(Pascal)定理:如图,圆内接六边形ABCDEF的边AB、DE的延长线交于点G,边BC、EF的延长线交于点H,边CD、FA的延长线交于点K。则H、G、K三点共线。

证明:延长AB、CD、EF,分别交直线CD、EF、AB于M、N、L三点,构成△LMN。

直线BC截LM、MN、NL于B、C、H三点,则…①

直线DE截LM、MN、NL于G、D、E三点,则|LG|/|MG|.|MD|/|ND|.|NE|/|LE|=1…②

直线AF截LM、MN、NL于A、K、F三点,则…③

连BE,则LA·LB=LF·LE,∴…④。同理…⑤,…⑥。

将①②③④⑤⑥相乘,得。

∵点H、G、K在△LMN的边LN、LM、MN的延长线上,∴H、G、K三点共线。

21.斯坦纳—莱默斯定理:

如图,已知△ABC中,两内角的平分线BD=CE。求证:AB=AC。

证明:在平面三角形中:(1).三内角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.(2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求.(3)当△ABC为等边三角形时,此时外心与费马点重合(1)等边三角形中BP=PC=PA,BP、PC、PA分别为三角形三边上的高和中线、三角上的角分线。是内切圆和外切圆的中心。△BPC≌△CPA≌△PBA。(2)当BC=BA但CA≠AB时,BP为三角形CA上的高和中线、三角上的角分线。

证明(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B同理可得∠CBP=∠CA1P由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度同理,∠APB=120度,∠APC=120度(2)PA+PB+PC=AA1将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB 为等边三角形,所以∠BPD=60度又∠BPA=120度,因此A、P、D三点在同一直线上,又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。(3)PA+PB+PC最短在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、

A1G(同上),则AA1

23.等差幂线定理:已知A、B亮点,则满足AP2-BP2=k(k为常数)的点P轨迹是垂直于AB的一条直线。

24.婆罗摩笈多定理

若圆内接四边形ABCD的对角线相互垂直,则垂直于一边CD且过对角线交点E的直线EF将AB平分对边。

25.莱莫恩(Lemoine)定理:过△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB所在直线交于P、Q、R,则P、Q、R三点共线。直线PQR称为△ABC的莱莫恩线。

证明:由弦切角定理可以得到:sin∠ACR=sin∠ABC,sin∠BCR=sin∠BAC sin∠BAP=sin∠BCA,sin∠CAP=sin∠ABC

sin∠CBQ=sin∠BAC sin∠ABQ=sin∠BCA

所以,我们可以得到:(sin∠ACR/sin∠BCR)*(sin∠BAP/sin∠CAP)*(sin∠CBQ/sin∠ABQ)=1,这是角元形式的梅涅劳斯定理,所以,由此,得到△ABC被直线PQR所截,即P、Q、R共线。

26.清宫定理:设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F,则D、E、F在同一直线上

证明:设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB

的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F这时,P、Q两点和D、F、E、三点有如下关系:将三角形的三边或者其延长线作为镜面,则从P点出发的光线照到D点经过BC反射以后通过Q点,从P点出发的光线照到E点经AC的延长线反射后通过Q点,从P点出发的光线照到F点后通过Q点从而,如果P、Q两点重合,则D、E、F三点成为从P(即Q)点向BC,CA,AB或者它们的延长线所引的垂线的垂足。于是,如果P、Q两点重合,清宫定理就成为西摩松定理。

我们决定将证明清宫定理的方针确定如下:因为D、E、F三点中,有两点在△ABC

的边上,其余一点在边的延长线上,如证明(BD/DC)·(CE/EA)·(AF/FB)=1,

则根据梅涅劳斯定理的逆定理,就可证明DEF三点在同一直线上。

首先,A、B、P、C四点在同一圆周上,因此∠PCE=∠ABP

但是,点P和V关于CA对称所以∠PCV=2∠PCE

又因为P和W关于AB对称,所以∠PBW=2∠ABP

从这三个式子,有∠PCV=∠PBW

另一方面,因为∠PCQ和∠PBQ都是弦PQ所对的圆周角,

所以∠PCQ=∠PBQ两式相加,有∠PCV+∠PCQ=∠PBW+∠PBQ

即∠QCV=∠QBW即△QCV和△QBW有一个顶角相等,

因此S(△QCV)/S(△QBW)=(CV·CQ)/(BW·BQ)

但是CV=CP,BW=BP,所以S(△QCV)/S(△QBW)=(CP·CQ)/(BP·BQ)

同理S(△QAW)/S(△QCU)=(AP·AQ)/(CP·CQ)

S(△QBU)/S(△QAV)=(BP·BQ)/(AP·AQ)

于是(BD/DC)·(CE/EA)·(AF/FB)=[S(△QBU)/S(△QCU)]·[S(△QCV)/S

(△QAV)]·[S(△QAW)/S(△QBW)]=[S(△QBU)/S(△QAV)]·[S(△QCV)/S(△QBW)]·[S

(△QAW)/S(△QCU)]=[(BP·BQ)/(AP·AQ)]·[(CP·CQ)/(BP·BQ)]·[(AP·AQ)/

(CP·CQ)]=1

根据梅涅劳斯定理的逆定理,D、E、F三点在同一直线上

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

平面几何三角形四心竞赛题A卷及答案

三角形四心竞赛训练题1 一、填空题 1、三角形的三条边的垂直平分线的交点叫做三角形的 心;三个角的平分线的交点叫做三角形的 心;三条中线的交点叫做三角形的 心;三条高线的交点叫做三角形的 心。 2、在△ABC 中,∠A=40o,为△ABC 的内心,则∠BOC = 度。 3、圆的外切正三角形的边长是圆内接三角形的边长的 倍。 4、已知三角形三边长分别为3、4、5,则其内切圆半径为 。 5、设△ABC 的垂心为H ,则∠BHC +∠BAC= 度。 二、解答题 6、如图1,△ABC 中,AD 为BC 边的高线,点O 为△ABC 的外心,求 证:∠BAO=∠DAC 。 7、求证:三角形的三条中线交于一点,且这一点到顶点的距离等于中线长的2 3。 8、如图2,Rt △ABC 的内切圆⊙O 和斜边BC 的切点为T ,求证: ABC BT TC S ??=。 9、如图3,已知△ABC 的内心为I ,△BCI 的外心为D ,求证:A 、B 、C 、D 四点共圆。 10、如图4,已知△ABC 的内切圆和BC 相切于D ,求证:△ABD 、△ACD 的内 切圆相切。 11、如图5,设△ABC 的垂心为H ,并且直线AH 和外接圆及边BC 的交点分别为E 、D ,求证:HD=DE 。 12、如图6,△ABC 的垂心为H ,外心O 到边BC 的距离为OM ,求证:AH=2OM 。 13、如图7,△ABC 的垂心为H ,外心为O ,若∠A =60o;求证:三直线HO 、AB 、AC 所作成的△APQ 是正三角形。 14、如图8,△ABC 的垂心H ,若垂足三角形DEF 的外接圆和HC 的交点为G ,求证:HG=CG 。 15、设从△ABC 的外接圆的圆心O 向BC 边作垂线OD ,求证:∠BOD=∠A 或者∠BOD+∠A=180o 16、如图9,△ABC 中,∠A=2∠B ,由顶点C 作∠A 的平分线AD 的垂线CF ,垂足为F ,求证:CF 经过△ABC 的外心。 17、如图10,设过△ABC 的内心I 作BC 的平行线和AB 、AC 分别交于D 、E 、M 是BC 的中点,求证:∠DME 是钝角。 重内垂外A 卷 (1) (5) (2) I (3) C B A (4) D C B A (6)M O H D C B A (7)(9) F E D C B A (10)D (8) H G F E C B A

平面几何习题集大全

平面几何习题大全 下面的平面几何习题均是我两年来收集的,属竞赛围。共分为五种类型,1,几何计算;2,几何证明;3,共点线与共线点;4,几何不等式;5,经典几何。 几何计算-1 命题设点D是Rt△ABC斜边AB上的一点,DE⊥BC于点E,DF⊥AC于点F。若AF=15,BE=10,则四边形DECF的面积是多少? 解:设DF=CE=x,DE=CF=y. ∵Rt△BED∽Rt△DFA, ∴BE/DE=DF/AF <==> 10/y=x/15 <==> xy=150. 所以,矩形DECF的面积150. 几何证明-1 命题在圆接四边形ABCD中,O为圆心,己知∠AOB+∠COD=180.求证:由O向四边形ABCD所作的垂线段之和等于四边形ABCD的周长的一半。 证明(一) 连OA,OB,OC,OD,过圆心O点分别作AB,BC,CD,DA的垂线,垂足依次为P,Q,R,S。 易证ΔAPO≌ΔORD,所以DR=OP,AP=OR, 故OP+OR=DR+AP=(CD+AB)/2。 同理可得:OQ+OS=(DA+BC)/2。 因此有OP+OQ+OR+OS=(AB+BC+CD+DA)/2。

证明(二) 连OA,OB,OC,OD,因为∠AOB+∠COD=180°,OA=OD,所以易证 RtΔAPO≌RtΔORD,故得DR=OP,AP=OR, 即OP+OR=DR+AP=(CD+AB)/2。 同理可得:OQ+OS=(DA+BC)/2。 因此有OP+OQ+OR+OS=(AB+BC+CD+DA)/2。 几何不等式-1 命题设P是正△ABC任意一点,△DEF是P点关于正△ABC的接三角形[AP,BP,CP延长分别交BC,CA,AB于D,E,F],记面积为S1;△KNM是P点关于正△ABC的垂足三角形[过P 点分别作BC,CA,AB垂线交于K,N,M],记面积为S2。求证:S2≥S1 。 证明设P点关于正△ABC的重心坐标为P(x,y,z),a为正△ABC的边长,则正△ABC的面积为S=(a^2√3)/4。 由三角形重心坐标定义易求得: AD=za/(y+z),CD=ya/(y+z),CE=xa/(z+x),AE=za/(z+x),AF=ya/(x+y),BF=xa/(x+y). 故得: △AEF的面积X=AE*AF*sin60°/2=Syz/(z+x)(x+y); △BFD的面积Y=BF*BD*sin60°/2=Szx/(x+y)(y+z); △CDE的面积Z=CD*CE*sin60°/2=Sxy/(y+z)(z+x). 从而有S1=S-X-Y-Z=2xyzS/(y+z)(z+x)(x+y)。 因为P点是△KNM的费马点,从而易求得:

人教版九年级数学竞赛专题:平面几何的定值问题(含答案)

人教版九年级数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧上任意一点.求证:为定值. AD ⌒ PA PC PB P A B C D 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦 CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分 D.随C 点的移动而移动 DB ⌒ A

【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂 线的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. B 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是上异于A ,B 的动点,过点C AB ⌒ 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形; (2)当点C 在上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段AB ⌒ 的长度; (3)求证:CD 2+3CH 2是定值. B O A C E H G D 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8.

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

初中数学竞赛专题复习第二篇平面几何第18章整数几何试题新人教版

第18章 整数几何 ABC △,第三条高的长数,求这条高之长的所有可能值. 解析 由面积知,三条高的倒数可组成三角形三边,这是它们的全部条件. 设第三条高为h ,则 解得1515 45 h <<,h 可取4、5、6、7这四个值. ABC △3AB n x =+,2BC n x =+,CA n x =+,且BC 边上的高AD 的长为n ,其中n 为正整数,且01x <≤,问:满足上述条件的三角形有几个? 解析 注意AB 为ABC △之最长边,故90B ∠,而z 可正可负. 由2y z n x +=+,及()()()2 2 223242y z n x n x n x x -=+-+=+?,得4y z x -=,32 n y x = +,由勾股定理,知()2 22332n x n n x ?? ++=+ ??? ,展开得12n x =,由01x <≤及n 为正整数,知 1n =,2,…,12,这样的三角形有12个. ,其中一条直角边不超过20,其外接圆半径与内切圆半径之比为52∶,求此三角形周长的最大值. 解析 设该直角三角形直角边长为a 、b ,斜边为c ,则外接圆半径2 c R = ,内切圆半径2 a b c r +-= ,不妨设20a ≤. 由条件知 5 2 c a b c =+-,557a b c +=,平方,得()() 222225249a b ab a b ++=+,即 ()2212250a b ab +-=, ()()34430a b a b --=, 于是3a k =,4b k =,5c k =,或4a k =,3b k =,5c k =,周长为12k ,k 为正整数.k 的最大值为6,此时各边为18、24、30,周长最大值为72. ABC △,60A ∠=?,7BC =,其他两边长均为整数,求ABC △的面积. 解析 设AB x =,AC y =,则由余弦定理,有 2249x y xy +-=. 由条件x y ≠,不妨设x y <,则AB 为ABC △之最小边,x 只能取值1、2、3、4、5、6,分别代入,发现当3x =或5时,8y =,其余情形均无整数解. 于是1 sin 602 ABC S xy = ?=△. P ,求经过P 且长为整数的弦的条数. 解析 如图,O 半径为15,9OP =,过P 的弦ST 长为整数,APB 为直径,6AP =,24PB =,则144SP TP PA PB ?=?=,因此 24ST SP TP =+≥.

人教版 初三数学竞赛专题:平面几何的定值问题(包含答案)

人教版 初三数学竞赛专题:平面几何的定值问题(含答案) 【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD ⌒上任意一点.求证:PA PC PB 为定值. 【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A.到CD 的距离保持不变 B.位置不变 C.等分DB ⌒ D.随C 点的移动而移动 【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线 的垂足.求证:不管ST 滑到什么位置,∠SPM 是一定角. 【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°.点C 是AB ⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E .连接DE ,点G ,H 在线段DE 上,且DG =GH =HE . (1)求证:四边形OGCH 是平行四边形; (2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度; (3)求证:CD 2+3CH 2是定值. P A B C D A P B

【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点.若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标; (2)连接MG ,BC ,求证:MG ∥BC ; (3)如图2,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 的圆周上运动时, PF OF 的比值是否发 生变化?若不变,求出比值;若变化,说明变化规律. (图1) (图2) 【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点.求证:P A 2+PB 2+PC 2为定值. 【能力训练】 1.如图,点A ,B 是双曲线x y 3 上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段.若S 阴影=1,则B O A C E H G D A

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

初中数学竞赛平面几何常用公式及例题讲解

面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 和角公式 A B B A B A cos sin cos sin )sin(+=+ A B B A B A sin sin cos cos )cos(-=+ B A B A B A tan tan 1tan tan )tan(-+=+ 差角公式 A B B A B A cos sin cos sin )sin(-=- A B B A B A sin sin cos cos )cos(+=- B A B A B A tan tan 1tan tan )tan(+-=-

常用角度的三角比

相关练习题: 1.已知ABC ?中,,75 =∠B ,60 =∠C ,10=BC 求AB 与AC 的长及三角形的面积 2.求证面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? 3.求证海伦公式 ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 4. 已知ABC ?中,,7=AB ,8=BC ,9=AC 求sinA , sinB , sinC 5.在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。 6.已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 7.在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。 A B C E F A B C P

初中数学竞赛第二十三讲平面几何的定值与最值问题(含解答)

第二十三讲平面几何的定值与最值问题 【趣题引路】 传说从前有一个虔诚的信徒,他是集市上的一个小贩.??每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,?而周围上的点都是供信徒朝拜的顶礼地点如图1. 这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,?然后再到集市的路程最短呢? (1) (2) 解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短. 证明如图2,在圆周上除P点外再任选一点P′. 连结BP?′与切线MN?交于R,AR+BR>AP+BP. ∵RP′+AP′>AR. ∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP. 不过,用尺规作图法求点P的位置至今没有解决.?“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”. 【知识延伸】 平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.?所谓几何定值问题就是要求出这个定值. 在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变. 例1如果△ABC的外接圆半径R一定,求证: abc S 是定值.(S表示△ABC的面积)

解析 由三角形面积S=12 absinC 和正弦定理sin c C =2R, ∴c=2RsinC. ∴ abc S =2sin c C =4sin sin R C C =4R 是定值. 点评 通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值. 平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,?某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,?这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式). 例2 如图,已知⊙O 的半径 为⊙O 上一点,过A 作一半径为r=3的⊙O ′, 问OO ′何时最长?最长值是多少?OO ′何时最短?最短值是多少? 解析 当O ′落在OA 的连线段上(即⊙A 与线段OA 的交点B 时)OO ′最短,且最短长度为 当O ′落在OA 的延长线上(即⊙O 与OA 的延长线交点C 时)OO ′最长,且最长的长度为 点评 ⊙O ′是一个动圆,满足条件的⊙O ′有无数个,但由 于⊙O ′过A 点,所以⊙O ′的圆心O ′在以A 为圆心半径为3的⊙A 上. 【好题妙解】 佳题新题品味 例1 如图,已知P 为定角O 的角平分线上的定点,过O 、P?两点任作一圆与角的两边分别交于A 、B 两点. 求证:OA+OB 是定值. 证明 连结AP 、BP,由于它们为有相同圆周角的弦,AP=PB,不妨记为r.?另记x 1=OA,x 2=OB. 对△POA 应用余弦定理, 得x 12+OP 2-2OP ·cos ∠AOP ·x 1=r 2. 故x 1为方程x 2-2OP ·cos 1 2 ∠AOB ·x+(O P 2-r 2)=0的根,同理x 2亦为其根. 因此x 1,x 2为此方程的两根,由韦达定理,得x 1+x 2=2OP(1 2 ∠AOB)是定值.

高中的数学竞赛平面几何基本定理

(高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边 和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:2 22222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+= (其中p 为周长一半). 6. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC = BC ·DC ·BD . 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角. 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其 延长线必平分对边. 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题 成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角 形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三

初中数学竞赛专题复习第二篇平面几何第17章几何不等式与极值问题试题新人教版

第17章 几何不等式与极值问题 一个凸行边形的内角中,恰好有4个钝角,求n 的最大值. 解析 考虑这个凸行边形的n 个外角,有4n -个角90?≥,故有()490360n -??,P 为BC 边的高AD 上的一点,求证:AB AC PB PC -<-. 解析 易知AB AC PB PC +>+, 又2222AB AC BD CD -=- 22PB PC =-, 故有AB AC PB PC -<-. 评注 读者不妨考虑AD 是角平分线与中线的情况. 17.1.3 已知四边形ABCD ,AC 、BD 交于O ,ADO △和BCO △的面积分别为3、12,求四边形ABCD 面积的最小值. 解析 易知ABO BCO ADO DCO S S BO S DO S == △△△△,故36ABO CDO ADO BCO S S S S ?=?=△△△△. 从而12ABO CDO S S +=△△≥, 且当ABO CDO S S =△△(此时四边形ABCD 为一梯形)时等号成立,所以此时四边形ABCD 面积达到最小值27. 已知:直角三角形ABC 中,斜边BC 上的高6h =. (1)求证:BC h AB AC +>+; (2)求()()2 2 BC h AB AC ++-. 解析 () ()2 2 BC h AB AC +-+ 222222BC h BC h AB AC AB AC =++?---?, 由条件,知242ABC BC h S AB AC ?==?△,且222AB AC BC +=, 于是()()2 2 236BC h AB AC h +-+==. 注意:这同时解决了(1)和(2). 设矩形ABCD ,10BC =,7CD =,动点F 、E 分别在BC 、CD 上,且4BF ED +=,求AFE △面积的最小值. 解析设 BF x =, () 4DE y x ==-,则 ()()()11 7101077022ABF ADE ECF S S S x y x y xy ++=++--=+????△△△。 由()2 144 xy x y +=≤ 。故 ()1 70704332 AEF S -?+=△≥.

平面几何中的几个著名定理

平面几何中的几个著名定理 文章来源:全国初中数学竞赛辅导作者:孙瑞清 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ ∽△BXP得 同理

将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

相关文档
最新文档